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Abstract

Model-heterogeneous federated learning (MHFL) is a chal-
lenging FL paradigm designed to allow FL clients to train
structurally heterogeneous models under the coordination
of an FL server. Existing MHFL methods face signifi-
cant limitations when it comes to transferring global knowl-
edge to clients as a result of sharing only partial homoge-
neous model parameters or calculating distance loss, lead-
ing to inferior model generalization. To bridge this gap, we
propose a novel model-heterogeneous Federated learning
method with Representation Angle Learning (FedRAL). It
consists of three innovative designs: (1) We first introduce
representation angle learning into MHFL. Specifically, we
embed a homogeneous square matrix into the local hetero-
geneous model of each client, which learns the angle infor-
mation of local representations. These homogeneous rep-
resentation angle square matrices are aggregated on the
server to fuse representation angle knowledge shared by
clients for enhancing the generalization of local represen-
tations. (2) As different clients might have heterogeneous
system resources, we propose an adaptive diagonal spar-
sification strategy to reduce the numbers of the parame-
ters of representation angle square matrices uploaded to
the server, to improve FL communication efficiency. (3)
To enable effective fusion of sparsified homogeneous lo-
cal representation angle square matrices, we design an
element-wise weighted aggregation approach. Experiments
on 4 benchmark datasets under 2 types of non-IID divisions
over 6 state-of-the-art baselines demonstrate that FedRAL
achieves the best performance. It improves test accuracy,
communication efficiency and computational efficiency by
up to 5.03%, 12.43× and 6.49×, respectively.

*Corresponding author.

1. Introduction

Federated learning (FL) [13, 14, 24, 36, 45, 55, 56] is a
privacy-preserved distributed machine learning paradigm.
Typically, an FL server is often involved to broadcast a
global model to FL clients. The clients then further train
the global model on local data to obtain local models. The
server aggregates local model updates received from the
clients to produce a new global model. In this way, client
data are not exposed. Under this setting, the models trained
by the clients must follow the same structure.

In practice, clients participating in FL often have non-
independent and identically distributed (non-IID) data,
a.k.a., data heterogeneity [27, 42, 50, 58, 75, 78, 79], the
local models trained on such data are biased, so the global
model obtained by aggregating them may not perform well
on all client data. Besides, FL clients also have heteroge-
neous system configurations in terms of computing power
and communication bandwidth, a.k.a., system heterogene-
ity [39, 57, 59, 60, 67]. Thus, requesting all clients to train
the same model might not be viable for some weaker clients,
while leaving stronger clients under-utilized. More criti-
cally, some companies or institutions joining FL as clients
might face intellectual property issues regarding their pro-
prietary local models. Thus, they might be reluctant to share
their private heterogeneous models, a.k.a., model hetero-
geneity. These challenges have inspired the field of model-
heterogeneous federated learning (MHFL) with preserved
data and model privacy, which advocates avoiding directly
sharing private local heterogeneous models [61–65].

Existing MHFL approaches mainly include: a) Model-
decoupling: each client model is decoupled into hetero-
geneous and homogeneous parts, with only homogeneous
parts being shared with the server [11, 30]. b) Knowledge
distillation: the server aggregates local representation or
logits from different clients to generate global representa-
tion or logits, which is used to calculate distillation loss for
local training [28, 31]. c) Mutual training: each client is
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assigned a shared homogeneous small model and trains it
with the local heterogeneous model by mutual loss between
them [49, 53]. Although these methods support model het-
erogeneity, their capability for transferring global knowl-
edge from the server to clients is limited due to sharing
partial model parameters or using distillation loss, thereby
constraining the generalization of local models. Whereas,
model representations often involve more sufficient seman-
tic knowledge than partial model parameters or distillation
loss, which are explored in this work for knowledge sharing.

A recent work [44] empirically verified that parame-
ter fine-tuning approaches (e.g., LoRA [18]) cannot suf-
ficiently retain semantic information of the pre-trained
model. Whereas, fine-tuning the angles (i.e., gradient di-
rections) of the pre-trained model can achieve this, thereby
enhancing the generalization of the pre-trained model. The
work further proposed the Orthogonal Fine-Tuning (OFT)
method to fine-tune the parameter angles of the pre-trained
models via an orthogonal matrix (Figure 1). In short, pa-
rameter angles involve sufficient semantic information that
can enhance model generalization. Therefore, we can en-
hance FL model generalization through sharing parame-
ter angles instead of model parameters. However, the FL
server can not aggregate parameter angles from structure-
heterogeneous client models. Considering representations
also with sufficient semantic knowledge, we attempt to
share homogeneous representation angles among clients to
achieve generalization-enhanced model-heterogeneous FL.

