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Abstract

Unsupervised visible-infrared person re-identification
(USL-VI-ReID) aims to train a cross-modality retrieval
model without labels, reducing the reliance on expensive
cross-modality manual annotation. However, existing
USL-VI-ReID methods rely on artificially cross-modality
paired data as implicit supervision, which is also expensive
for human annotation and contrary to the setting of unsu-
pervised tasks. In addition, this full alignment of identity
across modalities is inconsistent with real-world scenarios,
where unpaired settings are prevalent. To this end, we study
the USL-VI-ReID task under unpaired settings, which uses
cross-modality unpaired and unlabeled data for training
a VI-ReID model. We propose a novel Mapping and
Collaborative Learning (MCL) framework. Specifically, we
first design a simple yet effective Cross-modality Feature
Mapping (CFM) module to map and generate fake cross-
modality positive feature pairs, constructing a cross-modal
pseudo-identity space for feature alignment. Then, a
Static-Dynamic Collaborative (SDC) learning strategy is
proposed to align cross-modality correspondences through
a collaborative approach, eliminating inter-modality
discrepancies across different aspects i.e., cluster-level
and instance-level, in scenarios with cross-modal identity
mismatches. Extensive experiments on the conducted
SYSU-MM01 and RegDB benchmarks under paired and
unpaired settings demonstrate that our proposed MCL
significantly outperforms existing unsupervised methods,
facilitating USL-VI-ReID to real-world deployment.

1. Introduction
Person re-identification (ReID) focuses on retrieving spe-
cific individuals across non-overlapping cameras [1, 50].

*Equal contribution.
†Corresponding author.

Figure 1. Illustration of the motivation. Previous advanced works
for USL-VI-ReID mainly focus on paired settings, which leads
to the leakage of supervised information and is inconsistent with
the real-world scenarios. Under the underexplored unpaired set-
tings, the cross-modality correspondences are hard to align with
unpaired and unlabeled data, which poses a great challenge of
how to establish the relation of unpaired samples among differ-
ent modalities for learning modality-invariant knowledge.

Traditional ReID methods primarily rely on daytime
visible-light images, which struggle to extract discrimi-
native features in low-light environments, limiting single-
modality ReID deployment in real-world surveillance [13,
26]. To address this problem, the cross-modality visible-
infrared person re-identification (VI-ReID) is proposed to
identify the same person across a set of visible and in-
frared images [42]. While supervised VI-ReID methods use
plenty of costly cross-modality (visible-infrared) identity
labels to learn modality-invariant feature representations
[15, 19, 30, 38, 41], the unsupervised VI-ReID (USL-VI-
ReID) methods eliminate the need for annotation by gener-
ating pseudo-labels [20, 31, 32], which reduce the cost of
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expensive cross-modality annotations.
However, existing USL-VI-ReID methods [2–4, 16, 31,

33, 37] operate under the unrealistic assumption of precisely
paired cross-modality data, which contradicts real-world
scenarios where unpaired settings are more common, as
shown in Fig. 1. For instance, a commuter captured by day-
time visible cameras may never appear in nighttime infrared
surveillance due to social behaviors or hidden activity pat-
terns [14]. More critically, this unrealistic assumption intro-
duces supervised information leakage, violating the unsu-
pervised paradigm and necessitating extensive, costly anno-
tations. To bridge this gap, we introduce a new task: unsu-
pervised visible-infrared person re-identification under un-
paired settings, which seeks to train a cross-modality ReID
model using unpaired and unlabeled data. When applied
to unpaired scenarios, existing USL-VI-ReID methods face
two fundamental challenges, as shown in Fig. 1. First,
pseudo-label generation depends on cross-modality corre-
spondences, which are absent in unpaired settings, leading
to erroneous label assignments. Second, the lack of identity
pairs across modalities amplifies the modality gap, hinder-
ing effective feature alignment and obstructing the learning
of modality-invariant representations.

To overcome these challenges, we construct the first
public visible-infrared pedestrian benchmarks under un-
paired settings. Based on these benchmarks, we propose a
novel Mapping and Collaborative Learning (MCL) frame-
work that establishes cross-modality associations without
paired supervision. To handle the absence of paired data,
the Cross-modality Feature Mapping (CFM) module is de-
signed to supplement the missing cross-modality paired
data while preserving identity consistency. Then, a Static-
Dynamic Collaborative (SDC) learning strategy is proposed
to achieve unprecedented capability in bridging modal-
ity gaps through dual-level alignment. The static learn-
ing could establish holistic identity prototypes that capture
comprehensive identity characteristics at cluster level, en-
suring robust alignment under severe modality mismatches
and improving the reliability of cross-modality correspon-
dence. For the dynamic learning strategy, it can reduce
the discrepancy between the two modalities by pulling fake
samples towards their corresponding actual ones, thereby
narrowing the modality gap through instance-level inter-
modality alignment. Joint learning of the static and dynamic
method forms a collaborative learning strategy, achieving
better learning of discriminative and modality-invariant rep-
resentations for cross-modality retrieval.

The main contributions can be summarized as follows:
• We formally characterize the prevalent unpaired settings

encountered in real-world scenarios and introduce the
first public visible-infrared pedestrian benchmarks under
such conditions. To our knowledge, this work marks the
inaugural exploration of unsupervised scenarios featuring

cross-modal identity mismatches.
• We propose a novel Mapping and Collaborative Learn-

ing (MCL) framework to address the problem of lack-
ing cross-modality paired and labeled data under un-
paired settings, establishing a kind of implicit cross-
modality associations without paired supervision for
learning modality-invariant representations.

• We introduce a straightforward yet effective Cross-
modality Feature Mapping (CFM) module that synthe-
sizes positive feature pairs across modalities to achieve
robust alignment. Building upon these synthesized pairs,
a novel Static-Dynamic Collaborative (SDC) learning
strategy is designed to mitigate cross-modality discrepan-
cies at both the cluster and instance levels by leveraging
complementary static and dynamic optimization.

• Extensive experiments on two benchmark datasets
demonstrate that the proposed framework surpasses ex-
isting state-of-the-art USL-VI-ReID methods in unpaired
settings, while maintaining competitive performance un-
der paired scenarios.

