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Abstract

3D animation aims to generate a 3D animated video from
an input image and a target 3D motion sequence. Recent
advances in image-to-3D models enable the creation of an-
imations directly from user-hand drawings. Distinguished
from conventional 3D animation, drawing-based 3D ani-
mation is crucial to preserve artist’s unique style proper-
ties, such as rough contours and distinct stroke patterns.
However, recent methods still exhibit quality deterioration
in style properties, especially under occlusions caused by
overlapping body parts, leading to contour flickering and
stroke blurring. This occurs due to a ‘stylization pose gap’
between training and inference in stylization networks de-
signed to preserve drawing styles in drawing-based 3D ani-
mation systems. The stylization pose gap denotes that input
target poses used to train the stylization network are always
in occlusion-free poses, while target poses encountered in
an inference include diverse occlusions under dynamic mo-
tions. To this end, we propose Occlusion-robust Stylization
Framework (OSF) for drawing-based 3D animation. We
found that while employing object’s edge can be effective
input prior for guiding stylization, it becomes notably in-
accurate when occlusions occur at inference. Thus, our
proposed OSF provides occlusion-robust edge guidance for
stylization network using optical flow, ensuring a consis-
tent stylization even under occlusions. Furthermore, OSF
operates in a single run instead of the previous two-stage
method, achieving 2.4× faster inference and 2.1× less mem-
ory. Project is available at: github.io/Drawing-
based-3D-Animation-page.

1. Introduction
Denoising diffusion models [10, 12, 47, 48] have reshaped
the landscape of generative AI, leading to remarkable ad-
vancements [14, 23, 24, 41, 53, 64] in image, speech, and
video generation. Image-to-3D diffusion models [28–30]
have showcased the potential for creating 3D animations
[32, 40, 68] from a single image. In this work, we focus here
on 3D animation techniques for user-drawn images, referred
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Figure 1. Quality deterioration in occlusion areas: (a) current
systems exhibit stylistic inaccuracies in strokes and contours within
overlapping body parts, and (b) animations with occlusion reduced
consistency (CLIP [42]) and fidelity (LPIPS [67]) compared to ones
without occlusion across diverse drawings in Amateur Drawings
[46]. The CLIP measures consecutive frame similarity, and LPIPS
measures perceptual differences between input and output.

to as drawing-based 3D animation. As shown in Figure 1
(a), drawing-based 3D animation systems take a reference
hand-drawn image and a target 3D motion as inputs, and
generate 3D animated drawings aligned with the target mo-
tion. In these systems, it is crucial to preserve artists’ unique
styles, such as contours and stroke patterns in output frames.
However, synthesizing 3D structures inevitably causes un-
desirable distortions1 on them. Thus, drawing-based 3D
animation systems employ a stylization process using a neu-
ral network (referred to as a stylization network) fine-tuned
on the input drawing to restore the distortions.

Recent advancements [30, 51, 68] of drawing-based
3D animation systems have demonstrated notable precision
in preserving a drawing’s identity within 3D animations.
Nonetheless, these systems still suffer from quality dete-
rioration in terms of drawing properties (i.e. contour and
stroke) when dealing with occlusions in target poses. To
be specific, in target poses where the object’s body parts
overlap, the outputs exhibit flickering contours and blurred
internal stroke patterns. Figure 1 (a) presents examples of

1The contour lines depicting the subject’s shape become excessively
thick, or the strokes conveying the artist’s unique style become blurred.
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Figure 2. (a) Illustration of stylization pose gap between training and inference. The stylization network is fine-tuned on a single pose
(simple occlusion-free pose), due to the unavailability of drawings about the same object’s other poses. During inference, the network
encounters diverse occluded poses as unseen scenario, reducing stylization robustness. (b) Current two-stage stylization with edge guidance
(vulnerable in occlusion) [30, 51, 68]. (c) Our proposed single-stage occlusion-robust stylization with flow-depth edge detection (FDED).

this issue: when the arm overlaps with the body, the arm’s
texture and the surrounding clothing of the body are blurred
(first row), and the contour line between overlapping parts
intermittently appears and disappears (second row) as flick-
ers. Furthermore, Figure 1 (b) presents quantitative evalu-
ations of the generated animations in terms of consistency
and fidelity for target motions with and without occlusion.
Notably, motions with occlusion yield significantly lower
quality compared to those without occlusion.