To this end, we propose a novel model-heterogeneous
Federated learning method with Representation Angel
Learning (FedRAL) to enhance the transfer of generaliz-
able global knowledge from the FL server to FL clients. It
consists of three innovative designs: (1) Since representa-
tions are extracted high-level features from data, with suf-
ficient semantic information, FedRAL embeds a homoge-
neous square matrix into the local heterogeneous model to
learn the angle information of local extracted representa-
tions. The server aggregates local homogeneous represen-
tation angle square matrices from different clients to gen-
erate a global representation angle square matrix, thereby
fusing cross-client representation angle knowledge. Then,
the global representation angle square matrix with sufficient
generalized representation angle information is used to en-
hance the generalization of local representations during lo-
cal model training. Different from the strong assumption of
the orthogonality of the matrix in OFT, the homogeneous
representation angle square matrix is initialized randomly.
(2) Considering the diverse system resources (e.g., commu-
nication bandwidth) of different clients, we design an adap-
tive diagonal sparsification strategy for the homogeneous
representation angle square matrix that allows clients to up-
load diagonal blocks with sizes matching with communica-
tion capacity. (3) To effectively aggregate sparsified local
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Figure 1. Orthogonal Fine-Tuning (OFT).

homogeneous representation angle square matrices on the
server, element-wise weighted aggregation is designed.

Experiments on 4 benchmark datasets under 2 modes
of non-IID divisions against 6 advanced MHFL methods
demonstrate the superiority of FedRAL. Compared with the
state-of-the-art baseline, FedRAL improves test accuracy
by up to 5.03%, while enhancing communication and com-
putational efficiency by up to 12.43× and 6.49×.

2. Related Work

Based on different approaches used for achieving MHFL,
existing methods can be divided into 4 categories.

Heterogeneous Subnet. Some works [3–5, 12, 17, 33,
66, 77] assume that each client trains local heterogeneous
subnets of the global model, and the server aggregates
them according to parameter positions to re-construct a new
global model. They allow each client to train personalized
heterogeneous subnets to tackle data and system hetero-
geneity. However, uploading subnets exposes model param-
eters, thereby breaching model IP protection requirements.

Model Decoupling. These methods [7, 11, 22, 30, 32,
38, 41, 62] share partial local model parameters instead of
the entire local model for global aggregation. Specifically,
they decouple each client’s local heterogeneous model into
heterogeneous and homogeneous parts, and only share
homogeneous parts for cross-client knowledge exchange.
Nevertheless, sharing partial model parameters still violates
model IP protection needs. Furthermore, the unshared re-
maining parameters might overfit due to local training.

Knowledge Distillation. These methods [1, 2, 6, 8, 9,
15, 16, 19–21, 23, 28, 29, 31, 34, 37, 40, 46, 47, 51, 52,
68, 69, 71–73, 76] aggregate the local seen-class represen-
tations or logits extracted on local private data or a pub-
lic dataset to generate the global representation or logits by
class, which is used to calculate distillation loss with the
local representations or logits. Although they protect lo-
cal model structures, the distillation loss only transfers lim-
ited knowledge from the server to clients. Besides, sharing
class information might be prohibited in some data privacy-
sensitive applications. The public dataset used must follow
similar data distributions with local private data, which is
difficult to access due to data privacy.

Mutual Learning. These methods [25, 35, 43, 49, 53]
add a global homogeneous small model shared by all
clients, which is alternately trained with the local hetero-
geneous model by the mutual loss between the outputs of
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the two models for each sample. Although they hide local
heterogeneous model structures, the mutual loss only trans-
fers limited knowledge between the two models. The unsta-
ble mutual loss in early training rounds might result in both
models not converging.

Existing MHFL methods generally transfer limited gen-
eralized knowledge from the server to clients, leading to
model performance bottlenecks. FedRAL effectively tack-
les data, system and model heterogeneity simultaneously,
allowing clients to share a global homogeneous represen-
tation angle square matrix for learning generalized repre-
sentation angle information. It bridges this important gap
by enhancing the generalization of local representations
via utilizing the global homogeneous representation angle
square matrix to fine-tune local representation angles, while
preserving personalized semantic information.