2. RELATED WORK

2.1. Supervised Visible-Infrared Person ReID
Supervised visible-infrared person re-identification (VI-
ReID) has received considerable attention for its applica-
bility in 24-hour surveillance systems. A key challenge is
to mitigate the significant intra-class discrepancies between
the visible and infrared modalities [29]. Current approaches
bridging this cross-modality gap can fall into two cate-
gories: image-level and feature-level matching. Image-level
methods [25, 36] focus on the generation of cross-modal
images to extract modality-invariant features. In contrast,
feature-level alignment approaches [9, 17, 18, 28, 35, 40]
impose constraints to embed heterogeneous images into a
shared feature space. However, these methods rely heavily
on extensive cross-modality annotation, which is expensive
and time-consuming, making supervised VI-ReID less scal-
able in real-world deployments.

2.2. Unsupervised Visible-Infrared Person ReID
Unsupervised visible-infrared person re-identification
(USL-VI-ReID) faces two key challenges. First, the
significant modality gap between visible and infrared
data amplifies intra-class variation, making it difficult
to consistently generate cross-modality pseudo-labels.
Second, the lack of annotated cross-modality identities
prevents the learning of modality-invariant representations.
Previous work [16, 23, 24, 32, 34, 43, 51] are mainly
based on pseudo labels, which establish a bridge with the
supervised method. H2H [16] first pioneers a two-stage
learning framework, and OTLA [24] introduces an optimal
transport strategy for further pseudo-label assignment.
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However, both methods rely on external RGB datasets for
pre-training, while OTLA also assumes uniform infrared-
to-visible label distributions, which is an impractical
constraint for real-world scalability. Yang et al. [32]
explore cluster-level relationships through cross-modality
memory aggregation, but fail to address identity mismatch
scenarios. Critically, existing approaches require full cross-
modality identity alignment during training, rendering
them inapplicable to unpaired data settings.

3. Methodology
3.1. Preliminary
We propose a Mapping and Collaborative Learnin (MCL)
framework for USL-VI-ReID under unpaired settings, as
shown in Fig. 2. Our MCL has two components includ-
ing Cross-modality Feature Mapping (CFM) module and
Static-Dynamic Collaborative (SDC) learning strategy. In
this paper, we follow Augmented Dual-Contrastive Aggre-
gation (ADCA) [32] to establish our baseline, where a dual-
path contrastive learning framework with two modality-
specific memories to learn intra-modality representations.

To facilitate the description of our method, we first in-
troduce the notations used in this paper. Let Xm =
{x1

m,x2
m, ...,xNm

m } denote the unlabeled infrared/visible
images with Nm instances, where m ∈ {i, v} denotes
the infrared and visible modality, respectively. Um =
{u1

m,u2
m, ...,uNm

m } represents the corresponding features
extracted by the modality-specific feature extractor fθ

m . qm
is the query instance feature extracted by fθ

m. {ykm}
Nm

k=1 rep-
resents the ground-truth labels of different modalities. In
this work, we study the under-explored unpaired settings
of USL-VI-ReID, where there are unpaired cross-modality
data in the training set, i.e., there exist k, l that satisfy
yki ̸= ylv . In comparison, existing USL-VI-ReID methods
are under the traditional label settings where a large number
of cross-modality positive pairs are captured in the training
data, i.e., yki = ylv for all k, l.

3.2. Cross-modality Feature Mapping
In USL-VI-ReID, the feature extractor fθ

m is designed to ex-
tract discriminative representation uk

m = fθ
m(xk

m) for im-
age xk

m to match, as described by:

D(ua
ma

,up
mp

) < D(ua
ma

,un
mn

), (1)

where D denotes a distance function, and ua
ma

, up
mp

, and
un
mn

represent the anchor, positive, and negative features
extracted from modalities ma, mp, and mn, respectively.
The goal is to ensure that the anchor is closer to the positive
than to the negative in the feature space. By reducing the
distance between cross-modality positive pairs (i.e., ua

ma

and up
mp

with ma ̸= mp), the discrepancy can be elim-
inated across modalities, which facilitates the learning of
discriminative features.

However, in unpaired settings, the lack of cross-modality
positive pairs in the training data poses a significant chal-
lenge. Given an anchor feature ua

ma
, it is difficult to find a

corresponding positive sample up
mp

from a different modal-
ity, which hinders the ability to model intra-class variations
across modalities. Therefore, establishing the relation be-
tween unpaired cross-modal data is paramount.

To handle this situation, we substitute the unavailable ac-
tual cross-modality positive pair (ua

ma
,up

mp
) with a syn-

thetic or fake positive pair (ua
ma

, ûp
mp

). The fake feature
ûp
mp

is generated through a modality-aware transformation:

ûp
mp

= Mapping(ua
ma

,mp), (2)

where Mapping denotes a function that projects the feature
ua
ma

from its source modality ma into the feature space of
the target modality mp.

To achieve the transformation, we introduce a cross-
modality feature mapping module comprising two
modality-specific mappers, each of which estimates the
modality-dependent moment statistics {µm,σ2

m} of fea-
ture distributions. For a given set of features from modality
m, the associated mapper derives its mean and variance by:

µm =
1

Nm

Nm∑
k=1

uk
m, σ2

m =
1

Nm

Nm∑
k=1

(
uk
m − µm

)2
,

(3)
where µm and σm are the modality-specific mean and vari-
ance, respectively.

In the cross-modality feature mapping process, a feature
uk
m of modality m is transformed to a fake feature in the

modality-specific distribution of a different modality m′ by:

ûk
m′ = Mapping(uk

m,m′) = γ
uk
m − µm′√
σ2
m′ + ϵ

− ζ, (4)

where γ and ζ are scaling and shifting parameters of m′-
specific mapper, which are learned during training. ϵ is a
small constant to ensure stability.

The CFM module applies a cross-modality affine trans-
formation to align source features with the target distribu-
tion by matching mean and variance. We precisely estimate
the distributions of both modalities and use the transfor-
mation to map features. Since the actual feature uk

m and
mapped feature ûk

m′ are encoded from the same image xk
m,

we regard they share the same identity (ŷkm′ = ykm) and re-
spectively construct an original modality-specific space and
a cross-modal pseudo-identity space for further alignment.

3.3. Static-Dynamic Collaborative Learning
The CFM module complements the missing cross-modality
unpaired data by estimating modality-specific feature dis-
tributions and transforming them into different modalities.
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Figure 2. Illustration of mapping and collaborative learning framework. The framework integrates two core components: a Cross-Modality
Feature Mapping (CFM) module and a Static-Dynamic Collaborative (SDC) learning strategy. The CFM synthesizes cross-modality
positive feature pairs by estimating modality-specific distributions. Concurrently, the SDC strategy addresses inter-modality discrepancies
through a twofold alignment: (1) Static Learning employs multi-memory banks to derive reliable cross-modality correspondences by
learning holistic representations, establishing robust cluster-level associations. (2) Dynamic Learning utilizes a cross-modality label-
preserving loss (CLP) to bridge substantial modality gaps, achieving fine-grained instance-level alignment.

