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(a) “a dog facing forward”→ “a dog turning his head to the right” (b) “a woman riding a horse”→ “a woman moving forward on a horse”

… …

… … … …

(c) “an airplane”→ “a cruise” (d) “a wooden house in the forest” → “a wooden house in the snow”

… …

Figure 1. Illustration of Versatile Transition Generation (VTG). VTG is capable of performing four types of transition generation, namely,
(a) object morphing, (b) motion prediction, (c) concept blending, and (d) scene transition, within a single uniform framework.

Abstract

Leveraging text, images, structure maps, or motion tra-
jectories as conditional guidance, diffusion models have
achieved great success in automated and high-quality video
generation. However, generating smooth and rational tran-
sition videos given the first and last video frames as well as
descriptive text prompts is far underexplored. We present
VTG, a Versatile Transition video Generation framework
that can generate smooth, high-fidelity, and semantic-
coherent video transitions. VTG introduces interpolation-
based initialization that helps preserve object identity and
handle abrupt content changes effectively. In addition, it
incorporates dual-directional motion fine-tuning and rep-
resentation alignment regularization that mitigate the lim-
itations of the pre-trained image-to-video diffusion models
in motion smoothness and generation fidelity, respectively.
To evaluate VTG and facilitate future studies on unified
transition generation, we collected TransitBench, a com-

*This work was done while Zuhao Yang was interning at ByteDance.
†Shijian Lu is the corresponding author.

prehensive benchmark for transition generation that covers
two representative transition tasks including concept blend-
ing and scene transition. Extensive experiments show that
VTG achieves superior transition performance consistently
across the four tasks.

1. Introduction
The success of diffusion models [18, 43] in image synthe-
sis [30, 34, 36, 38] has inspired a number of studies on
diffusion-based video synthesis [19, 47, 58, 60]. Leverag-
ing textual prompts, video frames, structure maps and even
motion patterns, several studies [7, 41, 44, 48] have demon-
strated impressive synthesis performance by generating re-
alistic and high-fidelity videos automatically. Nevertheless,
despite its significant value in various real-world tasks such
as video and film production, generating high-quality transi-
tion videos conditioned on the first and last frames together
with related text prompts remains largely underexplored.

Generating realistic transition videos is a non-trivial task.
A high-quality transition generator should meet at least four
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criteria: 1) semantic similarity to the input frames; 2) high
fidelity to the input frames; 3) smoothness across the gen-
erated frames; and 4) alignment with the provided text
prompts. Moreover, the research community in transition
generation mostly relies on self-collected and well-filtered
videos that are not accessible to the public [8, 54]. This fur-
ther hinders the advancement of the research in transition
video generation.

Most existing studies tackle the challenge of transition
generation via two representative approaches. The first fo-
cuses on morphing, given two images of topologically sim-
ilar objects. Most recent methods [52, 56] harness various
deep interpolation techniques for generating rational object-
level transition. However, they generate intermittent im-
ages rather than temporally coherent video frames, losing
the transition smoothness especially while handling mov-
ing objects. The second focuses on video frame interpola-
tion. Most existing studies attempt to estimate intermedi-
ate optical flows [25, 27, 35, 55], or leverage frame condi-
tioning at training time [4, 5, 22, 50]. However, they tend
to generate irrational object transitions with abrupt content
changes, struggle with producing long transition sequences,
and require time-consuming training on large-scale motion
videos. On top of the above, existing studies either em-
ploy deep interpolation for conceptual blending transitions
[16, 51] or incorporate a random-mask condition layer for
scene transition [8], lacking a uniform framework that can
work for multiple transition generation tasks. This prompts
a compelling inquiry: can we design a versatile transition
generator that can handle various transition tasks with min-
imal adaptation across tasks?

