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Abstract

Anomaly generation has become essential in address-
ing the scarcity of defective samples in industrial anomaly
inspection. However, existing training-based methods fail
to handle complex anomalies and multiple defects simulta-
neously, especially when only a single anomaly sample is
available per defect type. To address this issue, we propose
TF-IDG, a novel training-free defect generation framework
capable of generating diverse anomaly samples in a one-
shot setting. We propose a Feature Alignment strategy that
provides fine-grained appearance guidance by minimizing
the distributional gap between generated and real defects
with high complexity. Additionally, we introduce an Adap-
tive Anomaly Mask mechanism to mitigate the issue of de-
fects with small regions being ignored during the generation
process, enhancing consistency between synthetic defects
and their corresponding masks. Finally, we incorporate
a Texture Preservation module that extracts background
information from anomaly-free images, ensuring that the
visual properties of synthetic defects are seamlessly inte-
grated into the image. Extensive experiments demonstrate
the effectiveness of our method in generating accurate and
diverse anomalies, further leading to superior performance
in downstream anomaly inspection tasks. Our code is avail-
able at https://github.com/rubymiaomiao/TF-IDG.

1. Introduction
Industrial anomaly inspection algorithms play crucial roles
in manufacturing. Anomaly detection involves assessing an
entire image to determine whether any defects are present,
while anomaly localization goes further by specifying the
exact defective areas on the image. Anomaly classification,
a more complex task, identifies specific defect types with
corresponding characteristics.

Despite the importance of this field, the effectiveness and
robustness of machine learning-based industrial anomaly
inspection are often limited, primarily due to the scarcity
of defective samples from a real-world production line.
In this case, numerous studies have explored unsuper-
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Figure 1. Left: Comparison of defect generation quality across
four characteristics: elongated, tiny, multiple, and complex de-
fects. Our method offers a clear advantage over existing ap-
proaches in handling these types. Right: Different frameworks
for defect generation. Our model can adapt to limited training data
and generate defects for multiple classes with a unified framework.

vised methods [27, 36, 51, 55] and few-shot supervised ap-
proaches [7, 49, 53], which mainly leverage abundant nor-
mal samples or a small number of anomaly samples to con-
struct the decision boundaries. Although these approaches
perform reasonably well in anomaly detection, their ability
to locate and classify versatile anomalies is challenged due
to the inadequate integration of real-world defects and the
sparse sampling of anomaly distributions, which limits the
capture of full variability and increases model complexity
to satisfy diversity requirements. A promising solution is
synthesizing realistic anomaly samples, enabling more ef-
fective algorithms available in a supervised setting.

Defect generation methods can be categorized into two
main types: (1) Manual editing: Approaches such as Cut-
Paste and Crop-Paste [23, 25, 39] paste abnormal or un-
related textures onto target images but fail to capture the
structural coherence and contextual realism of real-world
defects, limiting their potential to improve model accuracy.
(2) Generative models: GANs and diffusion models are
widely applied, but their direct use with general image pri-
ors fails to generate realistic defects due to distributional
gaps. GAN-based methods [31, 52] generally demand large
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defect datasets. DFMGAN [8] enables few-shot fine-tuning
on a small number of samples but suffers from misalign-
ment between defects and masks. AnoDiff [20] fine-tunes
textual embeddings to learn anomaly appearance and po-
sitioning. However, due to parameter size constraints and
training sample requirements, it struggles with subtle de-
fects and object reconstruction. In the extreme case where
only one anomaly sample is available, training-based meth-
ods struggle to capture diverse defect characteristics, further
restricting the generation ability. This indicates the need for
a training-free approach to generate realistic anomalies.

Here, we propose TF-IDG, a training-free method us-
ing an image-to-image framework to generate defects. Our
approach builds upon Anydoor [3], providing an intuitive,
zero-shot image-editing framework based on reference im-
ages, eliminating the need for fine-tuning textual space or
supplementary models to learn each defect type. Leverag-
ing the self-supervised model DINOv2 [33], we extract ex-
pressive features from reference defects while leveraging its
robust instance retrieval capability to enhance defect diver-
sity. ControlNet [54] additionally contributes by preserving
the shape and fine-grained details of defects. This archi-
tecture facilitates rapid extraction of diverse defect visual
features and ensures precise alignment between synthetic
anomalies and their corresponding masks, making it highly
well-suited to industrial defect generation.

The original Anydoor has notable limitations: as shown
in Fig. 3, it struggles with geometric harmonization in com-
plex object reconstructions [44], limits multi-object synthe-
sis, and often fails to integrate defects seamlessly into back-
grounds. To mitigate these limitations, our pipeline TF-IDG
enhances realism by focusing on texture preservation and
precise alignment to defect features. We introduce a fea-
ture alignment strategy calculating the minimum distribu-
tion distance between synthetic and real defects, pulling in
the real anomalous structural features, and then generating
anomalies in the mask area in each denoise step. This novel
strategy allows our model to capture the abnormal visual
structure of complex objects.

In cases where small or subtle defects are occasionally
ignored during multi-defect generation, we incorporate an
additional guidance function to identify these missed re-
gions and align them with real defect characteristics. Ad-
ditionally, we observe that image embedding guiding gen-
eration may sometimes neglect background factors, result-
ing in synthetic anomalies inconsistent with the object’s
textures or colors; we introduce a Texture Preservation
module, which employs Adaptive Instance Normalization
(AdaIN) [21] and Dual Source Attention. It preserves the
appearance, color, and texture of the source image, enabling
the generation of more cohesive and realistic anomalies.