However, it does not use any features prior to and after
the mapping process to align cross-modal correspondences.
To associate fake cross-modality positive feature pairs and
effectively eliminate inter-modality discrepancies, we pro-
pose a static-dynamic collaborative learning framework to
bridge the gap between the visible and infrared modalities
both at cluster-level and instance-level.

Static Learning. We note that the existing methods typi-
cally rely on a single memory to represent individual char-
acteristics and establish cross-modality correspondences.
However, a single memory may not capture all individual
nuances in scenarios with cross-modal identity mismatches,
which naturally leads to poor cross-modality correspon-
dences. Therefore, we design a static learning method to ob-
tain reliable cross-modality correspondences by clustering
actual samples and fake cross-modality samples as multi-
memory banks, jointly conducting the contrastive learning
in the original modality-specific space and the cross-modal
pseudo-identity space.

At the beginning of each training epoch, all infrared

and visible features Ui and Uv are firstly clustered to gen-
erate pseudo labels, where each cluster’s representations
{ϕ1

i , ..., ϕ
K
i } and {ϕ1

v, ..., ϕ
L
v } of infrared and visible fea-

tures are stored in infrared and visible memory dictionaries.
This process can be written as:

ϕk
i =

1∣∣Hk
i

∣∣ ∑
un

i ∈Hk
i

un
i ,ϕ

l
v =

1

|Hl
v|

∑
um

v ∈Hl
v

um
v , (5)

where Hk
i(v) is the k-th cluster set in infrared or visible

modality, and |·| is the number of instances per cluster.
Then, these actual features Ui and Uv are transformed

into corresponding fake cross-modality features Ûv and Ûi

through CFM. While this mapping process alters the fea-
ture distributions, it preserves the original identity informa-
tion. To maintain consistency in the number of clusters,
DBSCAN is applied solely to the actual features for gen-
erating pseudo identity labels. Consequently, the cluster
representations of the fake cross-modality features are de-
noted as {ϕ̂1

v, . . . , ϕ̂
K
v } and {ϕ̂1

i , . . . , ϕ̂
L
i }, which constitute

two additional memory banks in the cross-modal pseudo-

11919



identity space. This process is formally defined as:

ϕ̂k
v =

1∣∣∣Ĥk
v

∣∣∣
∑

ûn
v∈Ĥk

v

ûn
v , ϕ̂

l
i =

1∣∣∣Ĥl
i

∣∣∣
∑

ûm
i ∈Ĥl

i

ûm
i , (6)

where Ĥk
i(v) denotes the k-th cluster set in the mapped in-

frared or visible modality, and |·| indicates the number of
instances per cluster.

During training, we sample P person identities and Z
instances for each identity from each modality training set.
Then, we use a batch of infrared and visible queries to up-
date the actual memories by a momentum updating strategy:

ϕ
k(δ)
i ← βϕ

k(δ−1)
i + (1− β)qi, (7)

ϕl(δ)
v ← βϕl(δ−1)

v + (1− β)qv, (8)

The memories of fake cross-modality features are up-
dated by a similar momentum strategy:

ϕ̂k(δ)
v ← βϕ̂k(δ−1)

v + (1− β)qi, (9)

ϕ̂
l(δ)
i ← βϕ̂

l(δ−1)
i + (1− β)qv, (10)

where β is the momentum factor and δ is the iteration step.
In each iteration, the feature extractors are jointly up-

dated by a multi ClusterNCE [7] loss, including the actual
infrared loss Li, actual visible loss Lv , fake infrared loss
L̂i, and fake visible loss L̂v by the following equations:

Li = − log
exp

(
qi · ϕ+

i /τ
)∑K

k=1 exp
(
qi · ϕk

i /τ
) , (11)

Lv = − log
exp (qv · ϕ+

v /τ)∑L
l=1 exp (qv · ϕl

v/τ)
, (12)

L̂i = − log
exp

(
qv · ϕ̂+

i /τ
)

∑L
l=1 exp

(
qv · ϕ̂l

i/τ
) , (13)

L̂v = − log
exp

(
qi · ϕ̂+

v /τ
)

∑K
k=1 exp

(
qi · ϕ̂k

v/τ
) , (14)

where ϕ+
i and ϕ+

v are the positive representation vector of
the actual infrared and visible cluster, respectively, corre-
sponding to the pseudo label of the query. ϕ̂+

i and ϕ̂+
v are

the positive feature vector of the fake infrared and visible
cluster. The τ is a temperature hyper-parameter.

Certainly, four types of ClusterNCE [5] loss are designed
to learn discriminative representation:

LSL = Li + Lv + L̂i + L̂v. (15)

Dynamic Learning. The generated cross-modality sam-
ples are useful in bridging significant inter-modality dis-
crepancies by including the abundant information of miss-
ing identities. However, it is expected that these samples
will not change significantly, as they share the same iden-
tity with the original samples, which should be aligned dur-
ing the learning. Inspired by ISE [45], we further propose
a Cross-modality Label Preserving (CLP) loss to enforce
the fake cross-modality features to be close to their corre-
sponding actual features, which facilitates the learning of
cross-modality representations at the instance level. Dur-
ing training, the CLP loss enforces identity consistency be-
tween the actual and mapped features, allowing CFM to
transfer cross-modal knowledge and capture the complex,
non-linear modality discrepancies.

Certainly, two types of CLP loss function are introduced
in the dynamic learning method:

Li
CLP = −log exp(sim(ui · û+

v )/τ
′)∑Ci

c=1 exp(sim(ui · ûc−
v )/τ ′)

, (16)

Lv
CLP = −log exp(sim(uv · û+

i )/τ
′)∑Cv

c=1 exp(sim(uv · ûc−
i )/τ ′)

, (17)

where Ci and Cv are the cluster number of a mini-batch in
infrared and visible modality, respectively. sim(·) denotes
the cosine similarity. û+

v is the hardest positive fake visible
sample for a given infrared feature ui, and ûc−

v is the hard-
est negative one in the c-th fake visible cluster of a mini-
batch. û+

i and ûc−
i are defined similarly to above. τ ′ is a

temperature hyper-parameter.
Consequently, the two cross-modality label preserving

loss functions are combined in the dynamic learning method
to learn distinctive representations:

LDL = Li
CLP + Lv

CLP. (18)

Collaborative Learning. The cluster-level static learning
method and instance-level dynamic learning method jointly
forms the static-dynamic collaborative learning strategy,
which aims to achieve better learning of discriminative and
modality-invariant representations in the absence of cross-
modality identity pairs.