As illustrated in Figure 1, we propose four transition
tasks to establish versatile transition generation, based on
the types of input frames: (1) Object Morphing: The input
frames are either the same object with different postures or
different objects, as long as they are topologically similar;
(2) Concept Blending: The input frames contain conceptu-
ally different objects (e.g., ‘an airplane’ and ‘a cruise’); (3)
Motion Prediction: The input frames can be seen as two mo-
ments in a video containing one (or more) moving object;
(4) Scene Transition: The input frames are conceptually re-
lated scene images yet they either belong to two different
domains (e.g., ‘a wooden house in the forest’ and ‘a wooden
house in the snow’) or represent two distinct components of
a scene (e.g., ‘erupting volcano’ and ‘hot lava’).

We design VTG, a versatile transition generation frame-
work built upon image-to-video diffusion models. VTG
features three designs for generating smooth, high-fidelity,
and semantic-coherent transitions. First, we employ
interpolation-based initialization that effectively mitigates
abrupt content changes while handling input frames with
significantly different contents. Specifically, we spherically
interpolate latent Gaussian noises of the two input frames

and text embeddings of corresponding transition captions
and leverage two LoRA-integrated U-Nets [20] to capture
object-level semantics in the denoising steps. Second, we
adopt a lightweight fine-tuning strategy that merges the pre-
dicted forward and backward noises which greatly improves
the transition smoothness in motion predictions. The bidi-
rectional sampling can be achieved by fine-tuning the pre-
trained U-Net with a small collection of videos. Third,
we introduce regularization with self-supervised visual en-
coder for video diffusion models to explicitly induce fea-
ture alignment, which helps learn meaningful representa-
tions and enhance the fidelity of generated transition videos.
These components are logically cohesive and, in combina-
tion, distinguish VTG from prior work by enabling a single
framework to handle diverse transition tasks with minimal
task-specific adjustments. In addition, we collected Tran-
sitBench, a new benchmark of 200 pairs with first and last
frames for concept blending and scene transition.

The contributions of this work can be summarized in
three aspects. First, we propose a unified task of versatile
transition generation, aiming at smooth and rational tran-
sition for object morphing, concept blending, motion pre-
diction, and scene transition. Second, we design VTG, a
novel and versatile framework that can generate semantic-
relevant, high-fidelity and temporally coherent video tran-
sitions effectively. Third, we introduce TransitBench, a cu-
rated dataset for benchmarking concept blending and scene
transition. With TransitBench and other public benchmarks,
we demonstrate, both qualitatively and quantitatively, that
VTG outperforms the state-of-the-art consistently across
the four transition generation tasks.

2. Related Work
Image Morphing. Image morphing has been a long-
standing problem in the computer graphics community
[1, 49, 61]. Conventional morphing techniques either
utilize correspondence-driven bidirectional image warping
[2, 3, 9, 26] or minimize the path energy on a Riemannian
manifold [14, 29, 33, 40] to obtain image transitions. While
producing seamless morphing, they either require massive
human involvement or fail to create new content beyond
the two given images. Recently, several studies [52, 56]
explored the prior knowledge in image diffusion models
for real-world morphing with more object categories.
Differently, we exploit a pretrained video diffusion model
for image morphing, naturally enabling coherent transitions
across frames.

Video Frame Interpolation. Video frame interpolation
(VFI) has been extensively studied in the computer vision
research community [11]. Classic VFI algorithms are
closely related to optical flow prediction, which obtain
interpolation by either forward warping [31] or backward
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warping [21, 23, 25] based on the estimated flows. Several
follow-up studies [22, 27, 35] focus on large motion prob-
lem in VFI. Recently, a line of research [12, 46] explores
bounded video generation with image-to-video diffusion
models under the guidance of the start and end frames.
This approach fuses outputs from forward and backward
paths by interpolating the predicted forward noise and its
reversed counterpart. While generating coherent motion,
it overlooks the identity preservation and struggles to
produce natural transitions when the two input frames
differ significantly in content.