3. Preliminaries

3.1. Orthogonal Fine-Tuning
Fine-tuning the parameters of a pre-trained model has
been demonstrated to compromise its semantic information,
while fine-tuning its parameter angles (i.e., gradient direc-
tions) can sufficiently retain its original semantic informa-
tion [44]. This enables the preservation of the generalized
ability when adapting to downstream tasks. Hypersphere
Energy (HE) measures the uniformity of neuron distribu-
tion on the unit hypersphere. A lower HE value is ben-
eficial to keeping pre-trained model generalization ability.
To minimize HE variance between the pre-trained model
W 0 ∈ Ru×v and the angle-fine-tuned model W ∈ Ru×v ,
orthogonal finetuning (OFT) [44] fine-tunes the parame-
ter angles of the pre-trained model through an orthogonal
matrix O ∈ Ru×u, W = O × W 0, as depicted in Fig-
ure 1. To ensure orthogonality, OFT utilizes Cayley param-
eterization to construct matrix O = (I + Q)(I − Q)−1,
where Q ∈ Ru×u is a skew-symmetric matrix satisfying
Q = −QT . Due to inverse operations, updating the orthog-
onal matrix O during fine-tuning introduces high computa-
tional overhead, especially with a large dimension u.

Unlike OFT, we explore fine-tuning the angles of repre-
sentations with sufficient semantic information. We relax
the orthogonality assumption and avoid expensive inverse
operations. Instead, we randomly initialize the homoge-
neous representation angle square matrix, which is embed-
ded into the local heterogeneous model. They are trained in
an end-to-end manner to improve computation efficiency.

3.2. Problem Formulation
In FedRAL, a server coordinates K clients with heteroge-
neous local models for collaborative training. Client k’s lo-
cal model fk(ωk) consists of two parts: 1) a heterogeneous
feature extractor fex

k (ωex
k ), and 2) a homogeneous predic-
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Figure 2. The workflow of FedRAL.

tion head fhd(ωhd
k ) (all clients conduct the same prediction

task), fk(ωk) = fex
k (ωex

k ) ◦ fhd(ωhd
k ), as depicted in Fig-

ure 2. Each client trains a local homogeneous square matrix
Ak to learn the angle information of local representations
extracted by the heterogeneous feature extractor. The server
aggregates local homogeneous representation angle square
matrices from different clients to generate a global represen-
tation angle square matrix A for cross-client representation
angle knowledge fusion. Therefore, the training objective of
FedRAL is to minimize the loss sum of all heterogeneous
client models with the help of the global homogeneous rep-
resentation angle square matrix A:

min
A,{ω0,...,ωK−1}

K−1∑
k=0

ℓ (Fk (Dk; (ωk ◦A))) , (1)

where ℓ is loss. Fk(ωk ◦A) denotes the combination of the
local heterogeneous model ωk and the global representation
angle square matrix A, Dk is the non-IID data of client k.

4. The Proposed FedRAL Approach
FedRAL consists of three innovative designs: (1) homoge-
neous representation angle square matrix learning, (2) adap-
tive diagonal sparsification, and (3) element-wise weighted
homogeneous square matrix aggregation. The workflow of
FedRAL in a single communication round includes the fol-
lowing steps.

Overview. As shown in Figure 2, in the t-th communi-
cation round, FedRAL executes 4 steps:

➀ The server broadcasts the latest global representation an-
gle square matrix At−1 to K participating clients.

➁ A client k embeds the global representation angle square
matrix At−1 into its local model fk(ωt−1

k ) to enhance
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the generalization of local representations, while learn-
ing the personalized angle information of local represen-
tations via end-to-end training.

➂ The local homogeneous representation angle square ma-
trix At

k after local training is sparsified into Ã
t

k via the
proposed adaptive diagonal sparsification strategy before
being uploaded to the server.

➃ The server aggregates sparsified local homogeneous rep-
resentation angle square matrices {Ã

t

0, . . . , Ã
t

K−1} via
the proposed element-wise weighted aggregation to gen-
erate a new global representation angle square matrix At.
Inference. These steps are iteratively executed until het-

erogeneous client models {f0(ω0), . . . , fK−1(ωK−1)} con-
verge, which are used for inference. Algorithm 1 describes
the detailed workflow of FedRAL.

