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Abstract

Symmetry is one of the most fundamental geometric cues
in computer vision, and detecting it has been an ongoing
challenge. With the recent advances in vision-language mod-
els, i.e., CLIP, we investigate whether a pre-trained CLIP
model can aid symmetry detection by leveraging the addi-
tional symmetry cues found in the natural image descrip-
tions. We propose CLIPSym, which leverages CLIP’s im-
age and language encoders and a rotation-equivariant de-
coder based on a hybrid of Transformer and G-Convolution
to detect rotation and reflection symmetries. To fully uti-
lize CLIP’s language encoder, we have developed a novel
prompting technique called Semantic-Aware Prompt Group-
ing (SAPG), which aggregates a diverse set of frequent
object-based prompts to better integrate the semantic cues
for symmetry detection. Empirically, we show that CLIPSym
outperforms the current state-of-the-art on three standard
symmetry detection datasets (DENDI, SDRW, and LDRS).
Finally, we conduct detailed ablations verifying the benefits
of CLIP’s pre-training, the proposed equivariant decoder,
and the SAPG technique.

1. Introduction
Symmetry plays an important role in human perception and
understanding of the world [6, 8, 13, 30, 45, 58]. In computer
vision, symmetry is one of the most fundamental geometric
cues, providing essential information for tasks such as object
recognition [35, 57], scene understanding [10, 64], image
matching [16], and editing [33]. Detecting symmetry, how-
ever, has been a long-standing question in computer vision
due to the variations and complexities present in real-world
scenarios [19, 31, 42, 49, 56, 66].

Earlier works relied on keypoint matching techniques [1,
3, 36, 52, 53], which involved comparing local descriptors of
keypoints and their transformed counterparts. Although ef-
fective to some extent, these methods struggled with complex
symmetry patterns or in the presence of noise. More recently,
deep learning-based approaches [12, 50, 51] were proposed
to detect reflection and rotation symmetries and have shown

promising results. PMCNet [50] proposed a method that
relies on specially designed convolutional techniques rather
than principled equivariant architectures, limiting its ability
to consistently detect symmetry patterns across different ori-
entations. Although EquiSym [51] addresses this limitation
by leveraging group-equivariant convolutional networks, due
to the limited availability of large-scale annotated symmetry
datasets, the full potential of the learning based approach
remains underexplored.

On the other hand, recent advances in pre-trained vision-
language foundation models [20, 37, 40, 73], have shown
remarkable generalization capabilities by leveraging large-
scale datasets and joint training on visual and textual in-
formation. Image captions often contain words or phrases
that carry the symmetry information of the object in the
image. For example, in the case of internet-scale LAION-
400M dataset [48], around 10% of the image captions con-
tain words that convey shape/symmetry-related cues such
as ‘rectangle,’ ‘circle,’ ‘oval’, etc. (see Appendix A2.1 for
detailed statistics). This observation suggests that vision-
language models trained on such extensive image-text pairs
are likely to contain useful symmetry cues in their learned
text/image representations. A natural question arises:

How to leverage pre-trained vision-language mod-
els for symmetry detection?

In this paper, we present CLIPSym, a novel framework
that leverages the pre-trained CLIP model for the detection
of reflection and rotation symmetries in images. Our ap-
proach is motivated by the hypothesis that being trained on
a large-scale vision-language dataset, the visual represen-
tations learned by CLIP contain knowledge that can bene-
fit symmetry detection. The proposed CLIPSym contains
CLIP’s image and text encoders and introduces a decoder
with guarantees on rotation equivariance. Given an input
image, CLIPSym outputs a symmetry heatmap, where each
pixel represents the probability of being a reflection axis
or the rotation center. To fully leverage the potential of
CLIP’s language encoder, we propose a novel Semantic-
Aware Prompt Grouping (SAPG) method, which aggregates
multiple text prompts to enhance the model’s understanding
of symmetries.
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To validate our method’s performance, we conduct a set
of comprehensive experiments on three symmetry detection
datasets and observe that our proposed CLIPSym achieves
state-of-the-art performance for both reflection and rotation
symmetry detection tasks. Finally, we analyze our model’s
equivariance properties and conduct ablations for each of the
proposed components.
Our contributions are as follows:

• We introduce CLIPSym, a framework that, for the first
time, leverages the multimodal understanding abilities
of CLIP to achieve end-to-end detection of reflection
and rotation symmetries.

