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Abstract

Video diffusion models have achieved impressive realism
and controllability but are limited by high computational
demands, restricting their use on mobile devices. This pa-
per introduces the first mobile-optimized image-to-video
diffusion model. Starting from a spatio-temporal UNet
from Stable Video Diffusion (SVD), we reduce the compu-
tational cost by reducing the frame resolution, incorporat-
ing multi-scale temporal representations, and introducing
two novel pruning schemas to reduce the number of chan-
nels and temporal blocks. Furthermore, we employ adver-
sarial finetuning to reduce the denoising to a single step.
Our model, coined as MobileVD, can generate latents for
a 14 × 512 × 256 px clip in 1.7 seconds on a Xiaomi-14
Pro, with negligible quality loss. Our results are available at
https://qualcomm-ai-research.github.io/
mobile-video-diffusion

1. Introduction
Video diffusion models are making significant progress in
terms of realism, controllability, resolution, and duration of
the generated videos. Starting from zero-shot video mod-
els [11, 26, 30, 36], which deploy pretrained image diffu-
sion models to generate consistent frames, e.g., through
cross-frame attention, modern video diffusion models rely
on spatio-temporal denoising architectures, i.e., 3D UN-
ets [2, 3, 16] or 3D DiTs [33, 68, 74]. This involves inflat-
ing image denoising models by adding temporal transform-
ers and convolutions to denoise multiple frames simultane-
ously. Despite their impressive generation qualities, spatio-
temporal denoising architectures demand high memory and
computational power, which limits their usage to clouds with
high-end GPUs. This hinders the wide adoption of video
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generation technology for many applications that require
generating content locally on mobile devices.

Prior work on accelerating video diffusion models
has mostly focused on reducing the number of sampling
steps [62, 72]. By extending the consistency models [58]
and adversarial distillation [54] to video diffusion models,
they managed to reduce the number of denoising steps from
25 to only 4 [62] and 1 step [72], which tremendously ac-
celerates video generation. However, step distillation alone
does not reduce the memory usage of the model, which is the
key setback in deploying video diffusion models on mobile
devices.

This paper is the first attempt to build image-to-video
diffusion models for mobile. Starting from model of Stable
Video Diffusion (SVD) [2, 3], as a representative for video
diffusion models, we conduct a series of optimizations on
its spatio-temporal UNet to build a mobile-friendly UNet:
driven by the lower resolution needs for user-generated con-
tent on phones, we first opt for using a smaller latent res-
olution for generating 512 × 256 px frames. Additionally,
instead of preserving the number of frames throughout the
denoising UNet, we introduce additional temporal down- and
up-sampling operations to extend the multi-scale representa-
tion both in space and time, which reduces the memory and
computational cost with minimal loss in quality. Moreover,
we discuss how naive visual conditioning through cross-
attention leads to significant computational overhead that
can be avoided without damaging visual quality.

We further accelerate the mobile-friendly UNet by re-
ducing its parameters using a novel channel compression
schema, coined channel funneling, and a novel technique
to prune the temporal transformers and temporal residual
blocks from the UNet. Finally, following Zhang et al. [72],
we reduce the number of denoising steps to a single step
using adversarial finetuning. This results in the first mobile
video diffusion model called MobileVD, which is able to
generate 14 latent frames of resolution 512 × 256 in 1.7
seconds on a Xiaomi 14-Pro smartphone at a slightly worse
quality in terms of FVD, 149 vs. 171.
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2. Related work