Transition Generation. Transition generation is a far un-
derexplored problem, largely due to its open-ended nature.
Typically, a transition generation framework leverages two
input frames (i.e., the first and last frames) and a transition
caption to produce a scene-level transition video that con-
nects two distinct narrative moments. This has been ex-
plored in [8] that incorporates random masking to selec-
tively suppress information from the original latent code,
allowing capturing transition subtleties between frames. In
addition, [50, 54] inject the first and last frames as addi-
tional conditions by concatenating them with noisy latent
codes along the channel dimension. Recently, a concurrent
study [57] explores transition video generation with image-
to-video diffusion as well. Differently, we formulate the
task by versatile transition generation by unifying four tran-
sition tasks under the same framework, which greatly ex-
pands the applicability and significantly enhances the qual-
ity of the generated transition videos.

3. Method
3.1. Preliminaries
Latent diffusion models [36] are text-to-image diffusion
models that operate in a compressed latent space. During
forward diffusion process, it encodes an image sample x0

into a latent code z0 and corrupts z0 by Gaussian noise at
each time step t = 1, . . . , T :

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), (1)

where βt denotes the noise strength at time step t and I
denotes the identity matrix with the same dimensions as z0.
Given a text embedding c, the backward denoising process
can be parameterized as:

pθ(zt−1|zt) = N (zt−1;µθ(zt, c, t),Σθ(zt, c, t)), (2)

where µθ(zt, c, t) is output by a U-Net [37], and
Σθ(zt, c, t) is determined by a noise scheduler (e.g., DDPM
[18] or DDIM [42]). The model learns to predict noise via
a parameterized noise estimator ϵθ under the guidance of an
objective function:

Lt = Et∼[1,T ],z0,c,ϵt∼N (0,I) ∥ ϵt − ϵθ(zt, c, t) ∥22 . (3)

Our framework is built upon pretrained image-to-video
diffusion models that incorporate temporal convolutions
and temporal attention layers on top of latent diffusion mod-
els to establish temporal correlations between video frames.
Given a video x0 ∈ RN×3×H×W , where N is the num-
ber of frames and H × W indicates the image resolu-
tion, each frame is first encoded into a latent representa-
tion z0 ∈ RN×C×h×w via the VAE encoder Ev . Both for-
ward diffusion process and backward denoising process are
then performed in the latent space. The generated video
frames can be collectively obtained through the decoder Dv .
To inject image conditions, we fuse and incorporate text-
conditioned and image-conditioned features by projecting
the conditional image into a text-aligned embedding space.
Meanwhile, the conditional image is concatenated with the
initial per-frame noise to preserve more visual details.

3.2. Interpolation-based Initialization
In diffusion models, the initial Gaussian noise determines
the coarse structure that emerges in the early denoising
steps, while high-frequency details are refined later. Since
existing image-to-video diffusion models [8, 50] randomly
initialize the latent code z0 at inference time, each interme-
diate frame follows a distinct stochastic trajectory: colors,
micro-textures, or even object pose shift slightly from frame
to frame, yielding perceptual “flicker” [10].

To suppress this drift, we correlate the frame-wise latents
by interpolating between the endpoint noises instead of re-
sampling them independently. Prior work [6] indicates that
linear interpolation often yields intermediate latent norms
that are extremely unlikely under a unit Gaussian, whereas
spherical linear interpolation (SLERP) preserves the Eu-
clidean norm and keeps samples on-distribution. Therefore,
we leverage SLERP between the latent noises of two input
frames zt1 and ztN as follows:

ztn =
sin((1− λnoise)ϕ)

sinϕ
zt1 +

sin(λnoiseϕ)

sinϕ
ztN , (4)

where ϕ = arccos
(

zT
t1·ztN

∥zt1∥∥ztN∥

)
, and λnoise ∈ [0, 1] de-

notes the parameter for latent interpolation. As shown in
Figure 2, we concatenate ztn with zt1 and ztN along the
frame dimension and inject them as the initial latent noise
for DDIM sampling. It is worth noting that we only in-
ject the interpolated latent noises at early denoising steps to
preserve the appearance and motion priors from the image-
to-video backbone as much as possible. With such metic-
ulously designed latent injection strategy, our approach ad-
dresses the issue of random and abrupt transition frames.