• We propose SAPG, a novel prompting technique to en-
hance the model’s understanding of symmetries through
the aggregation of a diverse set of prompts.

• We propose a symmetry decoder with theoretical guar-
antees for rotation equivariance, which improves the
model’s robustness to diverse symmetry patterns.

• We demonstrate that CLIPSym achieves state-of-the-art
performance across multiple benchmark datasets. Exten-
sive ablation studies further validate the importance of
CLIP pre-training, the SAPG technique, and the equiv-
ariant decoder.

2. Related work
Symmetry detection. Earlier works tackled the task of
symmetry detection primarily through keypoint matching,
which works by comparing local features of corresponding
key points between an image and its mirrored version. Often,
techniques such as spatial and angular auto-correlation are
employed [22, 24, 26]. Local feature descriptors, such as
SIFT [51], couture, and edge features [1, 36, 52, 59, 60],
are frequently utilized to achieve a degree of equivariance
to image transformations and detection of boundaries of
symmetric objects.

Symmetry detection can also be formulated as a dense pre-
diction task by assigning a score to each pixel of the image.
Tsogkas and Kokkinos [55] employed a bag of features and
multiple-instance learning in their model. On the other hand,
Gnutti et al. [14] computed a symmetry score for each pixel
using patch-wise correlation and gradient for validating can-
didate axes. Fukushima and Kikuchi [11], Funk and Liu [12]
used data-driven learning-based approaches for symmetry
detection. Polar matching convolution (PMC) [50] is used
to attain higher reflection consistency in symmetry detection.
To achieve perfect rotation and translation equivariance, Seo
et al. [51] used group equivariant CNNs to predict per-pixel
symmetry scores.

While existing methods have achieved promising per-
formance in symmetry detection, they still face challenges
in modeling diverse symmetry patterns and lack large an-
notated datasets. In this paper, we aim to overcome these
limitations by leveraging the power of the pre-trained CLIP

model, which has learned visual-semantic representations
with generalization capability to real-world scenes.
Equivariant networks. Equivariance to geometric transfor-
mations in input images constitutes a vital inductive bias, fos-
tering improved generalization and consistency, particularly
under conditions of limited training data. While Convolu-
tional Neural Networks (CNNs) inherently exhibit equivari-
ance to the translation operations, achieving equivariance to
a broader spectrum of geometric transformations is not guar-
anteed. This broader family of equivariance is achievable
through Group Equivariant CNNs [4] and parameter sharing
strategies [21, 70, 72]. Notably, Steerable CNNs [5, 61–63]
offer an efficient approach by representing filters in terms
of steerable bases. Recent works have extended the scope
of equivariance to include diverse transformations, such as
scaling [38, 54, 65], sampling [39, 46], color changes [25],
permutation [15, 28, 29, 43, 70, 71, 75], and extending be-
yond CNN architectures to encompass Vision Transform-
ers [47, 68]. Equivariance is particularly important in our
task of symmetry detection, as it allows the model to con-
sistently identify symmetrical patterns regardless of their
orientation or position in the image, leading to more robust
and accurate predictions.
Vision & language models. CLIP [37], a seminal pre-
trained vision-language model, has gathered significant
attention and has been widely adopted in various down-
stream tasks, including monocular depth estimation [18],
sound source localization [34], scene text detection and
spotting [69], video understanding [41], semantic segmenta-
tion [32], etc. Recently, prompting has emerged as a promi-
nent paradigm for efficiently adapting pre-trained models
to downstream tasks. Zhou et al. [78] and Zhou et al. [77]
propose methods to automatically learn prompt tokens that
yield strong performance on target tasks. Khattak et al. [23]
introduce a multi-modal prompting approach to effectively
adapt CLIP to various applications. Furthermore, Bahng
et al. [2] explores the use of visual prompts to probe CLIP’s
visual representation learning capabilities.

3. Approach
We propose CLIPSym, a model that leverages the pre-trained
CLIP model (ViT-B/16) for the task of symmetry detec-
tion. Given an input of an image I → RH→W→3, CLIPSym
outputs the predicted symmetry heatmap ŜI → [0, 1]H→W ,
which represents the probability of each pixel being reflec-
tion axes or the rotation center for objects in I . As CLIP has
been trained on an internet-scale dataset, we hypothesize that
such pre-training would be beneficial to symmetry detection.
The main challenge is how to build a model that utilizes this
pre-trained knowledge.