Video generation. Fueled by advancements in generative
image modeling using diffusion models, there has been no-
table progress in the development of generative video mod-
els [2, 3, 13, 14, 21, 25, 32, 45, 52, 75]. These video models
generally evolve from image models by incorporating addi-
tional temporal layers atop spatial blocks or by transforming
existing 2D blocks into 3D blocks to effectively capture mo-
tion dynamics within videos. Although these advancements
have paved the way for the generation of high-resolution
videos, the significant computational demands make them
impractical for use on low-end devices. In this work, we ad-
dress this by optimizing a representative of video generative
model, SVD [2], to make it accessible to a broader range of
consumer-graded devices.
Diffusion optimization. The problem of making diffusion
models efficient naturally consists of the following two parts:
(i) reducing the number of denoising steps and (ii) decreas-
ing the latency and memory footprint of each of those steps.
Reducing number of steps is achieved by using higher-order
solvers [39, 40, 69], distilling steps to a reduced set using pro-
gressive step distillation [34, 41, 53], straightening the ODE
trajectories using Rectified Flows [35, 37, 76], mapping
noise directly to data with consistency models [38, 57, 58],
and using adversarial training [54, 55, 63, 72]. To decrease
computational cost of each step, research has been done in
weight quantization [19, 46, 56] and pruning [8, 34] as well
as architectural optimization of the denoiser [9, 17, 31, 49,
66]. In this work, following Zhang et al. [72] we reduce num-
ber of steps to one using adversarial training and optimize
the UNet denoiser using multiple novel techniques.
On-device generation. On-device generation has attracted
interest due to its ability to address privacy concerns asso-
ciated with cloud-based approaches. There have been ad-
vancements in running text-to-image generation on mobile
devices and NPUs [5, 7, 8, 22, 34, 73]. Although there has
been progress in the video domain with fast zero-shot video
editing models [27, 28, 64, 71], by now the only reported
deployment of a video generative model to a device is concur-
rent work of SnapGen-V [65]. However, unlike SnapGen-V,
we finetune a publicly released image-to-video SVD [2]
checkpoint rather than train from scratch, which makes our
method suitable for low-compute practitioners. It is note-
worthy that, while most state-of-the-art generative models
pivoted to a DiT-based transformer architecture [48], deploy-
ing DiT to device is more challenging due to its quadratic
memory need. Therefore, all the mentioned mobile-targeting
approaches stick with UNet-based architecture.

3. Mobile Video Diffusion
In this section, we propose a series of optimizations to obtain
a fast and lightweight version of an off-the-shelf image-to-

Model NFE FVD ↓ TFLOPs ↓ Latency (ms) ↓
GPU Phone

Resolution 1024 × 576
SVD 50 149 45.43 376 OOM
AnimateLCM∗ 8 281 45.43 376 OOM
UFOGen∗ 1 1917 45.43 376 OOM
LADD∗ 1 1894 45.43 376 OOM
SF-V∗ 1 181 45.43 376 OOM
MobileVD-HD (ours) 1 184 23.63 227 OOM
Resolution 512 × 256
SVD (original) 50 476 8.60 82 OOM
SVD (finetuned) 50 196 8.60 82 OOM
SF-V (our implement.) 1 168 8.24 76 3630
MobileVD (ours) 1 171 4.34 45 1780

Table 1. Comparison with recent models. FLOPs and latency are
provided for a single function evaluation (NFE) with batch size of
1. For rows marked with asterisk∗ FVD measurements were taken
from Zhang et al. [72], while performance metrics are based on our
measurements for UNet used by SVD. For consistency with these
results, FVD for SVD and our MobileVD model was measured on
UCF-101 dataset at 7 frames per second.

video diffusion model [2], suitable for on-device deploy-
ment.

3.1. Preliminaries

Stable Video Diffusion. We adopt Stable Video Diffusion
(SVD) [2] as the base model for optimization. The SVD
released checkpoint1 is an image-to-video model that by
default generates 14 frames at the resolution 1024 × 576
with 25 sampling steps. To generate a video from an image,
the input image is first mapped into a latent code of resolution
128×72 using a Variational Auto-Encoder (VAE). Then it is
duplicated 14 times and concatenated with a noise latent of
spatiotemporal resolution 14×128×72. The combined latent
is then denoised by a conditional UNet through an iterative
process. Additionally, the input image is encoded with a
CLIP image embedding for use in cross-attention layers [50].
The UNet denoiser consists of four downsampling blocks,
one middle block and four upsampling blocks. To handle the
dynamics of video sequences, the model employs temporal
blocks after spatial blocks. Notably, up- and downsampling
is conducted across spatial axes only, and temporal resolution
of the latent is kept constant to 14 throughout the UNet. The
UNet denoiser as-is is too resource-intensive for on-device
use, requiring 45.43 TFLOPs and 376 ms per denoising step
on a high-end A100 GPU. Using FLOPs and latency as proxy
metrics, we propose a series of optimizations to make the
model suitable for on-device deployment.
Baseline model. We observe that the original high-
resolution SVD can not be compiled for on-device usage.
The main reason is that Android NPU has extremely low
memory (only 8 MB) and restricted set of instructions and