The overall loss for training the model is defined by the
following equation:

Loverall = LSL + ηLDL, (19)

where η is the loss weight, balancing two loss functions.

4. EXPERIMENTS
4.1. Datasets and Evaluation Protocol
Paired Datasets. To validate the proposed framework un-
der paired settings, we conduct comprehensive evaluations
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SYSU-MM01 (unpaired settings) RegDB (unpaired settings)
All Search Indoor Search Visible to Infrared Infrared to Visible

α value Methods Venue r1 mAP mINP r1 mAP mINP r1 mAP mINP r1 mAP mINP

0.25

ADCA [32] MM-22 41.80 37.54 22.04 47.00 56.24 51.79 50.82 43.72 42.63 64.22 55.90 44.29
OTPA [47] arXiv-24 49.15 44.75 30.62 51.70 60.82 57.23 51.37 50.30 44.60 66.27 65.82 64.97
MMM [20] ECCV-24 54.68 47.35 35.42 55.19 63.76 61.21 62.27 55.09 44.34 76.69 69.93 66.44
PCAL[37] TIFS-25 48.84 41.30 26.05 50.48 62.63 59.72 59.33 56.26 45.73 77.18 75.24 63.83

N-ULC [21] AAAI-25 53.70 49.69 33.56 57.39 65.00 60.64 60.76 56.82 42.91 79.35 76.06 60.40
MCL (Ours) - 58.57 57.74 45.45 65.72 71.84 68.30 65.97 63.53 55.84 84.31 78.67 67.28

0.5

ADCA [32] MM-22 34.34 32.21 18.76 36.59 47.07 43.23 40.28 32.60 34.93 52.94 47.48 37.05
OTPA [47] arXiv-24 48.80 45.64 31.01 49.19 58.74 54.83 40.58 41.52 32.44 59.26 58.68 57.13
MMM [20] ECCV-24 44.14 42.94 30.71 54.25 60.17 52.49 52.90 43.91 36.51 63.91 58.17 58.47
PCAL[37] TIFS-25 46.24 37.62 22.03 45.39 52.73 46.42 46.48 47.88 36.05 64.21 66.30 50.41

N-ULC [21] AAAI-25 49.36 45.12 29.17 51.59 60.24 55.89 50.24 45.96 34.61 70.31 62.84 54.74
MCL (Ours) - 54.29 53.98 42.64 61.71 68.45 64.40 60.78 59.69 52.91 80.36 73.02 64.25

0.75

ADCA [32] MM-22 32.66 30.61 17.98 37.02 47.59 43.79 35.80 28.71 27.96 47.28 43.92 34.70
OTPA [47] arXiv-24 33.65 30.50 16.94 45.3 53.32 50.17 31.48 35.60 29.52 51.98 49.25 47.62
MMM [20] ECCV-24 36.19 34.60 23.56 43.91 50.60 45.20 41.73 38.64 32.75 54.79 47.90 46.16
PCAL[37] TIFS-25 30.74 29.83 20.54 40.60 47.42 39.34 38.10 37.09 33.54 59.80 59.61 47.20

N-ULC [21] AAAI-25 42.56 39.44 27.06 55.03 63.11 58.80 43.38 39.27 30.06 66.72 57.51 44.38
MCL (Ours) - 52.16 51.57 39.57 59.63 66.46 62.24 55.30 52.79 48.26 74.19 69.37 60.58

1.0

ADCA [32] MM-22 23.48 23.23 12.53 28.39 37.40 32.80 26.18 15.93 14.72 33.10 28.43 24.95
OTPA [47] arXiv-24 20.53 19.46 10.32 36.18 43.54 40.02 19.20 18.03 19.70 39.74 38.42 35.11
MMM [20] ECCV-24 30.81 27.53 17.92 36.19 40.60 38.38 30.98 27.10 20.03 40.26 33.54 30.12
PCAL[37] TIFS-25 28.95 25.31 18.54 32.10 38.48 36.20 28.74 25.90 18.68 37.56 29.69 27.24

N-ULC [21] AAAI-25 34.40 31.83 25.77 40.36 43.70 43.86 34.71 28.06 25.48 42.83 32.40 28.92
MCL (Ours) - 45.98 44.95 32.85 51.53 59.06 54.54 43.18 39.29 36.95 58.37 49.40 47.21

Table 1. The comparison with the state-of-the-art methods on SYSU-MM01 and RegDB under unpaired settings. It contains four settings,
i.e., the unpaired ratio α ranges from 0.25 to 1.0 in increments of 0.25. Rank-1 accuracy(%), mAP (%) and mINP (%) are reported.

on two benchmark visible-infrared person re-identification
datasets: SYSU-MM01 [29] and RegDB [41]. The SYSU-
MM01 dataset is a large-scale cross-modality collection of
22,257 visible images and 11,909 near-infrared images cap-
tured in indoor and outdoor environments by 4 visible cam-
eras and 2 infrared cameras. In contrast, the RegDB dataset
is a smaller and less demanding dataset with 412 different
person identities, where each identity contains 10 visible
and 10 infrared image pairs. This thermal-infrared dataset
is collected using an aligned pair of cameras (one visible
and one infrared), which has a comparatively lower envi-
ronmental complexity than SYSU-MM01.