To leverage the image information from CLIP, we use
the pre-trained image encoder Eimg to extract image features
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Figure 1. Overview of the proposed CLIPSym architecture. Left: The text encoder Etxt encodes prompts in set T as ZT and the image
encoder Eimg encodes patches in image I as ZI . ZI and ZT are then mixed and aggregated in the decoder to get the final predicted symmetry
heatmap ŜI . Right: Visualization of decoder details.

from the set of image patches tokens ZI = {zpij }, where
zpij → Rd denotes the image feature of patch pij at position
(i, j) → Z2

M
, with M representing the number of patches

along each dimension. To leverage the text information
from CLIP, we design SAPG, which integrates a set of text
prompts T = {t1, t2, . . . } and use the text encoder Etxt to
extract a set of text tokens ZT = {zt1 , zt2 , . . . } where each
zti → Rd.

With the image and text tokens extracted, we then propose
a rotation equivariant decoder to mix and aggregate the to-
kens into a final heatmap. A visual overview of our approach
is illustrated in Fig. 1. We will now discuss the decoder de-
tails in Sec. 3.1, followed by the prompting technique SAPG
in Sec. 3.2, and training details in Sec. 3.3.

3.1. Rotation equivariant decoder

Decoder architecture. The decoder module D takes the set
of the image tokens ZI and text tokens ZT as inputs and
generates the final symmetry heatmap i.e., ŜI ; an overview
is provided in Fig. 1 (left). Our proposed decoder mod-
ule consists of three modules, namely, a FiLM block, a
Transformer module followed by aggregation, and finally,
a rotation equivariant upsampler. We design the decoder to
be rotation equivariant, as prior work [51] has shown equiv-
ariance guarantees to benefit the performance of symmetric
detection. We now discuss each of the building blocks.

✁ FiLM block: A FiLM [9] conditioning layer utilizes the
text tokens to modulate the image features, allowing image
tokens to carry textual semantic information. For each text
token zt → ZT , the FiLM layer generates a set of image

tokens modulated by text condition t:

ZI|t = FiLM(zt, ZI) (1)

= {zpij |t|(i, j) → Z2
M

, zpij |t → Rd}, (2)

where each zpij |t is computed as

zpij |t = ω(zt) ↑ zpij + ε(zt). (3)

Here, ↑ denotes element-wise multiplication between text
and image patch features, and ω(·), ε(·) are linear layers.

✂ Transformer module & aggregation: With the set of
image tokens modulated for each text t, we then use a Trans-
former module B to further learn the spatial dependencies
between patches, which is crucial for detecting global sym-
metry structures. The Transformer module consists of sev-
eral multi-headed attention blocks, each containing a self-
attention layer and multi-layer perceptron (MLP) layers fol-
lowed by layer normalization as described in ViT [7].

Each set of text-modulated image tokens ZI|t is passed to
the transformer module B to obtain the set of updated tokens

ẐI|t = {ẑpij |t|(i, j) → Z2
M

} = B(ZI|t) ↓t → T . (4)

Next, we aggregate across all text prompts to construct the
set of final tokens Z̄I via a weighted average:

Z̄I = {z̄pij |(i, j) → Z2
M

}

where each z̄pij =
∑

t↑T
wtẑpij |t. (5)

Here, wt → R is a weight scalar corresponding to prompt t
therefore w → R|T | learns to combine the patch-conditioned
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tokens. The weights satisfy wt ↔ 0 and
∑|T |

t=1 wt = 1. The
upsampler will next process these tokens.