As illustrated in Fig. 1, our method effectively tack-
les the challenges of generating complex and fine-grained
defects, pioneering the production of realistic industrial

anomalies within a training-free framework. By address-
ing the scarcity of industrial anomaly samples and eliminat-
ing the computational overhead of training, our approach
reduces model redundancy and provides a significant ad-
vantage for practical applications. In summary, our contri-
butions are as follows:
• We propose TF-IDG, a novel training-free framework for

industrial defect generation that synthesizes diverse, fine-
grained, and structurally aligned anomaly samples with-
out requiring any model retraining.

• We introduce a gradient-guided optimization loss that in-
tegrates Feature Alignment strategy, Adaptive Anomaly
Mask module, and Texture Preservation to ensure appear-
ance fidelity, enhanced coverage of subtle defects, and re-
alistic integration of anomalies.

• Extensive experiments demonstrate that TF-IDG sur-
passes existing anomaly generation models, achieving su-
perior generation quality and enhancing performance in
downstream anomaly inspection tasks.

2. Related Work

2.1. Image Editing with T2I Diffusion Models
The advancement of large-scale text-to-image (T2I) mod-
els, primarily based on the latent diffusion model
(LDM) [34], has established a robust foundation for data
augmentation across various fields. Numerous studies
have further adapted diffusion models to specific domains
through fine-tuning or editing techniques, advancing con-
trollable generation beyond general text prompts toward
fine-grained structural, semantic, and user-intent guidance.

Early works [6, 18] achieved category-conditioned gen-
eration using classifier gradients, while classifier-free guid-
ance [16] enabled more flexible control without external
models by leveraging the difference between conditional
and unconditional predictions. More recent efforts inte-
grate richer conditional inputs such as masks, depth, pose,
or sketches via lightweight adapters or architectural modi-
fications [24, 46, 54] to enhance spatial and semantic con-
trol. Parallel to structural guidance, personalization meth-
ods adapt pretrained diffusion models to new concepts.
Fine-tuning approaches like DreamBooth [37] and Textual
Inversion [10] bind custom tokens or embeddings using a
few reference images. In contrast, self-supervised meth-
ods such as Paint-by-Example [47], ObjectStitch [43], and
Anydoor [3]inject style and identity directly from examples
without updating model weights. Our framework builds
on Anydoor [3], which transfers custom objects into back-
grounds using a mask, combining DINOv2 [33] for fea-
ture retrieval and ControlNet [54] for structure preservation.
However, it struggles with geometric alignment in complex
scenes, limits multi-defect synthesis, and fails to harmonize
defects with backgrounds. Our method overcomes these is-
sues, improving realism and structural coherence.
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Figure 2. Illustration of TF-IDG model. Given a normal sample, TF-IDG aims to use three modules to improve the quality of generated
defects in the target mask mgen region during the inference process. First, LFA in Feature alignment is used to guide the generated feature
Fgen

t to be closer to the real feature Fref
t ( Sec. 4.2). Then, LAAM locally optimizes Fgen

t within the defect-misaligned region, denoted
as maam

t and defined by the Adaptive Anomaly Mask ( Sec. 4.3). Finally, the Texture Preservation module was introduced to enhance the
coherence of generated images by incorporating background information into the synthesis process in later iterations ( Sec. 4.4).

2.2. Anomaly Generation

Anomaly generation is an effective strategy to augment de-
fective industrial datasets.Various anomaly synthesis meth-
ods generate abnormal samples and corresponding annota-
tions to address data scarcity and enhance the performance
of downstream industrial inspection tasks.

Early efforts in anomaly synthesis primarily relied
on hand-crafted strategies, such as Crop-Paste [25],
DRAEM [51], and PRN [53], which simply crop and paste
anomalies from anomaly images to normal ones, lacking
fidelity and diversity. To address these limitations, genera-
tive models have been widely used to learn complex defect
distributions and synthesize realistic anomalies. Among
GAN-based methods, SDGAN [31], MultistageGAN[26],
DefectGAN [52], and DFMGAN [8], DFMGAN supports
few-shot anomaly generation with masks via a two-stage
strategy: pretraining on normal images and fine-tuning on
limited anomalies. Recent diffusion models have outper-
formed GAN-based approaches in generation quality [6].
Controllable [45] applies Dreambooth [37] to learn object
concepts. DualAnoDiff [22] employs LoRAs [19] for learn-
ing both overall defective images and defect concepts. De-
fect Spectrum [48] enhances realism via multi-scale refine-
ment. AnoDiff [20] and AnoGen [12] learn anomaly em-
beddings through Textual-Inversion [10], but their limited
embedding space hinders learning complex objects. While
RealNet [55] perturbs denoising variance to generate global
anomaly maps without training, it tends to produce less re-
alistic defects. In contrast, our method synthesizes semanti-
cally meaningful anomalies in a training-free manner, mak-
ing it more practical for real-world use.

3. Preliminary

3.1. Diffusion-based Image Generation
Diffusion-based image generation iteratively removes noise
from an initially noisy image zt through a denoising net-
work ϵθ. At each time step t, the model refines zt by sub-
tracting the conditional estimated noise ϵθ (zt, t, c), which
can be equivalently defined under the score-based genera-
tive modeling framework grounded in Stochastic Differen-
tial Equations [42] [41] and is formalized as:

  \boldsymbol {\epsilon }_\theta \left (\mathbf {z}_t, t,\mathbf {c}\right ) = -\sqrt {1 - \bar {\alpha }_t}\nabla _{\mathbf {z}_t} \log p_t\left (\mathbf {z}_t \mid \mathbf {c}\right ). \label {eq:conditional_noise}     

        (1)

3.2. Score-based guidance
Conditional diffusion models extend the unconditional for-
mulation [17] by modeling the conditional distribution
pt(zt | c), enabling control over generated content. The
corresponding conditional score function can be decom-
posed using Bayes’ Theorem as:

  \begin {aligned} \nabla _{\mathbf {z_t}} \log p_t\left (\mathbf {z}_t \mid \mathbf {c}\right ) \propto & \nabla _{\mathbf {z}_t} \log p_t\left (\mathbf {z}_t\right ) \\ & + \nabla _{\mathbf {z}_t} \log p_t\left (\mathbf {c} \mid \mathbf {z}_t\right ),\end {aligned}         

     
(2)

where ∇zt log pt(c | zt) is the gradient of the log-posterior
with respect to the condition c, which can be practically ap-
proximated by the gradient of a differentiable energy func-
tion  \mathcal {L}_{\mathbf {c}}(\mathbf {z}_t, t, \mathbf {c})    that quantifies the alignment between the
sample and the target condition. Consequently, Eq. (1) can
be reformulated as:

  \hat {\boldsymbol {\epsilon }}_\theta \left (\mathbf {z}_t, t, \mathbf {c}\right ) =\boldsymbol {\epsilon }_\theta \left (\mathbf {z}_t, t,\mathbf {c}\right )+\eta \sigma _t\nabla _{\mathbf {z}_t} \mathcal {L}_{\mathbf {c}}\left (\mathbf {z}_t,t,\mathbf {c}\right ), \label {eq:energy_guidance}          
     (3)
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Figure 3. The effect of different gradient guidance on the appear-
ance of defects.

where η is a scaling factor controlling guidance strength, σt

is the noise schedule parameter at time step t. Based on this
equation, we design two guidance functions to enhance the
semantic accuracy of defect representation in Sec. 4.3.

4. Method
As shown in Fig. 2, given a normal (background) sample
xn, a defect reference image xref with its corresponding
segmentation mask mref , and a target mask mgen specify-
ing the region of the generated defect within xn, our goal is
to generate defects that are semantically consistent and pre-
cisely aligned with mgen while visually harmonious with
the background.

4.1. Overall Architecture
We first crop and enlarge defect regions from all inputs to
focus the generation process on fine details. The generated
defects are then seamlessly integrated back into the input
normal image, addressing the challenges of tiny defect syn-
thesis. Next, following the approach in [3], we treat defects
in xref as the target for customization and feed xref into
DINOv2 to extract image features, which are then projected
into the embedding space via a linear layer to serve as the
image condition for guiding diffusion toward the desired de-
fect appearance. In parallel, mgen is input into ControlNet
to provide shape guidance, ensuring that generated defects
xgen align precisely with mgen whose shape and position
convey key information about defect semantics. Further-
more, an accurate mgen is essential for generating defects,
as its shape and position convey key information about de-
fect semantics. For each anomaly type, we predefine the
affected object area and randomly position augmented real
masks within it, enhancing the alignment between defect
location, shape, and anomaly characteristics.

In the subsequent generation sampling, TF-IDG en-
hances the quality of defects generated in the target mask re-
gion mgen by employing three key modules: Feature Align-
ment, Adaptive Anomaly Mask and Texture Preservation.
The Feature Alignment module leverages the rich visual
features from pre-trained diffusion U-Net [35] to establish

feature correspondences. This guides the generated defect
features Fgen

t to align more closely with the real defect fea-
tures Fref

t during the early denoising steps, improving se-
mantic consistency. The Adaptive Anomaly Mask module
calculates the difference between generated defects and nor-
mal samples within mgen and converts it into maam

t , pro-
viding appearance guidance for areas that might otherwise
be neglected during generation. Finally, the Texture Preser-
vation module enhances the seamless integration of gener-
ated defects with the background by incorporating contex-
tual information into the synthesis process of subsequent
iterations. Further details are discussed below.

4.2. Feature Alignment
When applying the pretrained zero-shot image-editing
framework [3] to defect generation, we observe that the
self-supervised model DINOv2 excels at retaining discrim-
inative features. Also, extensive pretraining on large-scale
datasets endows DINOv2 with powerful instance retrieval
abilities, enhancing the diversity of generated defects. How-
ever, in industrial contexts, DINOv2 exhibits biased feature
retrieval, resulting in deviations between the generated de-
fects and real defects. To address this limitation, we propose
an approach to mitigate such inconsistencies.

Building on insights from [9, 28, 29], we propose a fea-
ture alignment strategy to optimize the features of generated
defects using image embeddings as guidance. Specifically,
we construct a memory bank to store the intermediate latent
znt and zreft obtained from xn and xref through DDIM In-
version process [40] at each inversion step t. Additionally,
we store the self-attention layer’s key kn

t and value vn
t cor-

responding to znt , which are used to guide the subsequent
generation process. In the first n steps of diffusion genera-
tion, we extract intermediate features Fgen

t and Fref
t from

zgent and zreft using the UNet denoiser ϵθ.
Following Eq. (3), the energy function LFA is then con-

structed by calculating the correspondence between Fgen
t

and Fref
t within the regions defined by mgen and mref .

Initially, as in previous studies [29], we use cosine similar-
ity computed over average features within the masked re-
gions to measure the similarity between features, defined as
follows:

  \operatorname {CosSim} = \cos \left ( \frac {\sum \mathbf {F}_t^{gen}[\mathbf {m}^{gen}]}{\sum \mathbf {m}^{gen}}, \, \operatorname {sg}\left (\frac {\sum \mathbf {F}_t^{ref}[\mathbf {m}^{ref}]}{\sum \mathbf {m}^{ref}}\right ) \right ), \label {eq:cosine_sim_func}  












 





(4)
where sg is the gradient clipping operation. The loss is

defined as a stabilized inverse transformation of the cosine
similarity LFA = 1/(α+ β · CosSim(·)).