Unpaired Datasets. To evaluate the effectiveness of our
model in unpaired settings, experiments are conducted on
the modified SYSU-MM01 and RegDB datasets. It is noted
that existing datasets lack cross-modality unpaired training
data, thus necessitating adjustments to the existing bench-
marks. In order to systematically analyse the impact of
unpaired settings, we introduce a hyper-parameter α that
controls the proportion of unpaired identities between the
visible and infrared modalities. Unlike OTPA [47], which
reduces training data by dropping identities, our setup pre-
serves the overall dataset size. Instead of adjusting the
overlap ratio by selecting modality-specific subsets, we ran-
domly replace a portion of the visible identities with ex-
ternal images. Specifically, the visible images of selected
identities are replaced with images from three visible ReID

datasets(i.e., Market-1501 [49], MSMT17 [27] and LLCM
[46]), while maintaining a roughly consistent number of
images per identity before and after replacement. Details
of the replacement process are provided in the supplemen-
tary materials. This design mitigates the potential effects
of data reduction. The test sets and evaluation protocols re-
main unchanged throughout the experiments.
Evaluation Protocol. On the two benchmark datasets and
their original counterpart, we follow the popular protocols
[39] for evaluation, where cumulative match characteris-
tic (CMC), mean average precision (mAP), and mean in-
verse negative penalty (mINP) [41] are adopted. For SYSU-
MM01 under paired and unpaired settings, we adopt all-
search and indoor-search evaluation modes. For RegDB in
paired and unpaired settings, we evaluate our method in the
two test modes, including thermal to visible and visible to
thermal, and we strictly follow existing methods to perform
ten trials of the gallery set selection [40], and calculate the
average performance.

4.2. Implementation Details
MCL is implemented in the PyTorch platform. Our work
is based on the Augmented Dual-Contrastive Aggregation
[32] and incorporates the feature extractor from TransReID
[10] as the backbone network. In each mini-batch, 16 iden-
tities are selected per modality, with each identity compris-
ing 16 instances. We resize input images to 288 × 144
pixels for training. Standard data augmentation techniques,
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SYSU-MM01 RegDB
All Search Indoor Search Visible to Infrared Infrared to Visible

Methods Venue r1 mAP mINP r1 mAP mINP r1 mAP mINP r1 mAP mINP

Su
pe

rv
is

ed

AGW [41] TPAMI-21 47.50 47.65 35.30 54.17 62.97 59.23 70.05 66.37 50.19 70.49 65.90 51.24
DFLN-ViT [48] TMM-22 59.84 57.70 - 62.13 69.03 - 92.10 82.11 - 91.21 81.62 -

PartMix [12] CVPR-23 77.78 74.62 - 81.52 84.38 - 85.66 82.27 - 84.93 82.52 -
MUN [44] ICCV-23 76.24 73.81 - 79.42 82.06 - 95.19 87.15 - 91.86 85.01 -
SAAI [8] ICCV-23 75.90 77.03 - 83.20 88.01 - 91.07 91.45 - 92.09 92.01 -
YYDS [6] arXiv-24 85.54 81.64 - 89.13 91.00 - - - - 90.20 83.50 -

TVI-LFM [11] NIPS-24 84.90 81.47 70.85 89.06 90.78 88.39 - - - 91.38 85.92 72.73

U
ns

up
er

vi
se

d

H2H∗ [16] TIP-21 30.15 29.40 - - - - 23.81 18.87 - - - -
OTLA∗ [24] ECCV-22 29.90 27.10 - 29.80 38.80 - 32.90 29.70 - 32.10 28.60 -
ADCA [32] MM-22 45.51 42.73 28.29 50.60 59.11 55.17 67.20 64.05 52.67 68.48 63.81 49.62
PGM [31] CVPR-23 57.27 51.78 34.96 56.23 62.74 58.13 69.48 65.41 - 69.85 65.17 -

DOTLA∗ [4] MM-23 50.36 47.36 32.40 53.47 61.73 57.35 85.63 76.71 61.58 82.91 74.97 58.60
MBCCM [3] MM-23 53.14 48.16 32.41 55.21 61.98 57.13 83.79 77.87 65.04 82.82 76.74 61.73
CCLNet [2] MM-23 54.03 50.19 - 56.68 65.12 - 69.94 65.53 - 70.17 66.66 -
GUR† [33] ICCV-23 60.95 56.99 41.85 64.22 69.49 64.81 73.91 70.23 8.88 75.00 69.94 56.21

SCA-RCP [15] TKDE-24 51.41 48.52 33.56 56.77 64.19 59.25 85.59 79.12 - 82.41 75.73 -
MMM [20] ECCV-24 61.60 57.90 - 64.40 70.40 - 89.70 80.50 - 85.80 77.00 -
PCAL [37] TIFS-25 54.39 51.95 38.09 59.69 66.72 62.44 86.43 82.51 72.33 86.21 81.23 68.71
N-ULC [21] AAAI-25 61.81 58.92 45.01 67.04 73.08 69.42 88.75 82.14 68.75 88.17 81.11 66.05
MCL (Ours) - 62.95 62.71 50.63 67.81 74.19 70.82 89.83 83.12 72.86 88.64 82.04 69.12

Table 2. The comparison with the state-of-the-art methods on SYSU-MM01 and RegDB under paired settings. It contains two groups, i.e.,
unsupervised VI-ReID methods and supervised VI-ReID methods. ∗ means the model is pre-trained on an extra labeled visible dataset.
GUR† denotes the results without camera information. Rank-1 accuracy(%), mAP (%) and mINP (%) are reported.

Components SYSU-MM01∗ (All Search) SYSU-MM01∗ (Indoor Search) RegDB∗ (Visible to Infrared)
Index Baseline CFM SL DL r1 mAP mINP r1 mAP mINP r1 mAP mINP

1 ✔ 47.14 47.29 34.63 55.39 63.10 59.43 49.28 48.6 43.93
2 ✔ ✔ ✔ 51.65 52.48 40.08 58.38 66.87 63.66 56.39 54.52 49.70
3 ✔ ✔ ✔ 49.46 50.67 39.24 57.00 65.53 62.92 52.73 50.84 47.92
4 ✔ ✔ ✔ ✔ 54.29 53.98 42.64 61.71 68.45 64.40 60.78 59.69 52.91

Table 3. Ablation studies conducted on the SYSU-MM01 and RegDB datasets under unpaired settings. ∗ refers to α = 0.5 in both
unpaired datasets. ”CFM” denotes the cross-modality feature mapping module, while ”SL” and ”DL” mean the static learning method and
the dynamic learning method in 3.3, respectively. Rank-1 accuracy (%), mAP (%), and mINP (%) are reported.

including random cropping, random flipping and random
erasing, are applied. At the beginning of each epoch, we
perform the DBSCAN [7] clustering to generate pseudo la-
bels in each modality independently. The learnable scaling
and shifting parameters, γ and ζ, are initialized to 1 and 0,
respectively, and the constant ϵ is set to 10−5. The tempera-
ture factors τ and τ ′ are 0.05 and 0.6, respectively. We train
the model in total of 50 epochs, in which the previous 30
epochs are used for pre-training, and CFM and SDC are ex-
ecuted in the last 20 epochs. All other experimental settings
follow the previous work [32]. For consistency, we use the
same MCL framework in paired settings to demonstrate its
general applicability.