Unlike GANs [15], whose latent space is structured and
semantically meaningful, diffusion models operate in an un-
structured noise space that does not explicitly encode high-
level semantics [56]. This lack of structure can lead to arti-
facts when interpolating between semantically different in-
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Figure 2. Inference framework of VTG. Our interpolation-based initialization features three designs: ① Interpolated Noise Injection,
② LoRA Interpolation, and ③ Frame-aware Text Interpolation. VTG first converts two encoded input frames to latent noises via DDIM
inversion. Then, it interpolates between the two latent noises and concatenate intermediate noises along the temporal dimension. To
capture meaningful semantics and enable the transition between two conceptually different objects, we employ LoRA interpolation and
text interpolation, respectively.

puts. To suppress such transition artifacts, we first train two
LoRAs ∆θ1, ∆θN given two input frames x1 and xN , opti-
mizing the following objective:

L(∆θt) = Eϵ,t

[
∥ ϵ− ϵθ+∆θi

(√
ᾱt z0n +

√
1− ᾱt ϵ, t, cn

)
∥2
]
, (5)

where z0n is the encoded latent vector of frame n, and cn
is the text embedding associated with transition caption cn.
Then, we linearly interpolate the two LoRAs to fuse the se-
mantics of two input frames:

∆θ = (1− λlora)∆θ1 + λlora∆θN , (6)

where λlora denotes the parameter during lora interpolation.
Typically, video diffusion models [8, 50] employ only

one caption as the text condition. This hinders the transi-
tion generation between two conceptually different objects,
causing abrupt content changes without generating interme-
diate frames with hybrid meanings. However, for image-
to-video diffusion models, the text embedding of the entire
frame sequence c is integrated within the denoising U-Net
via the cross-attention layer, without explicitly defining per-
frame text embedding. A related still-image approach [52]

linearly blends the two text embeddings to morph between
two static endpoints, whereas our method performs frame-
aware SLERP across prompt sequences as follows:

cλtext =
sin((1− λtext)ϕ)

sinϕ
c1 +

sin(λtextϕ)

sinϕ
cN , (7)

where λtext ∈ [0, 1] serves as the frame-aware coefficient
to control the transition sequence; c1 and cN denote the text
embeddings of the first and last frames, respectively.

3.3. Bidirectional Motion Prediction
In our experiments, we observed notable quality differences
when reversing the order of input frames. This discrepancy
arises from two main factors: (1) the model shows a bias
toward resembling the initial input frame more closely due
to conditional image leakage [59]; (2) existing image-to-
video diffusion models [8, 50] are pretrained exclusively for
forward motion prediction, while real-world motion is nat-
urally asymmetric, resulting in ambiguity when predicting
reverse motion.
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Figure 3. Training framework of VTG. In Bidirectional Motion Prediction (BMP), the noisy latent is flipped along temporal dimension,
and self-attention maps undergo a 180-degree rotation to establish reversed motion-time correlations. Two U-Nets separately predict
forward and backward motion, with the backward noise reversed again to fuse with the forward noise, ensuring a consistent motion path
for iterative denoising. In Representation Alignment Regularization (RAR), we spatially patchify each frame independently, then aggregate
the per-patch alignment loss across temporal dimension.

Inspired by [46], we simultaneously predict forward and
backward motions to mitigate the ambiguity issue. Specif-
ically, we rotate the temporal self-attention maps by 180
degrees both horizontally and vertically, causing a rever-
sal of attention relationships as illustrated in Figure 3.
We also reverse the original forward trajectory of video
{x1, x2, . . . , xN} to {xN , xN−1, . . . , x1}, given the two in-
put frames x1 and xN . Then, we obtain the reversed noisy
latent zt′ by flipping zt along the temporal dimension. Af-
ter that, zt′ is fed into the 3D U-Net for backward motion
prediction.