1https : / / huggingface . co / stabilityai / stable -
video-diffusion-img2vid/tree/9cf024d
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Figure 1. Effect of optimized cross-attention for a mobile device.
We show the number of cycles of the top-4 operations on mobile
hardware for an input resolution of 128× 128. Note that removing
the no-op similarity map computation in cross-attention layers
reduces cycles on softmax operations by roughly 80%.

operations (no 5D operations, sub-optimal batch inference,
slow scalar processing required for activation functions and
softmax). To satisfy the memory constraints, we decrease
the spatial resolution of the model to 512× 256, resulting in
latent size of 14×64×32. This decreased resolution leads to
4.5x smaller feature maps and reduced peak memory. While
the released SVD checkpoint supports multiple resolutions,
we found out that the original model demonstrates deteri-
orated quality for our target spatial resolution as reported
in Tab. 1. Therefore, we finetuned the diffusion denoiser at
our target spatial size. With this optimization, computational
cost and GPU latency is reduced to 8.60 TFLOPS and 82
ms respectively. We consider this low resolution, finetuned
model as the baseline in our work.

Adversarial finetuning. In addition to the high cost of
the UNet, the iterative sampling process in video diffusion
models further slows them down. For example, with the con-
ventional 25-step sampling it takes 11 seconds to generate
a video on a high-end A100 GPU. Also, due to the usage
of classifier-free guidance, each step results in two UNet
forward passes on a device leading to the total number of
UNet evaluations (NFE) of 50 [20]. To reduce the cost, we
follow SF-V framework [72] and use adversarial finetuning,
enabling our models to generate videos in a single forward
pass. Namely, we initialize the discriminator feature extrac-
tor with an encoder part of the denoising UNet and do not
train it. After each block of this backbone, the extracted
feature maps are passed to the two projection discriminator
heads, one spatial and one temporal [43]. The heads also
use the frame index and the CLIP embedding of the condi-
tional image as input. At each training step, we apply the
pseudo-Huber (Charbonnier) [6] and non-saturating adver-
sarial loss [15] to the generator output to update its weights.
To regularize the discriminator, the R1 penalty is used [42].
For further details please refer to the original SF-V work.

3.2. Mobile-friendly UNet
Our first modification to SVD architecture regards the feature
resolution that affects both GPU and mobile latency. Then
we highlight some lossless optimizations that have a large
effect on mobile latency. These are the first optimizations
that allow us to run the UNet on device.
Temporal multiscaling. To further reduce computational
burden, one might lower the input resolution more heavily.
However, this significantly degrades visual quality. Instead,
we can additionally downscale the feature maps by a factor
of 2 along either spatial or temporal axis after the first down-
sampling block of the UNet. To maintain the same output
shape, this is accompanied by the corresponding nearest-
neighbor upscaling operation before the last upsampling
block. We refer to these two additions as multiscaling. In
terms of computational cost, spatial multiscaling results in
a 51% reduction in FLOPs and 33% in GPU latency, while
temporal multiscaling reduces FLOPs and GPU latency by
34% and 22%, respectively. For our final deployed model,
we use temporal multiscaling as it offers a better trade-off
between quality and efficiency, as reported in Sec. 4.3.1.
Optimizing cross-attention. In SVD, each cross-attention
layer integrates information from the conditioning image
into the generation process. The attention scores are com-
puted similarly to self-attention layers, Attn(Q,K, V ) =

softmax
(
QKT /

√
d
)
V , but the key and value pair (K,V )

comes from the context tokens. However, the context in
the cross-attention blocks always consists of a single token,
namely, the CLIP embedding vector of the conditional im-
age. Consequently, each query token attends to only a single
key token. Therefore, computation of a similarity map QKT

and softmax becomes a no-op, and query and key projection
matrices can be removed without any difference in results.
While this loss-less optimization reduces GPU latency only
by 7%, we found that it significantly impacts on-device be-
havior. In detail, at target resolution of 512× 256, the model
runs out of memory (OOM) on the device without the de-
scribed modification of cross-attention. And at a smaller
resolution of 128× 128 this optimization reduces mobile la-
tency by 32%. The gain is attributed to the time-consuming
nature of softmax operation on device, as shown in Fig. 1.