Due to the diversity of defects, mref is not necessarily
equal to mgen, allowing for the generation of defects with
varying shapes while maintaining the same defect type. As
a result, we average the features within the specified regions
as a representation of defect appearance to align dimen-
sions. However, we found that this approach has limited ef-
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fectiveness. For example, in the second image of Fig. 3(a),
the transistor pins show only slight improvement and gen-
erally remain blurry. Averaging compresses and aggregates
feature details, leading to the loss of critical information
about local feature variations.

To address structural misalignment between generated
and reference features, we adopt the Sinkhorn Distance [4],
which formulates alignment as an optimal transport prob-
lem rather than relying on pointwise or global similarity. By
minimizing the transport cost between feature distributions,
it captures fine-grained spatial relationships and preserves
structural consistency in short-step diffusion optimization.
This property is particularly beneficial in defect generation,
where diverse shapes must still correspond to the correct
defect type. Specifically, we first extract the feature vectors
from mref and mgen at each step:

  \begin {aligned} \mathbf {V}^{ref} &= \left \{\mathbf {F}_t^{ref}(i, j) \mid \mathbf {m}^{ref}(i, j) = 1 \right \}, \\ \mathbf {V}^{gen} &= \left \{\mathbf {F}_t^{gen}(i, j) \mid \mathbf {m}^{gen}(i, j) = 1 \right \}. \end {aligned} \label {eq:feature_sets} 



      



 
      

(5)

Next, we calculate the cosine similarity between each vector
in the two feature sets as follows:

  \mathbf {C}_{ij} = 1 - \frac {\mathbf {V}_i^{ref} \cdot \mathbf {V}_j^{gen}}{\|\mathbf {V}_i^{ref}\|\|\mathbf {V}_j^{gen}\|}.  











 (6)

Eventually, the energy function LFA is updated to:

  \mathcal {L}_{FA}=\min _{P \in U(\mathbf {V}^{ref}, \mathbf {V}^{gen})} \sum _{i,j} P_{ij} \mathbf {C}_{ij} - \frac {1}{\lambda } h(P) \label {eq:sinkhorn_app_loss},  









  (7)

where P represents the optimal transport plan, and h(P ) is
the entropy regularization term, which controls the sparsity
of the transport plan. This approach quantifies the relative
transport cost across all feature pairs, capturing the global
structure of the distributions. As a result, it enhances robust-
ness to shape variation and prevents overfitting or structural
collapse, enabling precise alignment of complex defects.

4.3. Adaptive Anomaly Mask guidance
Although the quality of defect features is improved by op-
timizing the overall defect features using the appearance
alignment loss LFA, smaller or narrower anomaly regions
are often overlooked, particularly when multiple abnormal
regions exist in an image or the shape of mgen is irregu-
lar, resulting in anomalies that do not fully conform to the
mask, such as the small transistor pin in Fig. 3(a) and the
small hole in the wood in Fig. 3(b).

We aim to identify which regions are overlooked dur-
ing generation and analyze the underlying causes inspired
by [20]. Upon closer examination of the edit gradient during
defect generation (as shown in Fig. 4), we observe that as
diffusion sampling progresses, activations for small defects
diminish too rapidly and prematurely. This reduction weak-
ens the impact of appearance guidance in these areas. To

(b)

(a)

Editing Gradient from energy functionOutput

t=981

t=981

t=781

t=781

t=501

t=501

Figure 4. Visualization of gradient guidance at different time-
steps. (a) shows the guidance effect of LFA, while (b) illustrates
the guidance effect of LAAM .

address it, we designed an Adaptive Anomaly Mask module
(AAM), which calculates the pixel-level difference between
generated defects and normal samples, producing maam

t to
provide appearance guidance for previously overlooked re-
gions. Specifically, given latent variable zgent at timestamp
t ∈ [T, · · · , 0], the generated image xgen

t is obtained via:

  \mathbf {x}^{gen}_t = \mathcal {D}\left (\left (\mathbf {z}^{gen}_t -\sigma _t \hat {\boldsymbol {\epsilon }}_t\right ) / \alpha _t\right ), 
        (8)

where ϵ̂t = ϵ̂θ(z
gen
t , t), (σt, αt) are predefined diffusion

scalars, and D is the decoder that maps the latent variable
back to the image space. Then we can construct a difference
map maam

t to highlight discrepancies between the gener-
ated image and a normal sample within the mask mgen:

  \mathbf {D}^{map}_t = \left ( \mathbf {m}^{gen} \odot (\mathbf {x}^{n} - \mathbf {x}^{gen}_t) \right )^2. 
     



 (9)

Using this difference map, the module then computes an
adaptive mask maam

t at each pixel location (i,j)  as follows:

  (\mathbf {m}^{aam}_t)_{i,j} = \begin {cases} 1, & \text {if } (\mathbf {D}^{map}_t)_{i,j} < \tau \\ 0, & \text {otherwise} \end {cases}, 
 


 

  


 (10)

where τ is the threshold for evaluating the boundaries of
similar regions. Therefore, maam

t indicates the areas where
the generated anomalies have not changed significantly,
highlighting the region where enhanced appearance guid-
ance is needed. We then apply Eq. (7) to reinforce feature
consistency between the reference appearance Vref and the
adaptively masked anomaly representation Vaam:

  \mathcal {L}_{AAM} = d_C^\lambda \left (\mathbf {V}^{ref}, \mathbf {V}^{aam}\right ),  




 (11)

where dλC denotes the Sinkhorn Distance between Vref and
Vaam, as defined in Eq. (7). Vaam is the feature sets ex-
tracted from the Fgen

t region in mgen following Eq. (5).
Lastly, the total loss containing global and local objectives
is expressed as Ltotal = LFA+LAAM and the correspond-
ing modified noise prediction is defined as:

  \begin {aligned}\hat {\boldsymbol {\epsilon }}_\theta \left (\mathbf {z}_t, \mathbf {z}^{ref}_t, t, \mathbf {c}\right ) = \, & \boldsymbol {\epsilon }_\theta \left (\mathbf {z}_t, t,\mathbf {c}\right ) + \\ & \eta \sigma _t\nabla _{\mathbf {z}_t} \mathcal {L}_{total}\left (\mathbf {z}_t,\mathbf {z}^{ref}_t,t\right ), \label {eq:total_loss} \end {aligned} 





  


   








 




(12)
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where zt is a simplification of zgent , η is the scaling con-
stant that controls the relative strength of loss guidance.