During training, we employ a lightweight fine-tuning
strategy that only updates the parameters of value and out-
put matrices (i.e., θw,o) in the temporal attention layers. The
objective LBMP is formulated by taking the L2 norm be-
tween the predicted noise and ground-truth reversed noise:

LBMP =∥ flip(ϵt)− ϵθw,o
(zt′ , c, t, A

′
i,j) ∥22 . (8)

The predicted backward noise is reversed again to fuse with
forward noise. Specifically, we simply employ linear inter-
polation to ensure forward-backward consistency:

ϵt = (1− λBMP )ϵt,i + λBMP ϵ
′
t,N−i, (9)

where λBMP = 0.5 denotes the weighting factor.

3.4. Representation Alignment Regularization

Though previous techniques effectively mitigate abrupt
content changes and motion-reversal ambiguity, our ap-
proach remains susceptible to generating blurry and low-
fidelity transitions, especially when input frames contain
fine-grained textures (e.g., bicycle spokes or fabric weave).
Recent work [53] shows that diffusion latents inherently
lack high-frequency semantics compared to self-supervised
representations like DINOv2’s [32]. Such mismatch tends
to accumulate over video frames and appears as blur.

To overcome this, we propose to distill DINOv2 features
back into the denoising trajectory of video diffusion. As il-
lustrated in Figure 3, the video latent is first patchified into
N sequences of T tokens along the temporal dimension.
For a N-frame video, the latent vector zn of n-th frame has
the shape of C×h×w. Given a pre-defined patch size s, the
sequence length T should be: T = (h/s) × (w/s). Then,
we project the per-frame latent representation zn of video
diffusion via a multilayer perceptron (MLP) to align with
DINOv2 representation y∗ = Ed(x∗) ∈ RP×m, where y∗
denotes the encoder output given a clean video frame x∗; P
and m respectively denotes the number of patches and the
embedding dimension of DINOv2 encoder Ed. Let yϕ(ht)
be the projected representation of intermediate diffusion la-
tent feature ht, where ϕ denotes the trainable parameters
of the MLP. The regularization term LRAR is computed by
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aggregating patch-wise similarities across all video frames:

LRAR = −
∑N

n=1 Et,x∗,ϵt

[
1
P

∑P
p=1 sim

(
y
[p]
∗ , yϕ(ht)

[p]
)]
. (10)

During inference, the external encoder Ed and MLP projec-
tor yϕ are discarded.

4. Experiments
4.1. Experimental Setup
Training Details. We leverage a small collection (i.e., 150)
of high-quality in-house videos as our training data. These
video samples encompass various motion (e.g., people
running, airplanes taxiing) and appearance changes (e.g.,
a man transitioning from youth to old age). The learnable
parameters of the backward U-Net are initialized to zero,
while the other available weights are initialized from the
pre-trained checkpoint of DynamiCrafter [50]. We utilize
the AdamW optimizer with learning rate of 1 × e−5. VTG
is trained on 4 NVIDIA A100-80GB GPUs, taking ∼ 20K
iterations with batch size of 2.

Inference Details. In our experiments, we use Stable
Diffusion v2.1-base [36] as our interpolation backbone.
When training LoRAs, we set the LoRA rank to 16 and
train them for 200 steps using AdamW optimizer [28] with
a learning rate of 2 × 10−4. This requires only ∼ 85s
with 1 NVIDIA A100-80GB GPU. During inversion and
sampling, we use the DDIM sampler [42] and set total
time steps to the default value (i.e., 50) of the selected
image-to-video models. we apply text classifier-free
guidance [17] for all models with the same negative prompt
“Distorted, discontinuous, Ugly, blurry, low resolution,
motionless, static, disfigured, disconnected limbs, Ugly
faces, incomplete arms” across all transition generations.

Comparison Methods. We compare VTG with follow-
ing methods: DiffMorpher [56], TVG [57], SEINE [8],
DynamiCrafter [50], Generative Inbetweening [46], Text
Embedding Interpolation (TEI) [45], Denoising Interpola-
tion (DI) [16], and Attention Interpolation (AID) [16].