In fact, this quality deterioration stems from a ‘stylization
pose gap’ between training and inference in the stylization
network. The stylization pose gap refers to differences of
the input target poses between training and inference of the
stylization network. To be specific, shown in Figure 2 (a),
the stylization network is fine-tuned (trained) to restore the
original input drawing style onto a 2D projection of 3D ani-
mation2. Here, the input drawing serves as ground-truth for
the training, where its pose is relatively simple and free from
occlusion to show the object’s entire body (e.g. rest pose in
Figure 2 (a)). During inference, the stylization is applied
to diverse poses, including those with occlusions. However,
the network has not been trained to handle these occluded
scenarios because ground-truth drawings for those condi-
tions are unavailable3, consequently making it vulnerable in
maintaining robust stylization under occlusions.

To this end, we propose Occlusion-robust Stylization
Framework (OSF) to bridge the stylization pose gap between

2For details of 3D animation, 3D diffusion model [30] builds 3D struc-
ture [37] and apply rigging [3] it on a skeleton to follow 3D target motion.

3We assume a case that only a single ground-truth drawing is available,
as obtaining multiple drawings of the same object is not always feasible.

(a) Current system’s edge guidance (b) Occlusion-robust edge guidance (Ours)
Training Inference Training Inference

Occlusion OcclusionEdge Drawing

Figure 3. Resulting animated drawings and edges in training and
inference: (a) current system’s edge and (b) occlusion-robust edge.

training and inference. Figure 2 (b) shows the current styl-
ization framework for drawing-based 3D animation system.
Given an input drawing and target 3D pose, 3D animation
model (i.e. image-to-3D diffusion [30] and 3D rigging [3])
generates 3D structure following target pose, which is then
projected into 2D for animation. Since the 2D projection
exhibits style distortion, the stylization is performed on it.
Here, edges extracted from the 2D projection are also used
as auxiliary input, serving as an effective guideline for the
stylization. As shown in Figure 3, we observed that the
occlusion-free pose (i.e. rest pose) used in a training pro-
vides clear edges. However, at inference, occlusions across
diverse poses obscure these edges, causing flickering and
blurring within the output. To counter this, our proposed
OSF in Figure 2 (c) incorporates flow-depth edge detection,
which produces occlusion-robust edges to ensure consistent
clarity and robust stylization under occlusion by recovering
undetected edges using optical flow. Furthermore, current
methods rely on a two-stage stylization process (texture to
contour), resulting in unnecessary computational overhead
and resource usage. In contrast, our framework operates
in a single pass through edge-guided contrastive learning,
achieving 2.4× faster inference and 2.1× less memory.
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Figure 4. Occlusion-robust Stylization Framework (OSF) for drawing-based 3D animation. A 3D animation model processes a drawing 𝑋

with the 𝑖-th target pose 𝑃𝑖 to generate 3D structure following the target pose, which is rendered as a 2D projection 𝑍𝑖 for the animation.
The proposed OSF stylizes the projection 𝑍𝑖 to final drawing animation 𝑌𝑖 , incorporating Flow-Depth Edge Detection (FDED), which
produces an occlusion-robust edge 𝑒𝑖 to guide robust stylization under unseen occluded poses. The edge 𝑒𝑖 combines a depth-based edge
𝑑𝑖 for unoccluded region and a flow-based edge 𝑓𝑖 for occluded areas by reconstructing missing edges. Our method operates in a single
stage, using a simple UNet-based [43] unified stylization network with our designed edge-guided contrastive learning.

2. Related Works
Image to 3D Animation. Image animation is a temporal
sequence of shape deformations designed to ensure seamless
transitions. Early works [1, 2, 15] investigated image-to-
image transformations across poses and viewpoints, aided
by geometric deformation [26, 49] and synthesis [7, 38].
Recently, 2D methods [45, 54, 57, 65, 66] have animated
various objects but struggled to capture depth and perspec-
tive, prompting a shift to 3D animation [19, 30, 51]. Classic
methods constructed 3D meshes from silhouettes and skele-
tons [4, 39, 44], while newer diffusion-based techniques
[29, 30] generate multi-view images for optimized 3D re-
constructions [17, 21, 37]. Rigging4 process [3, 20] then
enabled animation of these meshes according to target mo-
tions. The 3D animations have been applied to diverse
images, including human and animal images. However,
hand-drawn images remain challenging: 3D augmentation
distorts contours, and 2D projections (i.e. rendering) often
cause blurry textures, especially under occlusion. To address
this, we propose a robust stylization framework to maintain
consistent quality under diverse occluded motions.