3.3. Channel funnels
Channel size, which refers to the width of neural network
layers, is crucial for scaling models. Increasing channel size
generally enhances model capacity but also increases the
number of parameters and computational cost. Research
has focused on compressing the number of channels by ei-
ther discarding less informative channels through channel
pruning [12, 44] or representing weight matrices as low-rank
products of matrices using truncated singular decomposi-
tion [70]. However, these could have sub-optimal tradeoffs
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Figure 2. Channel funnels. We show an example of channel
funnels applied to a couple of layers within the model. At training
time, funnels serve as adaptors reducing model width. At inference,
they are merged with corresponding weight matrices without loss
of quality.

in quality and efficiency when deployed on device. While
low-rank decomposition is relatively straightforward to im-
plement, it only reduces the number of parameters and com-
putational complexity if the rank is reduced by more than
half for feed forward layers. Additionally, not all layers
of neural network types benefit equally from low-rank fac-
torization. Moreover, this method does not reduce the size
of output feature maps, which can cause significant mem-
ory overhead on mobile devices. In this part, we propose
channel funnels, a straightforward method to reduce the
number of channels at inference time, with negligible quality
degradation. Intuitively, a channel funnel is placed between
two affine layers, reducing the intermediate channel dimen-
sionality to save computation. Consider two consecutive
linear layers y = W2σ(W1x) and the non-linear function
σ in between, where W1 ∈ Rcinner×cin , W2 ∈ Rcout×cinner .
We introduce two funnel matrices, F1 ∈ Rc′×cinner and
F2 ∈ Rcinner×c′ , where c′ < cinner, and rewrite our network as
y′ = W2F2σ(F1W1x). The F -weights, having fewer chan-
nels, can be merged during inference with their associated
W -weights, resulting a weight matrix with smaller inner
dimension c′, see Fig. 2. We refer to the reducing factor of
the inner rank of the layers, i.e. c′/cinner, as the fun-factor.

Initialization. We propose to use coupled singular ini-
tialization (CSI) for funnel matrices F1 and F2 that im-
proves the model results, as demonstrated below. In this
method we make a simplifying assumption by ignoring
the non-linearity, and consider the effective weight matrix
W2F2F1W1 which in practice has rank of c′. For that reason,
we aim to use such an initialization which mimics the best
c′-rank approximation of the original effective matrix. As
Eckart-Young-Mirsky theorem implies, this can be achieved
by means of truncated singular decomposition [10]. Let
W2W1 = UΣV T be the singular vector decomposition,
and Uc′Σc′V

T
c′ to be its truncated c′-rank version. Then it

suffices to set F2 = W †
2Uc′Σ

1/2
c′ and F1 = Σ

1/2
c′ V T

c′ W
†
1

to obtain W2F2F1W1 ≈ Uc′Σc′V
T
c′ , where † means the
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(b) A zero-one gate multiplier is sampled to each temporal block during
training.

Figure 3. Learned pruning of temporal blocks. (a) Each temporal
block in the base SVD model is implemented as a residual block
w.r.t. its input xs. The output of temporal layers rt is summed
with the input xs, and after that once again averaged with xs with
learnable weight α. By reordering the terms, we derive the effective
update rule αxs + (1− α)xt = xs + (1− α) rt. (b) During
training, we introduce a scalar gate ẑ ∈ {0, 1} to the residual
update rule of each block. We learn importance values {qi}i of
temporal blocks which are transformed to inclusion probabilities
{pi}i at each training step. Zero-one gate multipliers are sampled
according to those probabilities. To enable end-to-end training, we
use straight-through estimator trick. At inference, only n blocks
with highest importance values are used.

Moore-Penrose pseudoinverse.
Training. We apply channel funnels in attention layers
where query and key embedding Wq and Wk are used to
compute the similarity map of XWq (XWk)

T . With fun-
nel matrices Fq and Fk of size cinner × c′, we modify the
aforementioned bilinear map as XWqFq (XWkFk)

T
=

XWqFqF
T
k WT

k XT . Similarly, funnels are applied to the
pair of value and output projection matrices of a self-
attention layer. In our ablations we also show the impact of
channel funnel on convolutions in residual blocks. Unless
specified otherwise, we use fun-factor of 50%.