Evaluation Benchmarks. We employ several public
datasets and our self-curated TransitBench to compre-
hensively evaluate the quality of the generated transition
videos. Specifically, we leverage MorphBench [56] and
TC-Bench [13] to evaluate object morphing and motion
prediction. Concept blending and scene transition are
rarely explored in the realm of generative models. Hence,
there is a lack of specific evaluation benchmarks for these
two tasks. Previously, [16] employs CIFAR-10 [24] and
LAION-Aesthetics [39] as their evaluation benchmarks to
test concept blending. While there are sufficient number of

samples in both datasets, CIFAR-10 only contains concepts
from 10 classes, and LAION-Aesthetics consists entirely of
synthetic images and lacks real-world samples. To this end,
we present TransitBench, the first benchmark dataset for
collectively assessing concept blending transitions of two
distinct conceptual objects and scene transitions between
two relevant scenarios. We collected 200 pairs of pictures
(each pair forms the first and the last frames of one tran-
sition generation sample) of diverse content and styles, and
evenly divide them into two categories: 1) concept-blending
cases, and 2) scene-transition cases, both of which are ob-
tained from web resources. We hope TransitBench can pro-
mote future studies on general transition generation.

4.2. Qualitative Results
To demonstrate the superiority of our method, we provide a
visual comparison of VTG against five state-of-the-art base-
lines. Specifically, we compare our approach with Diff-
Morpher, Generative Inbetweening, TVG, SEINE, Dynam-
iCrafter across four transition tasks for uniformity. Fig-
ure 4 shows the generation results by different methods.
For object morphing, the compared methods exhibit low-
fidelity (e.g., DiffMorpher, DynamiCrafter), oversaturation
effect (e.g., TVG), and inaccurate semantics (e.g., Gener-
ative Inbetweening, SEINE). In contrast, VTG presents a
natural transition, preserving the content of the first and
last frames well. For motion prediction, Generative Inbe-
tweening and SEINE generate inferior transitions as ob-
served by their blurry intermediate frames. TVG yields un-
natural transitions as it generates a front-facing image of
a person, while the person’s face is actually turned away.
DiffMorpher shows low-fidelity transitions, and its gener-
ated video looks like a sequence of intermittent images
without concerning the consistency between background
and foreground objects. This is largely due to the miss-
ing temporal modeling in DiffMorpher’s image diffusion
backbone. VTG achieves comparable or even better results
with DynamiCrafter, validating that it can effectively pre-
serve the appearance and motion priors in diffusion mod-
els. For concept blending, most video diffusion baselines
present abrupt content changes, while other baselines show
blurry (e.g., DiffMorpher) and ambiguous (e.g., TVG) in-
termediate frames. In contrast, VTG yields smooth transi-
tion between the lion and the truck with rational interme-
diate results (e.g., a lion-colored and lion-sized truck). For
scene transition between two relevant scene images, exist-
ing methods suffer from abrupt content changes or low sim-
ilarity (e.g., TVG), while VTG produces natural scene-level
transition with pleasing effect.

4.3. Quantitative Results
Evaluation Metrics. The objective of versatile transition
generation is to generate a sequence of (N − 2) intermedi-
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ate video frames, denoted as x2:N−1, between two source
frames x1 and xN , with two captions describing the two
frames. High-quality transition videos should simultane-
ously satisfy four criteria: semantic fidelity to the input end-
points, visual quality, temporal coherence, and perceptual

smoothness. To ensure fair comparisons, we performed ex-
tensive quantitative evaluations using experimental settings
consistent with those prior methods as in their original pa-
per. Specifically, we adopt the following evaluation metrics:
(1) FID (↓) and PPL (↓) follow DiffMorpher [56]. FID com-
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pares the first and last frames against the generated transi-
tion frames in the Inception feature space; PPL measures
the average LPIPS fluctuation along an interpolation path,
where lower values imply fewer perceptual jumps. (2) TCR
(↑) and TC-Score (↑) are taken from the training-free TVG
framework [57]. TCR is the fraction of video frames whose
CLIP embedding stays within a pre-set similarity margin
to either endpoint; TC-Score complements it with a mean
cosine-similarity, offering a softer view of frame-level con-
sistency. (3) Smoothness (↑) is adapted from AID [16]. For
every adjacent frame pair, we compute LPIPS and the Gini
coefficient of these distances, reflecting how even the step-
to-step changes are. We report its inverse so that a higher
score denotes smoother transitions.