4.3. Comparison with State-of-the-Arts

To validate the efficacy of our method, we comprehensively
compare it with state-of-the-art approaches under both un-
paired and paired settings, as shown in Tab. 1 and Tab. 2.
Comparison with unsupervised methods under un-
paired settings. The experiments demonstrate that our
MCL significantly outperforms existing unsupervised meth-
ods under unpaired settings at various ratios. These con-

siderable gains benefit from the insightful design of our
method for USL-VI-ReID. There are two major advantages
of our method: 1) We use a mapping-based solution to ef-
fectively address the lack of cross-modality correlations in
unpaired scenarios by synthesizing fake paired data while
preserving discriminative identity. 2) Our collaborative
learning strategy achieves a dual-level alignment paradigm
for cluster- and instance-level optimization.

Comparison with supervised methods under paired set-
tings. We compare our method with several recent super-
vised visible-infrared ReID approaches under paired set-
tings. Notably, although supervised methods rely on accu-
rate manual annotations, our method achieves competitive
performance of certain baselines (e.g. DFLN-ViT [48]).

Comparison with unsupervised methods under paired
settings. We also evaluate our method against advanced
USL-VI-ReID approaches under paired settings. Among
these, H2H [16], OTLA [24] and DOTLA [4] need an ex-
tra annotated visible dataset. In Tab. 2, our method is sig-
nificantly better than all existing USL-VI-ReID methods,
demonstrating the effectiveness under paired settings.
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4.4. Ablation Study
The performance boost of the MCL framework in the task of
USL-VI-ReID under unpaired settings mainly comes from
the proposed CFM module and the collaborative learning
strategy with Static Learning (SL) and Dynamic Learn-
ing (DL). We validate the effectiveness of each component
by conducting ablation studies on the SYSU-MM01 and
RegDB under unpaired settings where α is representatively
set to 0.5, which incorporate a balance of paired and un-
paired scenarios. Results are shown in Tab. 3.
Baseline in index 1 denotes that we directly train the
model on the unpaired SYSU-MM01 and RegDB tasks with
ADCA [32] method, using the feature extractor from Tran-
sReID [10] as the backbone. Although ADCA has a promis-
ing performance under unpaired settings, it is observed that
the baseline only achieves 47.29% mAP on SYSU-MM01
(all search) and 48.6% mAP on RegDB (visible to infrared).
Therefore, directly using ADCA method can hardly tackle
the problem of unpaired settings for the USL-VI-ReID task.
Effectiveness of SL. Index 2 means the static learning strat-
egy with CFM module. Compared with baseline, SL im-
proves the performance of 5.19% and 5.92% mAP on the
unpaired SYSU-MM01 (all search) and RegDB (visible to
infrared). The main gain is achieved by the design of
the multi-memory banks in both the original and pseudo-
identity space, which additionally cluster all mapped fea-
tures for contrastive learning, allowing the model to capture
certain modality-invariant features in scenarios with cross-
modal identity mismatches.
Effectiveness of DL. Index 3 represents the dynamic learn-
ing strategy with CFM module. Compared with baseline,
the significant improvements demonstrate the effectiveness
of DL. The improvements are 3.38% and 2.24% mAP on the
unpaired SYSU-MM01 (all search) and RegDB (visible to
infrared). DL can further use fake cross-modality features
and pull them towards their corresponding actual samples,
facilitating instance-level cross-modality learning.
Effectiveness of Collaborative Learning. Index 4 de-
notes the collaborative learning strategy with SL and DL.
In comparison, the collaborative learning brings consis-
tent improvement in all settings, which shows the effec-
tiveness of static-dynamic collaborative learning in miti-
gating intra-modality discrepancies while enhancing cross-
modality correspondence alignment.

4.5. Further Analysis
Hyper-parameter Analysis for η. We explore the influ-
ence of hyper-parameter η in Eq. 19, as presented in the
supplementary materials. When η = 1.0, the method
achieves a balance in static and dynamic learning.
Visualization. In Fig. 3, it shows the t-SNE [22] visualiza-
tion of 20 randomly selected identities from the unpaired
SYSU-MM01 dataset with α = 0.5. Compared to the

Figure 3. The t-SNE (top) and similarity distribution (bottom)
visualizations for randomly sampled identities. Colors represent
identities; circles and triangles denote visible and infrared sam-
ples, respectively. The similarity distribution represents similarity
scores of cross-modality positive and negative pairs, where larger
separation indicates better identity discrimination.

baseline, MCL brings infrared and visible positive samples
closer together and effectively increases the separation from
negative pairs, thus improving performance under unpaired
settings. However, some same-identity samples remain dis-
persed, indicating challenges for unpaired USL-VI-ReID.

5. CONCLUSION

This paper addresses unsupervised visible-infrared person
re-identification (USL-VI-ReID) under unpaired settings,
which is a prevalent yet underexplored challenge in real-
world surveillance systems. While existing USL-VI-ReID
methods often overlook the critical issue of aligning cross-
modality relations without paired data, we propose the
Mapping and Collaborative Learning (MCL) framework to
bridge this gap. We integrates a cross-modality feature
mapping module to establish inter-modal correlations and
a static-dynamic collaborative learning strategy to refine
discriminative representations in unpaired scenarios. Ex-
tensive experiments on SYSU-MM01 and RegDB demon-
strate that MCL not only outperforms state-of-the-art unsu-
pervised methods under unpaired settings but also achieves
competitive performance in paired scenarios, pushing USL-
VI-ReID to real-world deployment.

Limitations and Future Work. While effective, MCL
still faces challenges in extremely unpaired settings and re-
quires relatively high training cost. Future work will focus
on improving robustness in such scenarios and designing
lightweight variants for efficient deployment.

11923



Acknowledgments

This work is partially supported by National Natural
Science Foundation of China under Grants (62176188,
62225113, 623B2080), the Innovative Research Group
Project of Hubei Province under Grants (2024AFA017),
the Major Project of Science and Technology Innova-
tion of Hubei Province (2024BCA003), Postdoctoral Fel-
lowship Program of China Postdoctoral Science Foun-
dation (GZC20241268, 2024M762479), Hubei Postdoc-
toral Talent Introduction Program (2024HBBHJD070) and
Hubei Provincial Natural Science Foundation of China
(2025AFB219).The numerical calculations in this paper
had been supported by the super-computing system in the
Supercomputing Center of Wuhan University.