3.4. Temporal block pruning

Motivation. The original UNet in the SVD model does not
contain 3D convolutions or full spatiotemporal attention lay-
ers. Instead, to model motion dynamics, SVD incorporates
temporal blocks after each spatial block. The output of such
group is a linear combination of the spatial and temporal
block outputs, xs and xt respectively, αxs + (1− α)xt,
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Figure 4. Comparison with recent models. We provide the 1st, 6th, 10th and 14th frames from the videos generated with different models2.
For AnimateLCM [62] and SF-V [72] we downsampled the released high-resolution videos from Zhang et al. [72]. For SVD [2] and our
MobileVD model, videos were generated at their native resolution, 1024× 576 and 512× 256 respectively.

where α is a weight scalar that emphasizes spatial features
when higher and temporal features when lower, see Fig. 3a.
While this approach leverages image model priors when
extending the model to videos, it adds computational cost.
Moreover, not all of these blocks are equally important for
maintaining quality. Here, we propose a learnable pruning
technique to remove less important temporal blocks while
minimizing quality degradation. To this end, for each tem-
poral block we define an importance value qi, 0 ≤ qi ≤ 1
where i = 1, . . . , N and N is number of temporal blocks.
The values {qi}i are trained to identify the blocks that are
the most crucial for model performance. At inference time,
only n blocks with the highest importance qi are kept where
n is the budget chosen in advance. In our experiments we

found it possible to remove as many as 70% of all temporal
blocks which leads to 14% reduction in FLOPS as compared
to the model with optimizations from Sec. 3.2 applied.
Training. At each training iteration, we sample randomly n
blocks which participate in the computational graph. To this
end, we define the indicator variable zi ∈ {0, 1} where
zi = 1 if i-th block is sampled for participation, and
zi = 0 otherwise. The sum of all participants should
equal to the budget value i.e.

∑
i zi = n. Note that

E [
∑

i zi] =
∑

i E [zi] =
∑

i pi = n, where pi is the in-
clusion probability of the i-th block. We relate i-th impor-
tance value qi to the inclusion probability of pi using the
constrained optimization problem

min
c,{pi}i

∑
i
(pi−cqi)

2, s.t.
∑

i
pi = n, 0 ≤ pi ≤ 1, c ≥ 0.
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We obtain a closed-form solution of the above optimization
with Lagrange multipliers which is differentiable w.r.t. qi. In
simple words, we find the proper set of inclusion probabili-
ties pi ≈ cqi, with importance values qi and a proportionality
coefficient c. After obtaining {pi}i at each training iteration,
we sample n blocks without replacement using Brewer’s
sampling [4, 60]. As such sampling is non-differentiable,
we employ straight-through estimators (STE) [1] to enable
end-to-end training. Namely, we define gate ẑi as STE of the
probability pi, i.e. ẑi = pi + stop gradient(zi − pi).
The output of a temporal block is multiplied by this gate
as Fig. 3b shows. For practical aspects of training, please
refer to SM.

4. Experiments
In this section, we describe our experimental setup, followed
by a qualitative and quantitative evaluation of our model.
Finally, we present ablations to justify our choices for the
final model deployed on the device.

4.1. Implementation details

Dataset. For our experiments, we use a collected video
dataset. We follow the data curation pipeline from Open-
Sora [74, V.1.1], selecting videos with motion scores be-
tween 4 and 40, and aesthetic scores of at least 4.2. This
results in a curated dataset of approximately 31k video files
for finetuning.
Micro-conditioning. UNet used by SVD, has two condi-
tioning parameters called FPS and Motion bucket id. To
obtain videos with different FPS, we chose each k-th frame
from the video with randomly sampled k, 1 ≤ k ≤ 4, and
adjusted the native FPS value of the video accordingly. The
notion of motion bucket has not been properly documented
at time of the model release. While it is connected with the
speed of motion in the video, as described in the original
SVD paper, the motion estimator has not been open-sourced.
For that reason, we implemented our own definition of the
motion bucket using a simple heuristic. For the sampled
chunk of 14 frames, we converted them to gray color, spa-
tially downsampled to the resolution of 14× 128× 64, and
reshaped to the matrix of size 14 × (128 · 64). After that,
we computed the singular values of that matrix. Note that
for a completely static video this matrix has a rank of 1,
and therefore the only non-zero singular value. And the less
similar frames are, the more singular components are needed
to faithfully reconstruct the full video. Based on that obser-
vation, we re-defined the motion bucket as the area under the
normalized cumulative sum of singular values.
Training. For training, we begin with the original SVD