✃ Rotation equivariant upsampler: To achieve equivari-
ance, we choose to use steerable G-Conv [5] and choose G
to be roto-translation group Z2

M
⊋ Cn, where Cn denotes a

group of 360↓/n rotations and n = 4k, where k → Z+.
As G-Conv takes a feature map on a group as input, we

first need to convert the set of aggregated tokens Z̄I to a grid
and then lift it to the roto-translation group. Recall, each
element z̄pij → Z̄I has a corresponding spatial location pij .
We put back (Grid) the elements into a 2D feature map as:

F ↭ Grid(Z̄I) → Rd→M→M

where F[:, i, j] = z̄pij ↓ (i, j) → Z2
M

. (6)

We then lift this feature map F to the roto-translation group.
The lifted feature map F↔ → R|Cn|→d

→→m→m is defined as

F↔ ↭ Concat ([RωF; ↓ϑ → Cn]) , (7)

where Rω denotes rotation on 2D plane. In more details,

F↔[i, ϑ, x, y] = F[i, x↗, y↗] (8)

where
(

x↗

y↗

)
=

(
cos ϑ sin ϑ

↗ sin ϑ cos ϑ

) (
x
y

)
. (9)

More compactly, we denote this action as [x↗, y↗] =
r↘ω(x, y).

The lifted feature map F↔ is then passed through 3 layers
of G-Conv [4] and 4↘ bi-linear upsampling,where G-conv
computes the following:

(F↔ ϖG ϱ)[ϑ, x, y] =
∑

ω→↑G

∑

(x→,y→)↑Z2
M

F↔[ϑ↗, x↗, y↗]ϱ[ϑ↗ ↗ ϑ, r↘ω[(x
↗ ↗ x, y↗ ↗ y)]. (10)

Finally, the feature on the roto-translation group is mean-
pooled along the rotation dimension ϑ in the last layer to
generate the final prediction symmetry heatmap ŜI .
Rotation equivariance guarantees. We will now show that
our proposed decoder D is rotation equivariant to the group
C4, i.e., a 2D “rotation” on the image tokens ZI leads to the
same rotation of the prediction ŜI . We define a “rotation”
using the action Tω on the set of patch-features ZI as

TωZI ↭ {Tωzpij } = {zpωε(ij)
}, (11)

where ςω rotates the 2D coordinates, i.e., a permutation on
the patch location (i, j).

Claim 1. The decoder D is rotation (Tω, Rω)-equivariant
to C4, i.e.,

D(TωZI , ZT ) = RωŜI ↓ϑ → C4. (12)

Proof. It is sufficient to prove that each component of the
decoder is equivariant.

✁ FiLM block: The FiLM block performs element-wise
affine transformation (multiplication and addition) for each
of the patch features separately. As any operation performed
individually on each element of the set is permutation equiv-
ariant [75], i.e., FiLM(TωZI , zt) = TωZI|t.

✂ Transformer module & aggregation: In C4, ϑ →
{n · 90↓ : n → Z} then ςω acts as a permutation on the
patch location (i, j) and the action Tω can be described as a
permutation on the patch features.

Grid(TωZI) = Rω[Grid(ZI)]. (13)

Transformer layers are equivariant to permutation on the
order of the tokens [74]. So, the application of transformer
block B is equivariant, i.e. B(TωZI|t) = TωB(ZI|t). The
aggregated of tokens Z̄I is constructed by a weighted average
over the text prompts. As the tokens are spatially aligned,
the aggregated token remains equivariant.

✃ Rotation equivariant upsampler: The upsampler U
and relative interpolations are equivariant to Cn, where n is
a multiple of 4 by design. As C4 is a subgroup of Cn, the
upsampler is equivariant to C4, i.e.,

U(reshape(TωZ̄I)) = U(RωF) = RωU(F) = RωŜI . (14)

This concludes the proof.

3.2. Semantic-Aware Prompt Grouping (SAPG)
While commonly used text prompts such as “a photo of

a [CLASS]” seems to be a good choice, symmetry is a
highly abstract concept that almost exists across a variety of
objects, making it unlikely for CLIP’s pre-training data to
include specific descriptions like “symmetry axes” or “rota-
tion centers”. In CLIPSym, we propose a novel prompting
technique SAPG to address this challenge. SAPG constructs
a set of prompts T = {t1, t2, · · · , tM}, with each prompt
tm representing a string of the combination of K frequent
object classes that appear in the dataset, which are separated
by spaces. Formally:

tm = “[obj
m1

] [obj
m2

] · · · [obj
mK

]”, (15)

where obj
mk

represents the k-th object class in the m-th
prompt. For example, with K = 3 objects in each prompt,
the prompt tm can be “apple cloud table”. Note
that we use the same prompt set T for all images, ensuring a
consistent semantic initialization across the dataset. More
details of prompts are provided in Appendix A1.