4.1. Representation Angle Learning
During the t-th training round, a client k uses its local
heterogeneous feature extractor fex

k (ωex,t−1
k ) to extract the

personalized representation R ∈ Rr of the input sample x:

R = fex
k (x;ωex,t−1

k ). (2)

Then, the extracted personalized representation R ∈ Rr

is multiplied by the received global representation angle
square matrix At−1 ∈ Rr×r to produce the representation
R̃ ∈ Rr with enhanced generalization:

R̃ = R×At−1. (3)

Then, R ∈ Rr and R̃ ∈ Rr are summed and fed into the
prediction head to make a prediction:

ŷ = fhd(R+ R̃;ωhd,t−1
k ). (4)

The loss ℓ (e.g., Cross-Entropy loss [74]) between the pre-
diction ŷ and the ground-truth label y is used to update
the heterogeneous client model fk(ωt−1

k ) and the homoge-
neous representation angle square matrix At−1 simultane-
ously via end-to-end training:

fk(ω
t
k)← fk(ω

t−1
k )− ηω∇ℓ(ŷ, y),

At
k ← At−1 − ηA∇ℓ(ŷ, y),

(5)

where ηω and ηA are the learning rates of the local hetero-
geneous model and the homogeneous representation angle
square matrix. We set ηω = ηA by default as they are up-
dated at the same time.

The shared global homogeneous representation angle
square matrix serves three functions during local train-
ing: a) it transfers globally generalizable representation
angle knowledge from the server to the client by produc-
ing the generalization-enhanced representation; b) it learns
the personalized representation angle knowledge from the
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Figure 3. An illustrative example of diagonal sparsification.

extracted personalized representations, thereby transferring
local personalized representation angle knowledge to the
server; and c) the summed representation includes both gen-
eralized and personalized knowledge, thereby improving
model expressiveness while addressing non-IID problem.

4.2. Adaptive Diagonal Sparsification
To improve communication efficiency while maintaining
model performance, we design an adaptive diagonal spar-
sification strategy to sparsify the local representation angle
square matrices before uploading them to the FL server.

Each element in R ∈ Rr corresponds to the element on
the diagonal of A ∈ Rr×r. If we only retain the diagonal
elements of A and set other elements to be 0, the angle of
each element in the representation is directly adjusted by
the corresponding element in the square matrix diagonal, as
depicted in Figure 3(a). When all elements of the square
matrix are non-zero, non-diagonal elements might disturb
representation angle adjustment due to multiplication with
non-corresponding representation elements. As Figure 3(b)
shows, the enhanced representation processed by the entire
representation angle square matrix is significantly different
from the one processed by the sparse square matrix with
only diagonal elements.

Since adjacent elements in the representation are seman-
tically correlated, retaining partial elements wrapped with
the diagonal in the representation angle square matrix can
enhance the angle correlation of adjacent representation el-
ements. Therefore, the proposed sparsification strategy re-
tains the elements from the diagonal blocks of the square
matrix and masks other elements with 0, as shown in Fig-
ure 3(c). For a Rr×r square matrix, m diagonal blocks are
retained. Each diagonal block is R r

m× r
m .

Clients with different communication bandwidths can
select different numbers of diagonal blocks mk for the local
homogeneous representation angle matrix At

k to produce
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the sparsified representation angle square matrix Ã
t

k:

Ã
t

k = Diagonal-Sparsification(At
k;mk). (6)

4.3. Element-wise Weighted Aggregation
After receiving the sparsified local homogeneous represen-
tation square matrices from K clients in the t-th commu-
nication round, the server aggregates them according to the
element positions with weighted averaging:

At =

K−1∑
k=0

nk

n
Ã

t

k, (7)

where nk is the data volume of the client k, and n is the
total data volume of K clients.

This element-wise weighted aggregation rule provides
two benefits. a) All clients upload the diagonal elements
of local homogeneous representation angle square matrices.
Using nk

n to weigh the diagonal elements can sufficiently re-
flect the overall data distribution across all clients, improv-
ing the generalization of the newly generated global square
matrix. b) As the example given in Figure 4(a), for non-
diagonal elements, if we directly average overlapped them
by element, when one non-diagonal element is only pro-
vided by one client, then it is the value of this non-diagonal
element. In this case, these non-overlapped non-diagonal
elements may negatively affect the clients who do not pro-
vide for these elements. Instead, as shown in Figure 4(b),
weighted averaging scales down such elements and then re-
duce negative effects while improving the generalization of
the newly generated global square matrix.