In practice, we observe that applying gradient guidance
for every timestep t affects the refinement of details and
introduces noticeable artifacts. Hence, we constrain the ap-
plication of Eq. (12) to the range t ∈ [T, · · · , Tn], allowing
the model to adjust texture generation during the later iter-
ations. Here, n is empirically set to three-fifths of the total
number of sampling steps. By applying gradient correction,
the model reinforces feature consistency in small and nar-
row regions. This is demonstrated by examples such as a
misplaced transistor and multiple subtle holes in Fig. 3.

4.4. Texture Preservation
Beyond appearance and shape, inconsistencies in texture or
color between defects and their background can cause the
defects to appear “artificially placed” on the normal image,
rather than seamlessly integrated. Unlike typical inpaint-
ing models that emphasize edge blending, industrial defects
involve damage or displacement, requiring the generation
to reflect contextual variations in the input normal samples.
This creates a task gap between generic object generation
and defect synthesis, where nuanced interactions between
the defect and its surrounding context are essential.

To bridge this gap, we introduce a Texture Preservation
mechanism to enhance the seamless integration of gener-
ated defects with their background. Specifically, inspired by
the prior work [5, 15, 29], we inject reference information
into the self-attention module. We extract kn

t and vn
t , which

encode background style information from the DDIM inver-
sion memory bank mentioned in Sec. 4.2, and incorporate
them into the self-attention calculations throughout the iter-
ative process. The attention module is defined as follows:

  Att(\mathbf {z}^{gen}_t)=\operatorname {Softmax}\left (\frac {\boldsymbol {Q}^{gen}}{\sqrt {d}}\left [\begin {array}{l}\mathbf {k}^{gen}_t \\ \mathbf {k}^n_t\end {array}\right ]^{\top }\right )\left [\begin {array}{l}\mathbf {v}^{gen}_t \\ \mathbf {v}^n_t\end {array}\right ],   
























(13)
where t ∈ [Ti, · · · , 0], i is a predefined parameter, typically
set during the latter stages of the sampling process, ensuring
that texture style information is effectively provided to the
diffusion model during the detail refinement phase.

We observed that modifications applied only at the at-
tention level were insufficient due to the low resolution
of its semantic layer, which hindered fine-grained edit-
ing [13, 30], particularly in achieving adequate color mod-
ification intensity. Therefore, we employ an AdaIN opera-
tion [21] at the latent space level for color correction, for-
mulated as:

  \mathbf {z}^{gen}_t \leftarrow \operatorname {AdaIN}\left (\mathbf {m} \odot \mathbf {z}^{gen}_t, \mathbf {m} \odot \mathbf {z}^{n}_t\right ) + (1 - \mathbf {m}) \odot \mathbf {z}^{n}_t,          (14)

where we omit the subscript gen of mgen for simplicity.
Here, zgent is adjusted to align with znt , ensuring the color
distributions are matched for seamless integration.

5. Experiments
5.1. Experiment Settings
Dataset. We evaluate our approach on MVTec AD [1] and
VisA [56] datasets, two widely recognized benchmarks in
industrial anomaly detection. To simulate realistic indus-
trial inspection scenarios, we adopt the following two pro-
tocols: (1) Few-shot setting means that one-third of the im-
ages in each category of defects are used as reference sets
to generate images, the remaining two-thirds serving as test
sets. (2) One-shot setting simulates the challenge of gen-
erating new defect types. In this setting, only one anomaly
sample per defect category is used as the reference. Our
method is applicable to both settings. We add the symbol †
to denote our model in the one-shot setting.
Metric. For defect generation, we introduce “Local IS”
which measures the Inception Score (IS) [38] within de-
fect regions cropped from the mask, addressing the insen-
sitivity of standard IS in capturing fine-grained and small
defects. We further adopt IC-LPIPS [32] to quantify diver-
sity across generated anomaly clusters. To evaluate detec-
tion and localization performance for anomaly inspection,
we employ the Area Under the Receiver Operating Charac-
teristic curve (AUROC), Average Precision (AP), F1-score
at optimal threshold (F1-max), and the Area Under the
Precision-Recall curve (Pro).
Implementation Details. We choose Stable Diffusion V2.1
[34] and ControlNet [54] trained by Anydoor [3] as the
backbone. We configure the parameters as follows: the
ControlNet scale is set to 1, the DINOv2 guidance scale to
4.5, and total sampling steps T = 50 across all experiments,
with denoising steps Tn = 30 and Ti = 25. Additionally,
the scaling constant η is set to 4 × 10−2, and we use the
DDIM scheduler [40] during the denoising phase. We gen-
erate 1,000 anomalous image-mask pairs for each type of
anomaly to conduct the subsequent experiments. A more
detailed analysis of parameter selection is provided in the
supplementary material.