Method Metamorphosis Animation

FID (↓) PPL (↓) FID (↓) PPL (↓)

DiffMorpher [56] 70.49 18.19 43.15 5.14
TVG [57] 86.92 35.18 42.99 12.46
SEINE [8] 82.03 47.72 48.25 16.26
DynamiCrafter [50] 87.32 42.09 43.31 11.16
VTG (Ours) 67.39 22.80 39.16 5.14

Table 1. Quantitative results on MorphBench. The best results
are in bold; second-best are underlined.

Method Attribute Object Background

TCR (↑) TC-Score (↑) TCR (↑) TC-Score (↑) TCR (↑) TC-Score (↑)

DiffMorpher [56] 41.82 0.844 19.57 0.765 50.00 0.819
SEINE [8] 17.86 0.720 10.48 0.654 7.96 0.742
DynamiCrafter [50] 16.55 0.745 13.91 0.707 25.56 0.795
TVG [57] 41.82 0.877 30.44 0.822 38.89 0.864
VTG (Ours) 42.78 0.893 33.46 0.849 50.00 0.883

Table 2. Quantitative results on TC-Bench. The best results are
in bold. Best viewed when zoomed in.

Dataset TEI DI AID-O AID-I Ours

CIFAR-10 0.7531 0.7564 0.7831 0.7861 0.7932
LAION-Aesthetics 0.7424 0.7511 0.7643 0.8152 0.8215

Table 3. Smoothness (↑) evaluation for Concept Blending. The
best results are in bold.

Quantitative Results. As seen in Table 1 and Table 2,
VTG outperforms existing methods with their original ex-
perimental setting, demonstrating its capability to generate
high-quality, temporally coherent, and semantically consis-
tent video transitions. It is worth noting that the only ex-
ception is Metamorphosis subset, where VTG achieves the
second-best PPL (22.80). Nevertheless, VTG still demon-
strates outstanding overall performance, achieving state-of-
the-art FID and comparable PPL.

According to AID [16], a well-interpolated concept-
blending sequence should exhibit a gradual and smooth

transition. To offer a more comprehensive evaluation, we
conducted experiments using the same benchmarks and
metric as in AID. Please refer to Table 3 for details.

Figure 5. The bar plot of user preference rates (%) of different
methods on four transition tasks. Best viewed when zoomed in.

User Study. To subjectively evaluate our approach , we fur-
ther conduct a user study. We asked Amazon Mechanical
Turk (AMT) workers to choose the best generated transi-
tion video from a set of five candidates. Given the two input
frames and corresponding transition captions, AMT work-
ers evaluate the videos based on three questions: 1) Which
video is the most semantic-coherent? 2) Which video is the
most temporally coherent? 3) Which video has the high-
est fidelity? To make a fair evaluation, we include static
and obviously incorrect videos to identify random clicking.
Each test example is assigned to 10 different workers for
evaluation. We collected 150 valid responses for each tran-
sition task after filtering out those responses from random
clicking workers. The results are shown in Figure 5, which
illustrates that VTG obtains the highest preference rate with
its superior quality of the generated transition videos com-
pared to other baselines.

5. Conclusion
In this paper, we formulate the problem of versatile transi-
tion generation that encompasses four representative tran-
sition tasks, namely, object morphing, motion prediction,
concept blending, and scene transition. Leveraging a pre-
trained image-to-video diffusion model, we design VTG, a
unified Versatile Transition video Generator that can tackle
the four tasks within a single framework. Both qualita-
tive and quantitative experiments show that VTG achieves
superior performance in generating semantically relevant,
temporally coherent, and visually pleasing transition video
frames, given a pair of text prompts and two input frames.
With these advantages, VTG can be readily applied to real-
world content creation scenarios, offering an efficient tool
for generating high-quality transition in media production.
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