5. Experimental Evaluation
To evaluate the performance of FedRAL 1, we compare
it with 6 state-of-the-art existing approaches on 4 widely
adopted benchmark datasets under 2 types of data hetero-
geneity settings. We implement FedRAL and baselines us-
ing pytorch and run them on 4 NVIDIA GeForce RTX 3090
GPUs (24GB memory).

1https://github.com/LipingYi/FedRAL

Algorithm 1: FedRAL
Input: K, total number of participating clients;
T , total number of communication rounds;
ηω , learning rate of heterogeneous client models;
ηA, learning rate of the homogeneous representation
angle square matrix.

Randomly initialize the global representation angle
square matrix A0 and heterogeneous client models
[f0(ω

0
0), . . . , fk(ω

0
k), . . . , fK−1(ω

0
K−1)].

for t = 1 to T do
/* FL Server: */
Broadcast At−1 to participating clients;

/* Each FL Client k: */
// Representation Angle Matrix Learning
for each (xi, yi) ∈ Dk do

Ri = fex
k (xi;ω

ex,t−1
k );

R̃i = Ri ×At−1;
ŷi = fhd(Ri + R̃i;ω

hd,t−1
k );

fk(ω
t
k)← fk(ω

t−1
k )− ηω∇ℓ(ŷi, yi);

At
k ← At−1 − ηA∇ℓ(ŷi, yi);

end
// Adaptive Diagonal Sparsification
Obtain Ã

t

k using Eq. (6);
Upload Ã

t

k to the FL server;

/* FL Server: */
// Element-wise Weighted Aggregation
Generate At by aggregation using Eq. (7);

end
Return local heterogeneous client models
{f0(ωT−1

0 ), . . . , fk(ω
T−1
k ), . . . , fK−1(ω

T−1
K−1)}.

5.1. Experiment Setup
We first introduce datasets, base models, comparison base-
lines, evaluation metrics and hyperparameter settings.

Datasets. We choose 4 image classification benchmark
datasets commonly used in FL investigations.
• Fashion-MNIST2 [54] contains 60, 000 training and
10, 000 testing grayscale 28× 28 10-class images.

• CIFAR-103 [26] contains 50, 000 training and 10, 000
testing colourful 32× 32 10-class images.

• CIFAR-1004 [26] contains 50, 000 training and 10, 000
testing colourful 32× 32 100-class images.

• Tiny-ImageNet5 [10] contains 100, 000 training and
10, 000 testing colourful 64× 64 200-class images.

2https://github.com/zalandoresearch/fashion-
mnist

3https://www.cs.toronto.edu/%7Ekriz/cifar.html
4https://www.cs.toronto.edu/%7Ekriz/cifar.html
5https://tiny-imagenet.herokuapp.com/
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Table 1. Heterogeneous CNNs for Fashion-MNIST.

Layer CNN-1 CNN-2 CNN-3 CNN-4 CNN-5
Conv1 5×5, 20 5×5, 20 5×5, 20 5×5, 20 5×5, 20
Maxpool1 2×2 2×2 2×2 2×2 2×2
Conv2 5×5, 20 5×5, 20 5×5, 20 5×5, 20 5×5, 20
Maxpool2 2×2 2×2 2×2 2×2 2×2
FC1 300 200 150 100 50
FC2 50 50 50 50 50
FC3 10 10 10 10 10
model size 0.47 MB 0.33 MB 0.26 MB 0.19 MB 0.12 MB

Note: kernel size: 5× 5, with 20 filters for convolution layers.

Table 2. Heterogeneous CNNs for CIFAR-10 and CIFAR-100.

Layer CNN-1 CNN-2 CNN-3 CNN-4 CNN-5
Conv1 5×5, 16 5×5, 16 5×5, 16 5×5, 16 5×5, 16
Maxpool1 2×2 2×2 2×2 2×2 2×2
Conv2 5×5, 32 5×5, 16 5×5, 32 5×5, 32 5×5, 32
Maxpool2 2×2 2×2 2×2 2×2 2×2
FC1 2000 2000 1000 800 500
FC2 500 500 500 500 500
FC3 10/100 10/100 10/100 10/100 10/100
model size 10.01 MB 6.93 MB 5.04 MB 4.05 MB 2.56 MB

Note: kernel size: 5× 5, with 16 or 32 filters for convolution layers.