5.2. Comparison in Anomaly Generation
We mainly focus on generating high-quality anomaly im-
ages and compare our method with five representative ap-
proaches for anomaly generation: Crop-Paste [25] (hand-
crafted synthesis), DFMGAN [8] (fine-tuning with Style-
GAN2), Anodiff [20], AnoGen [12] (fine-tuning with diffu-
sion models) and DIAG [11] (training-free method).
Anomaly generation quality. As shown in Tab. 1, our
method significantly outperforms existing approaches in
Local IS, indicating that our generated anomalies are both
diverse and semantically meaningful. While the improve-
ment in the IC-LPIPS score isn’t as notable, the qualitative
results in Fig. 5 show significant enhancements in generat-
ing small, narrow, and structurally complex defects, thread
defects in grids, as well as intricate anomalies in transistors
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Category Crop-Paste [25] DFMGAN [8] AnoDiff [20] AnoGen [12] DIAG [11] Ours
Local IS ↑ IC-L ↑ Local IS ↑ IC-L ↑ Local IS ↑ IC-L Local IS ↑ IC-L ↑ Local IS ↑ IC-L ↑ Local IS ↑ IC-L ↑

MVTec AD 2.73 0.14 2.80 0.20 2.77 0.32 2.84 0.32 2.60 0.28 3.32 0.32
VisA 3.65 0.29 1.53 0.21 2.52 0.30 3.28 0.30 2.86 0.29 3.90 0.30

Table 1. Comparison of generation quality with Local IS and IC-LPIPS on MVTec AD and VisA. The best results for each metric are
marked in bold, and the second-best results are marked with underline.

AnoDiffDFMGANMVTec AD OursDIAG AnoDiffDFMGANVisA OursDIAGAnoGen AnoGen

Figure 5. Selected qualitative results of the DFMGAN, AnoDiff, AnoGen, DIAG and our TF-IDG.

Category Crop-Paste DFMGAN AnoDiff DIAG Ours Ours†

bottle 52.71 56.59 90.70 84.13 95.53 98.41
cable 32.81 45.31 67.19 66.67 85.94 77.17

capsule 32.89 37.23 66.67 49.54 73.33 58.72
carpet 27.96 47.31 58.06 57.30 80.65 69.66
grid 28.33 40.83 42.50 46.74 40.00 31.58

hazelnut 59.03 81.94 85.42 90.00 93.75 91.43
leather 34.39 49.73 61.90 53.26 85.71 80.43

metal nut 59.89 64.58 59.38 68.57 60.94 70.97
pill 26.74 29.52 59.38 29.08 57.69 46.88

screw 28.81 37.45 48.15 27.73 97.53 70.59
tile 68.42 74.85 84.21 44.05 94.74 85.96

transistor 41.67 52.38 60.71 52.50 89.29 85.00
wood 47.62 49.21 71.43 53.33 80.95 71.67
zipper 26.42 27.64 69.51 15.97 81.71 68.42

Average 40.55 49.61 66.09 52.78 79.84 71.92

Table 2. Comparison of anomaly classification on MVTec AD by
training a ResNet-34 model on the generated data.

and PCB. In contrast, many training-based methods tend to
produce unrealistic artifacts or structurally implausible de-
fects. Furthermore, the anomaly classification accuracy in
Tab. 2 confirms that our generated defects closely match the
semantic characteristics of each anomaly category, helping
avoid significant distribution shifts while preserving essen-
tial structural features. As a result, it leads to more effective
dataset augmentation for downstream tasks.
Anomaly generation for anomaly inspection. We use

Dataset Method Image-level Pixel-level
AUC AP F1-max AUC AP F1-max Pro

MVTec

Crop-Paste 94.7 97.9 95.2 91.6 66.0 83.4 64.8
DFMGAN 87.2 94.8 94.7 90.0 62.7 62.1 76.3
AnoDiff 99.2 99.7 98.7 99.1 81.4 76.3 94.0
AnoGen 98.1 98.9 96.9 97.5 68.8 66.6 92.1
DIAG 93.8 96.4 93.3 94.4 59.7 58.6 86.7

Anydoor 95.5 98.1 95.7 94.7 70.0 66.9 89.7
Ours† 98.2 99.0 97.1 97.4 75.1 69.8 91.4
Ours 99.6 99.8 98.8 99.1 84.1 78.3 95.8

VisA

Crop-Paste 83.5 81.1 78.0 90.8 24.3 30.2 68.4
DFMGAN 86.5 86.6 80.2 90.6 27.6 33.2 76.5
AnoDiff 91.4 92.5 86.6 97.4 50.1 51.4 85.1
AnoGen 90.7 93.1 88.0 88.0 26.7 35.1 69.3
DIAG 91.3 91.5 84.6 94.9 33.2 38.9 87.6

Anydoor 91.5 91.6 85.2 95.4 36.5 40.5 88.5
Ours† 93.7 93.6 88.3 97.1 44.3 47.4 90.6
Ours 97.4 97.5 90.7 97.6 59.4 58.9 91.6

Table 3. Quantitative Results on MVTec AD and VisA by training
a U-Net on the generated data in the few-shot setting.

1,000 images generated by the aforementioned methods
to train a model with the U-Net [35] to derive confidence
scores for anomaly localization and detection (Tab. 3), and
train a ResNet-34 [14] to evaluate classification accuracy
(Tab. 2). Experimental results demonstrate that our method
outperforms other generative models in the few-shot setting,
achieving a 6.0% improvement in image-level AUROC and
a 3.1% increase in Pro score on the VisA dataset, which fea-
tures more complex backgrounds and smaller defects. In
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k-shot Crop-Paste [25] AnoDiff Anydoor Ours

i-AUC i-AP p-AUC p-AP Acc i-AUC i-AP p-AUC p-AP Acc i-AUC i-AP p-AUC p-AP Acc i-AUC i-AP p-AUC p-AP Acc

1 93.2 96.6 88.8 55.7 46.3 93.6 97.9 96.3 68.5 54.2 90.3 95.7 91.1 54.8 61.6 98.2 99.0 97.4 75.1 71.9
3 93.4 97.4 91.4 62.3 52.3 98.2 99.4 98.1 76.4 64.2 93.7 97.8 94.7 63.1 65.4 98.4 99.4 98.6 81.5 76.2
5 94.7 97.9 91.6 66.0 59.7 98.6 99.6 98.6 78.1 66.3 94.2 97.9 94.8 61.8 66.0 99.3 99.6 98.8 82.6 78.7

Table 4. Impact of the number of seen anomalies on MVTec AD.