The design of SAPG is motivated by three key insights:
• Better initialization via frequent objects: Since pre-trained

CLIP has good language-image alignment, using frequent
objects as prompts leads the model to focus more on re-
gions where symmetry is naturally present, thus allowing
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the model to learn the underlying symmetric structures
rather than dealing with noisy or inconsistent semantic
signals from less common words.

• Aggregation for prompts: Grouping multiple prompts al-
lows the model to leverage complementary semantic cues
such that the model can capture broader aspects of sym-
metry than a single prompt, which typically focuses on
only limited aspects of symmetry. Moreover, the aggre-
gated embeddings of grouped prompts are refined during
training, which provides a more robust representation of
symmetry.

• Fixed prompts for a universal concept: As the concept of
symmetry is universal, this means its core characteristics
do not vary significantly from one image to another, it
is reasonable to use a fixed set of prompts rather than
adapting them for each image. In this way, the model has
a more consistent semantic anchor that reflects symmetry.
Moreover, although prompts are fixed, their embeddings
are continuously updated during training, allowing them
to gradually evolve to capture the essential characteristics
of symmetry more accurately.
In our experiments, we explore various strategies for se-

lecting object classes. Detailed prompt design and more dis-
cussions on the motivations of language are in Appendix A1
and A2.

3.3. Model training
In symmetry detection, the class imbalance problem arises
due to the low ratio of foreground pixels indicating the rota-
tion/reflection axis to the background pixel. To address this
issue, we follow prior works [27, 50] to utilize the φ↗focal
loss defined as

Lfocal(I) =
∑

x,y

↗φ↗
Ixy

(1 ↗ Ŝ↗
Ixy

)ε log(Ŝ↗
Ixy

), (16)

where Ŝ↗
Ixy represents the predicted heatmap for image I at

position (x, y), φ↗
Ixy

represents the symmetry/non-symmetry
class balance factor calculated from a pre-defined scalar φ,
and ↼ denotes the focusing parameter. Detailed definitions
can be found in the Appendix A4.

We fine-tune from the pre-trained CLIP text and image
encoders. This decision is driven by two key considerations.
First, CLIP has been pre-trained on a vast corpus of image-
text pairs, but its training objective does not specifically
focus on symmetry detection. Second, the prompts are aimed
at capturing the abstract concept of symmetry rather than
specific object classes. Hence, it requires fine-tuning the text
encoder to map these prompts to text tokens for symmetry
detection.

4. Experiments
For a fair comparison, we strictly follow the evaluation proto-
col of prior works [50, 51]. We first discuss the experimental

setup, followed by the results, and conclude with a set of
ablation studies.

4.1. Experimental setup
Dataset. As in prior works [51], we conduct experiments on
the task of reflection and rotation symmetry detection using
three datasets: DENDI [51], SDRW [50], and LDRS [50].

The DENDI dataset consists of 2493 and 2079 images
annotated for reflection axes and rotation centers, with
1750/374/369 and 1459/313/307 images in train/valida-
tion/test splits for reflection and rotation symmetry, respec-
tively. On the other hand, SDRW and LDRS are reflection
datasets that have 51/-/70 and 1110/127/240 images in train/-
validation/test splits. Although the original SDRW dataset
includes both rotation and reflection data, we only use its
reflection data because its rotation data has already been
incorporated into DENDI.
Baselines. We compare our approach with three baseline
methods considered by Seo et al. [51], including SymRes-
Net [12], PMCNet [50], and EquiSym [51]. SymResNet
applied ResNet [17] to detect reflection and rotation symme-
tries using human-labeled annotated data. PMCNet proposed
polar matching convolution to detect reflection symmetries
by leveraging polar feature pooling and self-similarity encod-
ing. EquiSym introduced a group-equivariant convolutional
network to detect reflection and rotation by utilizing equivari-
ant feature maps, surpassing the performance of all previous
methods.