Then, we partition them into non-IID modes in 2 ways:
• Pathological. Following [48], we allocate {2, 2, 10, 20}

classes from {10, 10, 100, 200} classes to each FL client.
• Practical. Following [43], we allocate {10, 10, 100, 200}

classes to each FL client and use a Dirichlet distribution
function with a hyperparameter α = 0.4 to generate di-
verse ratios of one class for different clients.
Base Models. Following [62], we construct 5 hetero-

geneous CNN models {CNN-1, ..., CNN-5} with differ-
ent channels of convolutional layers or dimensions of linear
layers (Tables 1 and 2) and allocate them to 100 clients. The
client k is assigned CNN-(k%5). Note that the representa-
tion R dimension r (the dimension of the penultimate lin-
ear layer) is {50, 500, 500} for Fashion-MNIST, CIFAR-10
and CIFAR-100. Thus, the dimensions of the homogeneous
representation angle square matrix A are {50 × 50, 500 ×
500, 500 × 500}. For Tiny-ImageNet, we evenly allocate
ResNet-{18, 34, 50, 101, 152} to 100 clients.

Comparison Baselines. We compare FedRAL with 6
baselines, which are the latest representative MHFL works
that support completely heterogeneous local models.
• Standalone: each client solely trains its local hetero-

geneous model, without FL.
• Model Decoupling: LG-FedAvg [30].
• Mutual Learning: FedKD [53], FedAPEN [43].
• Knowledge Distillation without Public Dataset:
FedProto [51], FedTGP [72].
Evaluation Metrics. We evaluate the performances of

FedRAL and baselines with the following three metrics:
• Model Accuracy. We record each client’s model accu-

racy (%) and calculate their average in each communica-

tion round. We report the highest average accuracy.
• Communication Cost. We track the average number of

transmitted parameters between clients and the server in
one communication round, and we record the total rounds
consumed to reach the specified target accuracy. The
product of the two is the total communication cost.

• Computational Overhead. We track the average com-
putational FLOPs of clients in one communication round,
and we record the total communication rounds consumed
to reach the specified target accuracy. The product of the
two is the total computational overhead.
Hyperparameters. We use grid-search to choose the

optimal hyperparameters for all algorithms. For general
FL hyperparameters, we set the local training epoch E as
{1, 10} and batch size B as {32, 64, 128, 256, 512}, and
we choose the SGD gradient optimizer with a learning rate
of 0.01. To ensure the sufficient convergence of algo-
rithms, we set the total communication rounds T as 500.
For the unique hyperparameter - the number m of diago-
nal blocks for sparsifying the homogeneous representation
angle square matrix in FedRAL, we set it to be the factor
of the representation dimension r, e.g., m = {1, 2, . . . , 50}
for Fashion-MNIST, and m = {1, 2, . . . , 500} for CIFAR.

5.2. Comparison Results Analysis

Average Accuracy. Table 3 shows that FedRAL out-
performs all baselines in terms of average test accuracy,
demonstrating its effectiveness in enhancing local model
generalization through the shared homogeneous represen-
tation angle square matrix. As a recent MHFL method,
FedTGP achieves the second-best performance. We notice
that FedAPEN fails to converge in some cases. This can
be attributed to the fact that it uses the same coefficients
to combine the outputs of the heterogeneous and homoge-
neous models for all data samples, failing to balance per-
sonalization and generalization under varying data features.

Figure 5 presents how the average test accuracies of
FedRAL and the state-of-the-art FedTGP baseline vary as
communication rounds. We see that FedRAL converges to
a higher accuracy with a faster speed than FedTGP, es-
pecially under more non-IID practical FL settings. This
demonstrates the effectiveness of FedRAL in alleviating
data heterogeneity while supporting the collaboration of
heterogeneous client models.

Communication Cost. Table 4 presents the commu-
nication costs of the state-of-the-art FedTGP baseline and
FedRAL. We can observe that FedRAL consumes a lower
single-round communication cost than FedTGP (column-
3), since the sparse representation angle square matrix
communicated in FedRAL has fewer parameters than the
label-wise average representations transmitted in FedTGP.
FedRAL also requires fewer communication rounds to
reach the specified target accuracy (column-5), since the de-
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Table 3. Comparison of average test accuracy (%) on 4 datasets under pathological and practical data heterogeneity settings.