2Conditioning images are under MIT license © 2024 Fu-Yun Wang.
https://github.com/G-U-N/AnimateLCM/blob/9a5a314/
LICENSE.txt

weights, apply all the optimizations (excluding temporal
block pruning), and train the resulting UNet with a standard
diffusion loss for 100k iterations on 4 A100 GPUs with a
total batch size of 8. This UNet serves as the initialization for
adversarial finetuning, where a good initialization is crucial
for fast convergence. We found that training for 5k iterations
on 2 GPUs suffices for the second stage. We implement
temporal block pruning in the second stage as we observed
that excessive pruning in the first stage hinders model perfor-
mance. In this case, we train the second stage for 10k steps.
Check SM for more details.
Metrics. We used DeepSpeed library [51, v0.14.2] to mea-
sure the number of FLOPs. For GPU latency, NVIDIA®

A100 SXMTM 80GB GPU was used. To measure GPU la-
tency, UNet model was compiled using the PyTorch [47,
v2.0.1] compiler with default settings. Phone latencies are
measured on a Xiaomi-14 Pro that uses Snapdragon® 8 Gen.
3 Mobile Platform with a Qualcomm® HexagonTM proces-
sor. All performance metrics were measured for a single
UNet evaluation with batch size of 1. For video quality
metric, we follow existing works [2, 72] by using Fréchet
Video Distance (FVD) [61] with I3D feature extractor [29].
We use the first frame of UCF-101 dataset [59] as the con-
ditioning image, generating 14-frame clips at the model’s
native resolution. Unless stated otherwise, we set the FPS, an
SVD micro-condition, to 25, matching the UCF-101 frame
rate [2]. For motion bucket, for our models we used the
median value at the specified frame rate across UCF-101
data. For SVD the default bucket of 127 was used. In addi-
tion, we evaluated our model using the recent VBench-I2V
toolkit [23, 24]. For that purpose, we generated videos with
different speeds to demonstrate the trade-off between motion
degree and frame-wise plausibility.

4.2. Results

MobileVD. In Tab. 2 we compare MobileVD to the baseline
model. As the results indicate, each optimization reduces
speed of inference on a mobile phone. Optimized cross-
attention unlocks on-device execution with a latency of 3.6
seconds. More specifically, temporal downsampling layers
in UNet make inference 29% faster. Additionally, temporal
blocks pruning reduces phone latency by 13%, and channel
funneling further decreases it by 9%. Empirically, we found
that a difference of up to 20 FVD units does not significantly
affect visual quality and typically falls within the standard
deviation when using different random seeds. Based on that,
we see that our optimizations reduce on-device inference by
50% while having minimal impact on FVD. As Tab. 3 shows,
by changing the motion bucket, we can generate videos with
the same dynamic degree as original SVD model.
SOTA comparison. In Tab. 1 we compare to the recent
works that similarly aim for accelerating SVD image-to-
video model, namely, AnimateLCM [62], LADD [54], SF-
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Model NFE
FVD ↓

TFLOPs ↓ Latency (ms) ↓

25 FPS 7 FPS GPU Phone

SVD (finetuned for 512× 256) 50 194 196 8.60 82 OOM
+ optimized cross-attention 50 194 196 8.24 76 3630
+ adversarial finetuning 1 133 168 8.24 76 3630
+ temporal multiscaling 1 139 156 5.42 59 2590
+ temporal block pruning 1 127 150 4.64 47 2100
+ channel funneling 1 149 171 4.34 45 1780

Table 2. Effect of our optimizations. We successfully deployed the image-to-video model to a mobile device without significantly
sacrificing the visual quality. FLOPs and latency are provided for a single function evaluation with batch size of 1. We call the model in the
bottom row Mobile Video Diffusion, or MobileVD.

Model Motion I2V I2V Aesth. Imag. Dynamic
bucket Subject Background Quality Quality Degree

SVD (original) 127 93.48 94.74 53.59 63.49 95.69
SVD (finetuned) 20 95.72 96.36 54.91 65.17 16.26
SVD (finetuned) 40 95.24 96.04 54.62 65.16 65.04
MobileVD 20 93.68 94.30 53.69 67.16 68.21
MobileVD 40 92.98 93.93 53.19 67.46 95.77

Table 3. VBench-I2V evaluation. By varying the motion bucket,
we can generate videos with different dynamic degree. Faster
videos generally have slightly worse visual quality, as framewise
metrics show.