Beyond existing works, we further consider additional
baselines: CLIPSymno-text only uses a CLIP image encoder
followed by the same equivariant decoder as CLIPSym with-
out any text conditioning, which will reflect the benefits of
language. CLIPSymscratch trains the proposed model from
scratch instead of using the pre-trained CLIP, which aims to
show that pre-training is helpful. CLIPSymnon-eq. is a vari-
ant of CLIPSym with a non-equivariant decoder that uses
standard CNN blocks for upsampling, which will show the
importance of the design of the equivariant decoder.
Evaluation metrics. To evaluate the symmetric detection
tasks, we report the F1-score following Seo et al. [51]. We
also report robustness and consistency metrics with respect
to rotation and reflection transformations for each of the
models. The evaluation metrics are summarized below:

F1-score (≃) is formally calculated as

F1 = max
ϑ

(2 · precision
ϑ

· recallϑ
precision

ϑ
+ recallϑ

)
, (17)

where ↽ → [0, 1] is used to threshold the predicted score map
at various levels in the range of [0, 1] to obtain binary maps.
For each threshold, we compute the F1-score by comparing
the predictions against the ground-truth binary heatmaps at
the pixel level. The max F1-score across all thresholds is
reported as the final performance measure.
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Method Pre-training Reflection F1 Rotation F1
SymResNet→ [12] ImageNet 30.7 11.9
PMCNet→ [50] ImageNet 52.0 –
PMCNet [50] ImageNet 53.8± 0.5 –
EquiSym→ [51] ImageNet 64.5 22.5
EquiSym [51] ImageNet 61.7± 0.6 22.0± 0.7

CLIPSymno-text ImageNet 54.8± 0.2 9.0± 0.1
CLIPSymno-text CLIP 63.7± 0.3 17.7± 0.2
CLIPSymscratch – 32.1± 0.2 4.7± 0.2
CLIPSymnon-eq. CLIP 62.9± 0.2 24.2± 0.1
CLIPSymeq. CLIP 66.5± 0.2 25.1± 0.1

Table 1. Quantitative comparison of F1-score (%) on the DENDI
dataset [51]. Results of SymResNet→, PMCNet→, and EquiSym→

are obtained from the EquiSym [51] paper, while PMCNet and
EquiSym are reproduced using the publicly available code. As
SymResNet [12] does not have publicly available code, we are
unable to report its standard deviation.

Robustness-score assesses the model’s robustness under
transformations, including reflections and rotations, which is
calculated as the F1-score on the transformed dataset. During
the assessment of rotation robustness, we sample rotation
angles uniformly distributed between [↗45↓, 45↓] and apply
them to images in the dataset and their relative ground-truth
heatmaps. For reflection robustness, we randomly apply a
horizontal flip on each image.

Consistency-score is defined as the cross-entropy loss
between the transformed model’s outputs and the model’s
output on the transformed input images. Formally,

Consistency =
1

|D|
∑

I↑D
ET

[
CE

(
T (ŜI), ŜT (I)

)]
, (18)

where T , defined in Eq. (11), denotes the transformation
(e.g., rotation or reflection), CE denotes the cross-entropy
function between the two symmetry heatmaps. A lower score
indicates a higher consistency, suggesting the model can
maintain more consistent predictions faced with reflection
or rotation transformations.
Implementation details. As the backbone network, we
adopt the pre-trained CLIP model [37] with a ViT-B/16
structure. The model is trained for 500 epochs using the
Adam optimizer. To meet the input requirements of the
image encoder, training images are reshaped to 417 ↘ 417
resolution by resizing original images while maintaining the
aspect ratio and padding if necessary. During testing, images
are reshaped using the same process, where the predictions
are cropped and resized to the original image sizes before
computing metrics. See Appendix A4 for more details.

4.2. Results
Quantitative results. In Tab. 1 and Tab. 2, we present the
F1-score of baseline models pre-trained on different datasets

Method Pre-training SDRW F1 LDRS F1 Mixed F1
PMCNet [50] ImageNet 40.8± 0.4 30.5± 0.5 33.8± 0.2
EquiSym [51] ImageNet 48.2± 0.1 37.7± 0.1 41.1± 0.1

CLIPSymno-text ImageNet 31.3± 0.1 25.3± 0.1 27.0± 0.1
CLIPSymno-text CLIP 46.8± 0.2 36.2± 0.1 39.7± 0.1
CLIPSymscratch – 10.8± 0.3 10.4± 0.2 10.8± 0.3
CLIPSymnon-eq. CLIP 47.8± 0.3 37.0± 0.1 40.8± 0.2
CLIPSymeq. CLIP 51.8± 0.3 39.5± 0.1 42.8± 0.1

Table 2. F1-score of reflection symmetry detection on SDRW,
LDRS, and their mixed datasets.