Pathological Practical
Method Fashion-MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet Fashion-MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet
Standalone 99.03±0.53 91.97±0.37 53.04±0.24 33.15±0.02 73.39±0.89 40.72±0.83 9.56±0.34 7.35±0.21
LG-FedAvg [30] 98.87±0.40 91.27±0.25 45.83±0.67 35.79±0.19 71.97±0.25 40.44±0.57 9.80±0.39 7.51±0.34
FedKD [53] 58.37±0.05 73.21±0.56 37.21±0.98 34.53±0.16 45.57±0.49 28.14±0.29 8.29±0.28 6.29±0.23
FedAPEN [43] 44.20±0.58 - - - - - - -
FedProto [51] 99.02±0.50 92.49±0.26 53.67±0.79 36.24±0.27 74.06±0.63 40.20±0.11 9.27±0.71 7.63±0.29
FedTGP [72] 99.09±0.65 92.50±0.31 53.20±0.78 36.92±0.10 73.64±0.60 40.95±0.09 9.37±0.13 7.65±0.19
FedRAL 99.54±0.16 93.60±0.19 58.70±0.05 38.75±0.13 78.58±0.12 42.97±0.10 11.70±0.02 9.47±0.13

Note: “-” denotes failure to converge. Bold indicates the highest accuracy, and underline indicates the second highest accuracy.
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Figure 5. Average test accuracy (%) vs. number of rounds.

signed representation angle learning facilitates model con-
vergence. Overall, FedRAL consumes lower communica-
tion costs for reaching the target accuracy than FedTGP
(column-6), demonstrating its efficient communication.

Computational Cost. Table 4 also shows the com-
putational costs of the state-of-the-art FedTGP baseline
and FedRAL. We can see that FedRAL consumes a lower
single-round computational cost than FedTGP (column-4),
since additionally training a homogeneous representation
angle square matrix in FedRAL consumes lower FLOPs
than additionally calculating label-wise average representa-
tions in FedTGP, except local model training in both meth-
ods. Since FedRAL requires fewer communication rounds
to reach the specified target accuracy (column-5), its total
computational costs are lower than FedTGP when reaching
the specified target accuracy (column-7), substantiating its
efficient computation.

Privacy Evaluation. We conduct experiments to eval-
uate the privacy of FedRAL and baselines. Followed by
Zhang et al. [70], considering a semi-honest FL scenario
where the server is untrustworthy and may inversely in-
fer the original data of comprised clients from transmit-

Table 4. Communication and computational costs.

FL Setting Method
Comm/C/R

(KB)
Comp/C/R

(MB) Rounds
Comm/C

(MB)
Comp/C

(GB)
Pathological
CIFAR-10

FedTGP 3.91 54.52 302 1.15 16.08
FedRAL 1.56 28.23 201 0.31 5.54

Pathological
CIFAR-100

FedTGP 19.53 54.52 354 6.75 18.85
FedRAL 9.77 28.23 144 1.37 3.97

Practical
CIFAR-10

FedTGP 19.53 54.87 348 6.64 18.65
FedRAL 7.81 28.58 103 0.79 2.87

Practical
CIFAR-100

FedTGP 195.31 54.87 363 69.24 19.45
FedRAL 39.06 28.58 146 5.57 4.07

Note: “Comm/C/R”: a single client’s communication cost (KB) in a
communication round. “Comp/C/R”: a single client’s computational cost
(MB) in a communication round. “Rounds”: the communication rounds
required to reach the specified {90, 50, 40, 9}% target accuracy (the near
maximum accuracy that both the state-of-the-art FedTGP baseline and
FedRAL can achieve). “Comm/C’: a single client’s communication cost
(MB) required to reach the target accuracy. “Comm/C’: a single client’s
computational cost (GB) required to reach the target accuracy.

Table 5. PSNR under DLG attacks on CIFAR-100.

Method LG-FedAvg FedKD FedAPEN FedProto FedTGP FedRAL
PSNR (dB) 7.83 6.95 6.93 6.76 6.69 6.28

Table 6. Average Accuracy (%) under high model heterogeneity.
“-” denotes failure to converge.