V [72], and UFOGen [67]. As all these methods operate on
1024×576 resolution, for a fair comparison, we also trained
a high-resolution version of our model called MobileVD-
HD. It uses the whole set of our proposed optimizations, and
training details are provided in Supplementary. For lower
resolution, we observe that MobileVD leads to a compara-
ble FVD to SVD and SF-V but requires significantly less
computation.
Qualitative results. Following previous works [62, 72], we
show qualitative results with a commonly used set of condi-
tioning images. Sampled frames from the generated videos
are presented in Fig. 4. For this visualization, we generated
videos at 7 FPS and with spatial resolution of 512× 256 us-
ing our MobileVD. Please refer to the Supplementary for the
full videos. We observe that in general our method produces
videos with sharp details and consistent motion.

4.3. Ablations
In this section, we evaluate our design choices through ab-
lation experiments. Unless otherwise specified, we use the
SVD checkpoint with low-resolution input, optimized cross-
attention, and adversarial finetuning as the reference model,
cf . Tab. 2.

4.3.1. Resolution impact in UNet
In Tab. 4 we compare different latent multiscaling optimiza-
tions proposed in Sec. 3.2. Specifically, we investigate the
impact of inserting spatial or temporal multiscaling layers
after the first UNet block in terms of FLOPs, latency, and
FVD. Spatial multiscaling offers better FLOPs and latency
than temporal multiscaling and it increases FVD by 12 units

Spatial
multiscaling

Temporal
multiscaling

FVD ↓ TFLOPs ↓ Latency (ms) ↓

GPU Phone

× × 133 8.24 76 3630
× ✓ 138 5.42 59 2590
✓ × 145 4.35 51 2280
✓ ✓ 163 3.39 48 —

Table 4. Effect of additional multiscaling layers in UNet. We
observe that both temporal and spatial multiscaling has good impact
on mobile latency without compromising much on FVD, while
combining the two increases FVD by a noticeable amount.

compared to 5 for temporal downsampling. While we typi-
cally do not see video degradation with this increase in FVD,
we do see clear degradation in video quality when using
spatial instead of temporal multiscaling. We hypothesize
that this is because the model already enjoys multiple stages
of spatial downsampling, while temporal downsampling was
originally absent. Based on these results, we have opted for
temporal downsampling for our mobile-deployed model. We
hold similar conclusions for combining the two multiscaling
approaches with spatiotemporal multiscaling.

4.3.2. Funnel finetuning

Fun-factor and funnel initialization. Reducing the width
of affine layers in the model is a form of lossy compres-
sion, and overly aggressive fun-factor values will hurt the
model performance. In Tab. 5, we observe the impact of
the fun-factor. Reducing the fun-factor to 0.25 results in a
performance loss of 22 FVD units compared to fun-factor of
1 (i.e., no compression). To avoid performance degradation
from stacking multiple optimizations described in Sec. 3, we
set the fun-factor to 0.5 for the deployed model. Addition-
ally, the results highlight that the proposed coupled singular
initialization (CSI) is essential for optimal funnel behavior,
whereas the standard He initialization [18] is suboptimal.
Funnel merging and low-rank layers. We compare channel
funnels with multiple baselines in terms of FLOPs, on-device
latency and FVD. All baselines are applied on the same at-
tention layers, unless specified otherwise. The first baseline
uses channel funnels but merges funnel and weight matri-
ces during training, hence mimicking behavior at inference
time as shown in Fig. 2. We report in Tab. 6 that keeping
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Initialization Fun-factor FVD ↓

Coupled singular init. (CSI) 0.25 155
Coupled singular init. (CSI) 0.50 132
Coupled singular init. (CSI) 0.75 145
Coupled singular init. (CSI) 1.00 133
He init. [18] 0.50 332

Table 5. Effect of funnel initialization and fun-factor. Initial-
ization funnels with CSI is crucial to getting good FVD as He
initialization [18] obtains roughly 200 FVD units more. Addition-
ally, we see that reducing the fun-factor beyond 0.5 starts to affect
the performance.