References
[1] Ying-Cong Chen, Xiatian Zhu, Wei-Shi Zheng, and Jian-

Huang Lai. Person re-identification by camera correlation
aware feature augmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(2):392–408, 2017. 1

[2] Zhong Chen, Zhizhong Zhang, Xin Tan, Yanyun Qu, and
Yuan Xie. Unveiling the power of clip in unsupervised
visible-infrared person re-identification. In Proceedings
of the 31st ACM International Conference on Multimedia,
pages 3667–3675, 2023. 2, 7

[3] De Cheng, Lingfeng He, Nannan Wang, Shizhou Zhang,
Zhen Wang, and Xinbo Gao. Efficient bilateral cross-
modality cluster matching for unsupervised visible-infrared
person reid. In Proceedings of the 31st ACM International
Conference on Multimedia, pages 1325–1333, 2023. 7

[4] De Cheng, Xiaojian Huang, Nannan Wang, Lingfeng He,
Zhihui Li, and Xinbo Gao. Unsupervised visible-infrared
person reid by collaborative learning with neighbor-guided
label refinement. In Proceedings of the 31st ACM Interna-
tional Conference on Multimedia, pages 7085–7093, 2023.
2, 7

[5] Zuozhuo Dai, Guangyuan Wang, Weihao Yuan, Siyu Zhu,
and Ping Tan. Cluster contrast for unsupervised person re-
identification. In Proceedings of the Asian Conference on
Computer Vision, pages 1142–1160, 2022. 5

[6] Yunhao Du, Zhicheng Zhao, and Fei Su. Yyds: Visible-
infrared person re-identification with coarse descriptions.
arXiv preprint arXiv:2403.04183, 2024. 7

[7] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu,
et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of the 2nd
International Conference on Knowledge Discovery and Data
Mining, pages 226–231, 1996. 7

[8] Xingye Fang, Yang Yang, and Ying Fu. Visible-infrared per-
son re-identification via semantic alignment and affinity in-
ference. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 11270–11279, 2023. 7

[9] Wenhang Ge, Chunyan Pan, Ancong Wu, Hongwei Zheng,
and Wei-Shi Zheng. Cross-camera feature prediction for

intra-camera supervised person re-identification across dis-
tant scenes. In Proceedings of the 29th ACM International
Conference on Multimedia, pages 3644–3653, 2021. 2

[10] Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li,
and Wei Jiang. Transreid: Transformer-based object re-
identification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 15013–15022, 2021.
6, 8

[11] Zhangyi Hu, Bin Yang, and Mang Ye. Empowering visible-
infrared person re-identification with large foundation mod-
els. In Advances in Neural Information Processing Systems,
pages 117363–117387. Curran Associates, Inc., 2024. 7

[12] Minsu Kim, Seungryong Kim, Jungin Park, Seongheon
Park, and Kwanghoon Sohn. Partmix: Regularization strat-
egy to learn part discovery for visible-infrared person re-
identification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 18621–
18632, 2023. 7

[13] Xiangyuan Lan, Shengping Zhang, Pong C Yuen, and Rama
Chellappa. Learning common and feature-specific patterns:
a novel multiple-sparse-representation-based tracker. IEEE
Transactions on Image Processing, 27(4):2022–2037, 2017.
1

[14] Shu Li, Huaiyuan Wang, and Ruimin Hu. A review of public
social behavior understanding and hidden groups discovery.
Journal of Image and Graphics, 30(6):2275–2303, 2025. 2

[15] Zhiyong Li, Haojie Liu, Xiantao Peng, and Wei Jiang.
Inter-intra modality knowledge learning and clustering
noise alleviation for unsupervised visible-infrared person re-
identification. IEEE Transactions on Knowledge and Data
Engineering, 2024. 1, 7

[16] Wenqi Liang, Guangcong Wang, Jianhuang Lai, and Xiao-
hua Xie. Homogeneous-to-heterogeneous: Unsupervised
learning for rgb-infrared person re-identification. IEEE
Transactions on Image Processing, 30:6392–6407, 2021. 2,
7

[17] Xinyu Lin, Jinxing Li, Zeyu Ma, Huafeng Li, Shuang Li,
Kaixiong Xu, Guangming Lu, and David Zhang. Learn-
ing modal-invariant and temporal-memory for video-based
visible-infrared person re-identification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20973–20982, 2022. 2

[18] Jialun Liu, Yifan Sun, Feng Zhu, Hongbin Pei, Yi Yang,
and Wenhui Li. Learning memory-augmented unidirectional
metrics for cross-modality person re-identification. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 19366–19375, 2022. 2

[19] Yongheng Qian and Su-Kit Tang. Multi-scale contrastive
learning with hierarchical knowledge synergy for visible-
infrared person re-identification. Sensors (Basel, Switzer-
land), 25(1):192, 2025. 1

[20] Jiangming Shi, Xiangbo Yin, Yeyun Chen, Yachao Zhang,
Zhizhong Zhang, Yuan Xie, and Yanyun Qu. Multi-
memory matching for unsupervised visible-infrared person
re-identification. In European Conference on Computer Vi-
sion, pages 456–474. Springer, 2024. 1, 6, 7

[21] Xiao Teng, Long Lan, Dingyao Chen, Kele Xu, and Nan
Yin. Relieving universal label noise for unsupervised visible-

11924



infrared person re-identification by inferring from neighbors.
arXiv preprint arXiv:2412.12220, 2024. 6, 7

[22] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of Machine Learning Research, 9
(11), 2008. 8

[23] Dongkai Wang and Shiliang Zhang. Unsupervised person re-
identification via multi-label classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020. 2

[24] Jiangming Wang, Zhizhong Zhang, Mingang Chen, Yi
Zhang, Cong Wang, Bin Sheng, Yanyun Qu, and Yuan Xie.
Optimal transport for label-efficient visible-infrared person
re-identification. In European Conference on Computer Vi-
sion, pages 93–109. Springer, 2022. 2, 7

[25] Yuhao Wang, Xuehu Liu, Pingping Zhang, Hu Lu,
Zhengzheng Tu, and Huchuan Lu. Top-reid: Multi-spectral
object re-identification with token permutation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pages
5758–5766, 2024. 2

[26] Zheng Wang, Zhixiang Wang, Yinqiang Zheng, Yang Wu,
Wenjun Zeng, and Shin’ichi Satoh. Beyond intra-modality:
A survey of heterogeneous person re-identification. arXiv
preprint arXiv:1905.10048, 2019. 1