Method LG-FedAvg FedKD FedAPEN FedProto FedTGP FedRAL
Accuracy (%) 45.63 45.95 - 48.56 48.69 50.79

ted information by launching Deep Leakage from Gradi-
ents (DLG) attack. We use the Peak Signal-to-Noise Ratio
(PSNR), a common privacy measurement metric, to eval-
uate the privacy-protecting level. A lower PSNR denotes
better privacy protection. The results in Table 5 validate
that FedRAL can protect data privacy effectively.

High Model Heterogeneity. To evaluate how FedRAL
and baselines perform under high model heterogeneity, we
conduct experiments CIFAR-100 with 100 clients and het-
erogeneous models including ResNet-{4, 6, 8, 10, 18, 34,
50, 101, 152}, CNN, and ViT. The results in Table 6 vali-
date FedRAL’s robustness to high model heterogeneity.

5.3. Robustness Analysis
This section analyzes the robustness of FedRAL to different
non-IID degrees of two types.
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Figure 6. Robustness to pathological non-IIDness.
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Figure 7. Robustness to practical non-IIDness.

Robustness to pathological non-IIDness. We change
the number of classes allocated to each client to obtain
different non-IID degrees. For CIFAR-10, we allocate
{2, 4, 6, 8, 10} classes from 10 classes to each client. For
CIFAR-100, we allocate {10, 30, 50, 70, 90, 100} classes
out of 100 classes to each client. Figure 6 presents that
FedRAL always performs higher accuracies than the state-
of-the-art FedTGP baseline. As the number of classes as-
signed to one client increases, i.e., the non-IID degree de-
creases, model accuracy tends to drop since more IID data
benefits generalization while compromising personalization
of local models.

Robustness to practical non-IIDness. We vary the hy-
perparameter α of the Dirichlet distribution function to con-
struct diverse non-IID degrees. For both CIFAR-10 and
CIFAR-100, we set α = {0.1, 0.2, 0.3, 0.4, 0.5} to evalu-
ate the average model accuracies of FedRAL and the state-
of-the-art FedTGP baseline. Figure 7 shows that FedRAL
performs significantly higher average model accuracy than
FedTGP, again demonstrating the robustness of FedRAL
to non-IIDness. Similarly, as the value of α increases, i.e.,
the non-IID degree decreases, model accuracy tends to de-
grade also due to the above reason.

5.4. Ablation Analysis
FedRAL involves three contributions: 1) introducing rep-
resentation angle matrix learning to share cross-client rep-
resentation angle knowledge for enhancing model general-
ization, 2) devising adaptive diagonal sparsification to im-
prove communication efficiency while keeping important
representation angle knowledge, 3) designing ordinate-wise

Table 7. Average accuracy (%) in ablation experiments.

Case Diagonal
Sparsification

Weighted
Aggregation

Pathological Practical
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

A ✓ ✓ 93.60 58.70 42.97 11.70
B ✗ ✓ 91.64 56.58 41.37 11.58
C ✓ ✗ 93.47 53.94 40.52 9.24

weighted aggregation to fuse cross-client representation an-
gle square matrices. Contribution-1) is essential to imple-
ment FL collaboration across clients with heterogeneous
models, so we conduct experiments to evaluate the neces-
sity of the other two contributions with three cases:
• Case-A, FedRAL with both adaptive diagonal sparsifica-

tion and ordinate-wise weighted aggregation, i.e., the de-
signed method.

• Case-B, FedRAL without adaptive diagonal sparsifica-
tion but with ordinate-wise weighted aggregation, i.e.,
clients upload complete representation angle square ma-
trices to the server.

• Case-C, FedRAL with adaptive diagonal sparsification
but with naive ordinate-wise averaging aggregation, i.e.,
the aggregation rule (a) displayed in Figure 4, ignoring
client data distribution distinctions.
Table 7 shows that removing anyone degrades accuracy.

Especially, replacing ordinate-wise weighted aggregation
with naive averaging aggregation presents obvious accuracy
degradations under most settings. These results reflect the
effectiveness and necessity of the proposed two designs.

6. Conclusion

This work proposed FedRAL with three innovative de-
signs: representation angle learning, adaptive diagonal spar-
sification, and element-wise weighted aggregation, The
three designs enable enabling it to be a privacy-preserved,
well-performed, communication and computation-efficient
model-heterogeneous FL approach. Extensive experiments
demonstrate its advantages in accuracy, communication and
computation efficiency.
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