Method MVTec AD VisA
i-AUC p-AUC Pro i-AUC p-AUC Pro

GLASS [2] 99.9 99.3 96.8 98.8 98.8 92.2
Ours + GLASS 99.9 99.4 97.2 99.5 98.9 95.3

UniAD [50] 96.5 96.8 90.7 88.8 98.3 85.5
Ours + UniAD 98.9 97.1 91.5 94.3 98.6 86.9

Table 5. Quantitative Results on MVTec AD and VisA for one-to-
one model and multi-class model.

Method Metric

sinkhornLFA LAAM TP L-IS Acc p-AUC

3.10 65.41 94.7
✓ 3.27 78.33 98.2
✓ ✓ 3.30 79.15 99.0
✓ ✓ ✓ 3.32 79.84 99.1

Table 6. Ablation study. Quantitative evaluation of each compo-
nent’s contribution using metrics from three different perspectives.

classification tasks, our models—both few-shot and one-
shot—consistently outperform other competing methods.
Our few-shot model improves average accuracy by 13.75%
compared to the second-best method, while our one-shot
model surpasses all competing methods even though most
of them are trained in the few-shot setting.

5.3. Comparison with Anomaly Detection Models

To assess whether our generated anomaly samples enhance
detection performance, we perform comparative experi-
ments by integrating our approach to state-of-the-art and
lightweight anomaly detection models, including the one-
to-one AD model GLASS [2] and the multi-class AD model
UniAD [50]. For GLASS, we replace the hand-crafted
anomaly synthesis with images generated by our method
while keeping all other modules unchanged. For UniAD,
we incorporate the anomaly features extracted only from the
generated images into the training process to enhance model
reconstruction. As shown in Tab. 5, Ours+GLASS achieves
a 3.4% improvement in Pro on VisA, while Ours+UniAD
sees a 5.4% increase in i-AUC on VisA and a 2.5% gain on
MVTec AD, further verifying the effectiveness and practi-
cal significance of our method.

5.4. Ablation Study

As shown in Tab. 6, we evaluate the impact of each module
based on generation quality and performance of anomaly
classification and localization under the few-shot setting.
The results indicate that introducing the gradient-guided
Sinkhorn loss significantly improves classification accuracy
by refining the optimization process. The AAM module fur-
ther enhances localization accuracy, and Fig. 3 illustrates
each module’s effect on the generation process. Finally, the
Texture Preservation (TP) module enhances image authen-
ticity, leading to an overall improvement in model perfor-
mance. These ablation results clearly highlight the effec-
tiveness of each individual component.
Impact of the number of seen anomalies. Since real
anomaly data are often scarce and critical to industrial in-
spections, we examine how the number of visible anoma-
lies affects model performance. We use Crop-Paste, An-
oDiff [20], and our backbone method Anydoor [3] as base-
lines. A detailed review of Tab. 4 reveals that increasing
the number of seen anomalies enhances the model’s perfor-
mance substantially. This improvement also suggests the
limitation of the one-shot setting, which tends to bias the
learned distribution towards the reference anomaly features,
harming the model’s generalization capability. Nonethe-
less, our model consistently surpasses the baseline methods
across all experiments of seen anomalies, showing that our
pipeline excels on both one-shot and few-shot settings. Fur-
thermore, the overall variance in classification accuracies
is notably smaller when applying our pipeline, which indi-
cates that our method is resilient and robust in adapting to
varying numbers of seen anomalies.

6. Conclusion

In this work, we propose TF-IDG, a training-free frame-
work for industrial anomaly generation based on feature
alignment optimization. Our method integrates three com-
ponents: the Feature Alignment Module leverages gradi-
ent guidance to bridge the distribution gap between syn-
thetic and real defects. The Adaptive Anomaly Mask Mod-
ule ensures that small or subtle defects are preserved dur-
ing multi-defect generation, while the Texture Preservation
Module maintains the original image’s color and texture for
enhanced realism. Experiments on MVTec AD and VisA
show that TF-IDG outperforms prior methods and signifi-
cantly enhances downstream inspection performance.

24221



Acknowledgements. This work is partially supported by the
National Science and Technology Council, Taiwan, under Grant:
NSTC-112-2628-E-002-033-MY4, and was financially supported
in part by the Center of Data Intelligence: Technologies, Ap-
plications, and Systems, National Taiwan University (Grants:
114L900901/114L900902/114L900903), from the Featured Areas
Research Center Program within the framework of the Higher Ed-
ucation Sprout Project by the Ministry of Education, Taiwan.