Method Pre-training Robustness → Consistency ↑
PMCNet [50] ImageNet 52.2 0.417
EquiSym [51] ImageNet 57.1 0.244
CLIPSymnon-eq. CLIP 58.3 0.093
CLIPSymeq. CLIP 59.7 0.082

Table 3. Equivariance robustness and consistency evaluation re-
sults for DENDI reflection dataset under [→45↑, 45↑] uniformly
distributed rotation operations.

or trained from scratch for detecting reflection and rotation
symmetries on DENDI and reflection symmetry on SDRW
and LDRS datasets, respectively.
From Tab. 1 and Tab. 2, we observe the following:

CLIPSym achieves SOTA performance. In Tab. 1, we
observe that CLIPSym has the highest F1 score across both
tasks, outperforming EquiSym≃ by 2.0% and 2.6%, the pre-
vious SOTA, on the DENDI dataset.

CLIP’s pre-training is helpful. In both Tab. 1 and Tab. 2,
we observe that CLIPSym pre-trained on CLIP significantly
outperforms CLIPSym trained from scratch. CLIPSym
without text conditioning pretrained on CLIP also outper-
forms those pretrained on ImageNet, which suggests that
pre-training on a larger and more diverse dataset is beneficial.

CLIPSym effectively leverages the information from the
text encoder. This can be seen from the comparison between
CLIPSymno-text and CLIPSym, where CLIPSym outperforms
its counterpart in all settings. This suggests that the text en-
coder provides additional contextual information that helps
the model to understand symmetries better.

Beyond performance, we further study how equivariance
plays a role in the models. In Tab. 3, we present the Con-
sistency and Robustness score of models on the DENDI
reflection dataset. Here, we report the consistency and ro-
bustness of rotations uniformly randomly sampled within
±45 degrees. Interestingly, we observe CLIPSymnon-eq. with
a non-equivariant decoder surpasses the two compared base-
lines in consistency and robustness. Note that both Equi-
Sym [51] and our CLIPSym use the C8 group-equivariant
convolutions, which are only equivariant at intervals of 45↓.
This again highlights the importance of CLIP’s pre-training
in the encoder for consistent image representations. Finally,
the full CLIPSym with an equivariant decoder further im-
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Method PMCNet [50] EquiSym [51] CLIPSym (ours)
GFLOPs 167.7 114.0 148.8

Table 4. Comparions of computation cost in GFLOPs.

proves the consistency and robustness of the model. Please
refer to Appendix A3.3 for consistency and robustness re-
sults on the SDRW and LDRS datasets.
Comparisons on the computational cost. We report the
computational costs in GFLOPs as in Tab. 4 for each of
the baselines and our method. We observe that CLIPSym
has a slightly higher computational cost at 148.8 GFLOPs
compared to EquiSym (114.0 GFLOPs), but is more efficient
than PMCNet (167.7 FLOPs). That is, CLIPSym achieves a
significant performance improvement over other baselines at
a moderate increase in computation.
Qualitative results. In Fig. 2a and Fig. 2b, we compare
the predicted reflection and rotation heatmaps of different
models and the ground truth. We observe that CLIPSym
generates sharper and more accurate symmetry heatmaps
compared to the baselines.

In Fig. 3, we present heatmaps of EquiSym and CLIPSym,
which take images under random rotation transformations
within [↗45↓, 45↓] as inputs to illustrate the model’s robust-
ness and consistency. We observe that even though EquiSym
is a fully equivariant model, CLIPSym generates more con-
sistent heatmaps. This is because end-to-end equivariant
models using steerable filters require exact symmetry at the
input. They are not guaranteed to be equivariant when there
are interpolation artifacts, cropping of the image, or when
the rotation is not a multiple of 90↓. On the contrary, CLIP’s
image encoder is robust to such transformations due to large-
scale training and generates consistent image features. Our
equivariant decoder module D, generates a consistent sym-
metry heatmap from CLIP’s image feature.

Fig. 3 also shows that compared with EquiSym, CLIP-
Sym’s predictions are sharper and contain less noise, suggest-
ing that CLIPSym is more robust. More results are shown
in Fig. A4.

4.3. Ablation studies
Prompt initialization. In Tab. 5, we investigated the impact
of different prompt initialization methods for the CLIPSym
text encoder on the reflection symmetry detection perfor-
mance using the DENDI dataset. We explored two main
categories of prompt initialization: single prompt (M = 1)
and multiple prompts (M > 1).