[27] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian.
Person transfer gan to bridge domain gap for person re-
identification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 79–88,
2018. 6

[28] Ziyu Wei, Xi Yang, Nannan Wang, and Xinbo Gao. Syn-
cretic modality collaborative learning for visible infrared
person re-identification. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 225–234,
2021. 2

[29] Ancong Wu, Wei-Shi Zheng, Hong-Xing Yu, Shaogang
Gong, and Jianhuang Lai. Rgb-infrared cross-modality per-
son re-identification. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5380–5389,
2017. 2, 6

[30] Ancong Wu, Wei-Shi Zheng, Shaogang Gong, and Jian-
huang Lai. Rgb-ir person re-identification by cross-modality
similarity preservation. International Journal of Computer
Vision, 128(6):1765–1785, 2020. 1

[31] Zesen Wu and Mang Ye. Unsupervised visible-infrared per-
son re-identification via progressive graph matching and al-
ternate learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
9548–9558, 2023. 1, 2, 7

[32] Bin Yang, Mang Ye, Jun Chen, and Zesen Wu. Aug-
mented dual-contrastive aggregation learning for unsuper-
vised visible-infrared person re-identification. In Proceed-
ings of the 30th ACM International Conference on Multime-
dia, pages 2843–2851, 2022. 1, 2, 3, 6, 7, 8

[33] Bin Yang, Jun Chen, and Mang Ye. Towards grand unified
representation learning for unsupervised visible-infrared per-
son re-identification. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 11069–
11079, 2023. 2, 7

[34] Fengxiang Yang, Zhun Zhong, Zhiming Luo, Yuanzheng
Cai, Yaojin Lin, Shaozi Li, and Nicu Sebe. Joint noise-
tolerant learning and meta camera shift adaptation for un-
supervised person re-identification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4855–4864, 2021. 2

[35] Mouxing Yang, Zhenyu Huang, Peng Hu, Taihao Li,
Jiancheng Lv, and Xi Peng. Learning with twin noisy labels
for visible-infrared person re-identification. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14308–14317, 2022. 2

[36] Yang Yang, Tianzhu Zhang, Jian Cheng, Zengguang Hou,
Prayag Tiwari, Hari Mohan Pandey, et al. Cross-modality
paired-images generation and augmentation for rgb-infrared
person re-identification. Neural Networks, 128:294–304,
2020. 2

[37] Yiming Yang, Weipeng Hu, and Haifeng Hu. Progressive
cross-modal association learning for unsupervised visible-
infrared person re-identification. IEEE Transactions on In-
formation Forensics and Security, 2025. 2, 6, 7

[38] Mang Ye, Xiangyuan Lan, Qingming Leng, and Jianbing
Shen. Cross-modality person re-identification via modality-
aware collaborative ensemble learning. IEEE Transactions
on Image Processing, 29:9387–9399, 2020. 1

[39] Mang Ye, Jianbing Shen, David J. Crandall, Ling Shao, and
Jiebo Luo. Dynamic dual-attentive aggregation learning for
visible-infrared person re-identification. In European Con-
ference on Computer Vision, pages 229–247. Springer, 2020.
6

[40] Mang Ye, Weijian Ruan, Bo Du, and Mike Zheng Shou.
Channel augmented joint learning for visible-infrared recog-
nition. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 13567–13576, 2021. 2,
6

[41] Mang Ye, Jianbing Shen, Gaojie Lin, Tao Xiang, Ling
Shao, and Steven CH Hoi. Deep learning for person re-
identification: A survey and outlook. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(6):2872–
2893, 2021. 1, 6, 7

[42] Mang Ye, Shuoyi Chen, Chenyue Li, Wei-Shi Zheng,
David Crandall, and Bo Du. Transformer for object re-
identification: A survey. International Journal of Computer
Vision, pages 1–31, 2024. 1

[43] Mang Ye, Zesen Wu, and Bo Du. Dual-level matching with
outlier filtering for unsupervised visible-infrared person re-
identification. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 47(5):3815–3829, 2025. 2

[44] Hao Yu, Xu Cheng, Wei Peng, Weihao Liu, and Guoying
Zhao. Modality unifying network for visible-infrared person
re-identification. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 11185–11195,
2023. 7

[45] Xinyu Zhang, Dongdong Li, Zhigang Wang, Jian Wang, Er-
rui Ding, Javen Qinfeng Shi, Zhaoxiang Zhang, and Jing-
dong Wang. Implicit sample extension for unsupervised per-
son re-identification. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7369–7378, 2022. 5

11925



[46] Yukang Zhang and Hanzi Wang. Diverse embedding expan-
sion network and low-light cross-modality benchmark for
visible-infrared person re-identification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2153–2162, 2023. 6

[47] Zhizhong Zhang, Jiangming Wang, Xin Tan, Yanyun Qu,
Junping Wang, Yong Xie, and Yuan Xie. Mutual information
guided optimal transport for unsupervised visible-infrared
person re-identification. arXiv preprint arXiv:2407.12758,
2024. 6

[48] Jiaqi Zhao, Hanzheng Wang, Yong Zhou, Rui Yao,
Silin Chen, and Abdulmotaleb El Saddik. Spatial-
channel enhanced transformer for visible-infrared person re-
identification. IEEE Transactions on Multimedia, 25:3668–
3680, 2022. 7

[49] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-
dong Wang, and Qi Tian. Scalable person re-identification:
A benchmark. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 1116–1124,
2015. 6

[50] Liang Zheng, Yi Yang, and Alexander G Hauptmann. Per-
son re-identification: Past, present and future. arXiv preprint
arXiv:1610.02984, 2016. 1

[51] Yi Zheng, Shixiang Tang, Guolong Teng, Yixiao Ge, Kai-
jian Liu, Jing Qin, Donglian Qi, and Dapeng Chen. On-
line pseudo label generation by hierarchical cluster dynam-
ics for adaptive person re-identification. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 8371–8381, 2021. 2

11926


	Introduction
	RELATED WORK
	Supervised Visible-Infrared Person ReID
	Unsupervised Visible-Infrared Person ReID

	Methodology
	Preliminary
	Cross-modality Feature Mapping
	Static-Dynamic Collaborative Learning

	EXPERIMENTS
	Datasets and Evaluation Protocol 
	Implementation Details
	Comparison with State-of-the-Arts
	Ablation Study
	Further Analysis

	CONCLUSION