References
[1] Paul Bergmann, Kilian Batzner, Michael Fauser, David Sat-

tlegger, and Carsten Steger. The mvtec anomaly detection
dataset: a comprehensive real-world dataset for unsupervised
anomaly detection. IJCV, 129(4):1038–1059, 2021. 6

[2] Qiyu Chen, Huiyuan Luo, Chengkan Lv, and Zhengtao
Zhang. A unified anomaly synthesis strategy with gradient
ascent for industrial anomaly detection and localization. In
ECCV, pages 37–54. Springer, 2024. 8

[3] Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao,
and Hengshuang Zhao. Anydoor: Zero-shot object-level im-
age customization. In CVPR, pages 6593–6602, 2024. 2, 4,
6, 8

[4] Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. In NeurIPS, 2013. 5

[5] Yingying Deng, Xiangyu He, Fan Tang, and Weiming Dong.
Z*: Zero-shot style transfer via attention reweighting. In
CVPR, pages 6934–6944, 2024. 6

[6] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In NeurIPS, pages 8780–8794,
2021. 2, 3

[7] Choubo Ding, Guansong Pang, and Chunhua Shen. Catching
both gray and black swans: Open-set supervised anomaly
detection. In CVPR, pages 7388–7398, 2022. 1

[8] Yuxuan Duan, Yan Hong, Li Niu, and Liqing Zhang. Few-
shot defect image generation via defect-aware feature ma-
nipulation. In AAAI, pages 571–578, 2023. 2, 3, 6, 7

[9] Dave Epstein, Allan Jabri, Ben Poole, Alexei Efros, and
Aleksander Holynski. Diffusion self-guidance for control-
lable image generation. In NeurIPS, pages 16222–16239,
2023. 4

[10] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik,
Amit Haim Bermano, Gal Chechik, and Daniel Cohen-or.
An image is worth one word: Personalizing text-to-image
generation using textual inversion. In ICLR. 2, 3

[11] Federico Girella, Ziyue Liu, Franco Fummi, Francesco Setti,
Marco Cristani, and Luigi Capogrosso. Leveraging latent
diffusion models for training-free in-distribution data aug-
mentation for surface defect detection. In 2024 International
Conference on Content-Based Multimedia Indexing (CBMI),
pages 1–7. IEEE, 2024. 6, 7

[12] Guan Gui, Bin-Bin Gao, Jun Liu, Chengjie Wang, and Yun-
sheng Wu. Few-shot anomaly-driven generation for anomaly
classification and segmentation. In ECCV, pages 210–226.
Springer, 2024. 3, 6, 7

[13] Qin Guo and Tianwei Lin. Focus on your instruction:
Fine-grained and multi-instruction image editing by atten-
tion modulation. In CVPR, 2024. 6

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 7

[15] Amir Hertz, Andrey Voynov, Shlomi Fruchter, and Daniel
Cohen-Or. Style aligned image generation via shared atten-
tion. In CVPR, pages 4775–4785, 2024. 6

[16] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 2

[17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In NeurIPS, pages 6840–6851,
2020. 3

[18] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet,
Mohammad Norouzi, and Tim Salimans. Cascaded diffu-
sion models for high fidelity image generation. Journal of
Machine Learning Research, 23(47):1–33, 2022. 2

[19] J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, and Weizhu Chen. Lora:
Low-rank adaptation of large language models. In ICLR,
2021. 3

[20] Teng Hu, Jiangning Zhang, Ran Yi, Yuzhen Du, Xu Chen,
Liang Liu, Yabiao Wang, and Chengjie Wang. Anomalyd-
iffusion: Few-shot anomaly image generation with diffusion
model. In AAAI, pages 8526–8534, 2024. 2, 3, 5, 6, 7, 8

[21] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
pages 1501–1510, 2017. 2, 6

[22] Ying Jin, Jinlong Peng, Qingdong He, Teng Hu, Hao Chen,
Jiafu Wu, Wenbing Zhu, Mingmin Chi, Jun Liu, Yabiao
Wang, and Chengjie Wang. Dualanodiff: Dual-interrelated
diffusion model for few-shot anomaly image generation.
arXiv preprint arXiv:2408.13509, 2024. 3

[23] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas
Pfister. Cutpaste: Self-supervised learning for anomaly de-
tection and localization. In CVPR, pages 9664–9674, 2021.
1

[24] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jian-
wei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee.
Gligen: Open-set grounded text-to-image generation. In
CVPR, pages 22511–22521, 2023. 2

[25] Dongyun Lin, Yanpeng Cao, Wenbin Zhu, and Yiqun Li.
Few-shot defect segmentation leveraging abundant defect-
free training samples through normal background regular-
ization and crop-and-paste operation. In ICME, pages 1–6,
2021. 1, 3, 6, 7, 8

[26] Juhua Liu, Chaoyue Wang, Hai Su, Bo Du, and Dacheng
Tao. Multistage gan for fabric defect detection. IEEE Trans-
actions on Image Processing, 29:3388–3400, 2020. 3

[27] Zhikang Liu, Yiming Zhou, Yuansheng Xu, and Zilei Wang.
Simplenet: A simple network for image anomaly detection
and localization. In CVPR, pages 20402–20411, 2023. 1

[28] Sicheng Mo, Fangzhou Mu, Kuan Heng Lin, Yanli Liu,
Bochen Guan, Yin Li, and Bolei Zhou. Freecontrol:
Training-free spatial control of any text-to-image diffusion
model with any condition. In CVPR, pages 7465–7475,
2024. 4

[29] Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and
Jian Zhang. Dragondiffusion: Enabling drag-style manipu-
lation on diffusion models. In ICLR, 2024. 4, 6

24222



[30] Jisu Nam, Heesu Kim, DongJae Lee, Siyoon Jin, Seungry-
ong Kim, and Seunggyu Chang. Dreammatcher: Appearance
matching self-attention for semantically-consistent text-to-
image personalization. In CVPR, pages 8100–8110, 2024.
6

[31] Shuanlong Niu, Bin Li, Xinggang Wang, and Hui Lin. De-
fect image sample generation with gan for improving defect
recognition. IEEE Transactions on Automation Science and
Engineering, 17(3):1611–1622, 2020. 1, 3

[32] Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A Efros,
Yong Jae Lee, Eli Shechtman, and Richard Zhang. Few-
shot image generation via cross-domain correspondence. In
CVPR, pages 10743–10752, 2021. 6

[33] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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