Width reduction method r FVD ↓ TFLOPs ↓ Latency (ms) ↓

Original UNet - 133 8.6 3630
+ Funnels 0.5 132 8.0 2870
+ Funnels (merge before finetune) 0.5 138 8.0 2870
+ Funnels (convolutions) 0.5 139 7.2 3400
+ Truncated singular decomposition 0.5 142 8.6 3482
+ Truncated singular decomposition 0.25 130 8.0 3345

Table 6. Comparison of model width reduction methods. We
compare the proposed channel funneling (in grey) with finetuned
low-rank approximation of individual attention layers with trun-
cated singular decomposition. We additionally compare to Funnels
applied to convolutions instead of attention. The reduction rate
(referred to as fun-factor in case of funnels) is highlighted with r.

funnel and weight matrices separate at training performs
equally well. The second baseline is applying funnels to
convolutions in ResNet blocks instead of attention layers.
While we obtain favourable FVD and even greater gain in
TFLOPs (7.2 vs 8.6), it does not translate to the latency
reduction we see with funnels on attention (3.40 vs 2.87 sec-
onds). We hypothesize that the attention layers play a greater
role in reducing latency on device than convolutions for this
model. The last baselines employ the standard technique of
truncated singular decomposition of individual layers [70].
This decomposition breaks down a weight matrix of a linear
layer W ∈ Rcout×cin into a low-rank product of two matri-
ces W1 ∈ Rrc×cin and W2 ∈ Rcout×rc where r is the rank
reduction factor, r < 1, and c = min (cin, cout). Note that re-
duction in the number of parameters and FLOPs is achieved
only if r < 0.5, while the size of the feature map after these
two matrices remain intact in this approach. While truncated
decomposition after finetuning performs well in terms of
FVD for both r = 0.25 and r = 0.5, it is slower on device
compared to channel funneling (3.35 and 3.48 vs. 2.87 sec-
onds respectively). This difference is attributed to memory
transfer overhead from introducing additional layers as well
as not decreasing the original feature size, emphasizing the
benefit of funnels.

4.3.3. Temporal blocks pruning
As mentioned in Sec. 3.4, in our experiments we found it
possible to reduce up to 70% of all temporal blocks in the
UNet. Notably, even with such a high pruning rate the quality
is comparable to the original model: it achieves FVD of 127
and requires 14% less FLOPs, while the original model has

Blocks pruned (%) FVD ↓ TFLOPs ↓ Latency
GPU (ms) ↓

Our method
90 201 4.06 42
80 245 4.35 44
70 127 4.64 47
L1 regularization
70 207 4.67 48
53 165 5.17 52

Table 7. Impact of temporal blocks pruning. Our pruning outper-
forms the L1− regularization which does not have explicit control
over the number of removed blocks. We use the checkpoint, opti-
mized up to the temporal block pruning stage, as the starting point.

FVD of 139. However, pruning even further seems far from
straightforward. FVD degrades to the values above 200 with
a pruning rate of 80%, and visual quality drops drastically.

Additionally, we compare our method with another prun-
ing baseline. As described in Sec. 3.4, the output of a
spatiotemporal block in SVD is a linear combination of
the spatial and temporal blocks xs and xt, respectively,
αxs + (1 − α)xt, where α is a weight scalar. The base-
line aims to minimize the influence of temporal blocks, by
adding a loss term during finetuning: L = λ

∑
i (1− αi).

After training, blocks with the highest weight scalar αi are
pruned. However, this method lacks explicit control over
the desired pruning rate, as only weight hyperparameter λ
can be adjusted. While effective for small pruning rates,
this approach did not allow us to remove as many blocks as
our method, achieving only a 7% reduction in FLOPs with
acceptable FVD level, see Tab. 7.

5. Conclusion

This paper introduced the first mobile-optimized image-to-
video diffusion model, addressing the high computational
demands that have limited their use on mobile devices. By
optimizing the spatio-temporal UNet from Stable Video Dif-
fusion and employing novel pruning techniques, we signif-
icantly reduced memory and computational requirements.
Our model, MobileVD, achieves substantial efficiency im-
provements with minimal quality loss, making video diffu-
sion technology feasible for mobile platforms.
Limitations. Despite the impressive acceleration, the output
is currently limited to 14 frames at a resolution of 256× 512
pixels. The next step involves leveraging more efficient
autoencoders to achieve higher spatial and temporal com-
pression rates, enabling the generation of larger and longer
videos at the same diffusion latent generation cost. Also, our
model inherits the lack of textual control from the released
SVD version, which had been finetuned by its authors from a
text-to-video to an image-to-video model. We plain to solve
this in future either by reverse finetuning, or by switching to
another pretrained backbone.
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