For a single prompt, we evaluated using arbitrary phrases
or sentences, such as “reflection axis” and “symmetry axis”,
which achieved F1 scores of 64.4 and 64.8, respectively.
We also tested combinations of words with frequent objects
(65.3). Furthermore, using multiple prompts containing M
tokens each consistently outperforms single prompt methods.

We find that using 25 prompts with 4 tokens each yields

Prompt context Ref. F1

Single prompt

A single phrase containing K tokens
“reflection axis” 64.4
“symmetry axes in the image” 64.8
frequent object classes (K=25) 65.8

Multi-prompt

M prompts, each with K tokens
M = 25, K = 1 65.3
M = 25, K = 4 66.5
M = 25, K = 16 65.9
M = 50, K = 4 65.4
M = 50, K = 16 64.4

Table 5. Ablation results of different prompt initialization methods
for CLIPSym text encoder on DENDI reflection dataset. As defined
in Sec. 3.2, M represents the number of prompts, and K represents
how many words there are in each prompt.

Trainable Encoder Ref. F1Text Image
✄ ✄ 59.4
☎ ✄ 58.9
✄ ☎ 65.3
☎ ☎ 66.5

Table 6. F1-scores evaluated on
DENDI reflection dataset under
different settings.

CLIP Version Ref. F1
CLIP/ViT-B-16 66.5 ± 0.2
CLIP/ViT-L-14 65.4 ± 0.2
SigLIP/ViT-B-16 65.8 ± 0.3
MetaCLIP/ViT-B-16 66.7 ± 0.3

Table 7. Comparison of differ-
ent versions of CLIP model on
reflection symmetry detection on
DENDI.

the highest F1 score of 66.5, demonstrating the effective-
ness of leveraging multiple diverse prompts for initialization.
These results highlight the importance of careful prompt
engineering and show that utilizing multiple semantically
relevant prompts can improve performance. Appendix A1
provides more detailed descriptions of the prompts.
Trainable components. In Tab. 6, we investigate the impact
of making the text encoder and image encoder trainable in
the proposed CLIPSym. The best performance is achieved
when both encoders are trainable, which suggests that both
encoders contribute to the symmetry detection task. When
the image encoder is frozen, whether the text encoder is
trainable or not, the performance drops significantly. This
suggests that the image encoder plays a more crucial role in
symmetry detection than the text encoder.
Different CLIP models. Beyond using the ViT-B/16 model
as in the main experiments, we also experimented with other
variants of CLIP models, including ViT-L/14, SigLIP [76]
which replaces the softmax loss with a sigmoid loss for
improved feature separability, and MetaCLIP [67] which
created a balanced and noise-reduced dataset to improve
the training of CLIP model. As reported in Tab. 7, we
observe that MetaCLIP achieves even better reflection detec-
tion performance than our model (66.7 vs. 66.5), and SigLIP
achieves slightly worse performance (65.8). This suggests
that CLIPSym has the potential to be further improved as
more advanced CLIP backbones are developed.
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Ground Truth PMCNet [50] EquiSym [51] CLIPSym

(a) Reflection detection results on DENDI-ref.

Ground Truth EquiSym [51] CLIPSym

(b) Rotation detection results on DENDI-rot.

Figure 2. Visualization of the reflection and rotation symmetry detection on the DENDI dataset.

Original image Ground Truth (GT) Rotated GT EquiSym ŜT (I) EquiSym T (ŜI) CLIPSym ŜT (I) CLIPSym T (ŜI)

Figure 3. Examples of the original image, ground truth, rotated ground truth, EquiSym and CLIPSym’s predicted heatmaps ŜT (I) on the
rotated image and the rotated heatmap T (ŜI). Observe that CLIPSym’s results are more consistent under rotation transformations.

5. Conclusion

In this paper, we introduce CLIPSym, a new approach for
symmetry detection that builds on the pre-trained CLIP
model. Leveraging CLIP’s powerful generalization and
cross-modal capabilities, our method adapts it specifically

for symmetry detection through prompt learning to capture
geometrically relevant features. Additionally, the proposed
equivariant decoder module boosts the model’s robustness
and consistency against random transformations. Our ap-
proach achieves state-of-the-art performance across all eval-
uated datasets.
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