Edge Detection in 2D and 3D. Edge detection has been
a fundamental building block for various computational 2D
and 3D visions. In 2D, conventional methods (e.g. Sobel,
Canny, and Laplacian) detect boundaries by analyzing gra-
dient changes [5], while recent deep-learning approaches
(e.g. Holistically-Nested Edge Detection [56]) leverage hi-
erarchical feature extraction for more accurate edge maps.

4Creating a skeleton for 3D mesh to control its movements.

Recent works have extended upto 3D data and predict ge-
ometric boundary using 3D contours [9], ridges [18] and
neural network [27]. However, these edge detections rely on
single frames, making them vulnerable to occlusions. By
incorporating optical flow in consecutive frames, we provide
more robust edge guidance for stylization in occlusion.
3. Method
Occlusion-robust Stylization Framework (OSF) in Figure
4 is proposed for drawing-based 3D animation. The 3D
animation model (i.e. image-to-3D diffusion [30] with 3D
rigging [3]) takes a drawing 𝑋 and the 𝑖-th target 3D pose
𝑃𝑖 to generate 3D animation, rendered as a 2D projection
𝑍𝑖 for visualizing it from user’s view point. 3D synthesis
and animation often cause style distortions, and stylization
addresses these issues in a lower-dimensional space (2D
projection) as an intuitive solution. Formally, stylization
takes the 𝑍𝑖 as input and predicts the animated drawing 𝑌𝑖 ,
where OSF provides occlusion-robust edge guidance 𝑒𝑖 to
enhance stylization robustness under occlusions as below:

𝑌𝑖 = 𝐹 (𝑍𝑖 , 𝑒𝑖), (1)

where 𝐹 is a simple encoder-decoder network (e.g. U-Net
[43]). The edge 𝑒𝑖 can be utilized through various oper-
ations (e.g. concatenation, attention) within the network.5
We focus here on constructing the edge 𝑒 (For simplicity,
we omit subscript 𝑖). To be specific, OSF incorporates our
designed Flow-Depth Edge Detection (FDED) to generate

5We adopt a simple early fusion by concatenating it with 𝑍𝑖 , but it can
be further enhanced with transformer-based interactions [22, 35, 60, 62].
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Figure 6. (a) shows the results of color- and depth-based edges
with a light source placed on the head of a 3D object. (b) shows
depth-based edge detection using Gaussian adaptive thresholding.

the occlusion-robust edge 𝑒. This edge can be separated into
two parts: edge in occluded regions (𝑒𝑜) and the other edge
in unoccluded regions (𝑒𝑢) as given below:

𝑒 = 𝑒𝑜 ∪ 𝑒𝑢. (2)

To estimate the two edges, we propose depth-based edge
detection for 𝑒𝑢 and flow-based edge detection for 𝑒𝑜.

3.1. Depth-based edge detection
Depth-based edge detection aims to capture the unoccluded
edge 𝑒𝑢 in the 2D projection 𝑍 . While edges can be es-
timated by visual information (e.g. color) in Figure 6 (a),
these edges become susceptible to brightness changes by
the 3D object’s motions. To address this, we use the depth
map (Figure 6(b)), measured by vertical distance between
the viewpoint and the 3D mesh. To decide edges based on
the depth map, we employed Gaussian adaptive thresholding
[50], which is more responsive to local depth variations than
global thresholding (e.g. Canny [5]). For each pixel [𝑥, 𝑦],
an adaptive threshold 𝑇 [𝑥, 𝑦] classifies edges as:

𝑑 [𝑥, 𝑦] =
{

1 if 𝐷 [𝑥, 𝑦] > 𝑇 [𝑥, 𝑦]
0 otherwise,

(3)

producing a depth-based edge map 𝑑 (1 for edges, 0 oth-
erwise). Thus, we define the unoccluded edge as 𝑒𝑢 = 𝑑.

𝐷 [𝑥, 𝑦] is the depth at position [𝑥, 𝑦]. The threshold𝑇 [𝑥, 𝑦]
is adaptively adjusted based on surrounding depth values
within a specified window, assigning greater weight to re-
gions closer to [𝑥, 𝑦] using Gaussian kernel weighting as:

𝑇 [𝑥, 𝑦] = 1
𝑅

∑︁
[𝑖, 𝑗 ]∈window

𝐺 [𝑖, 𝑗] · 𝐷 [𝑥 + 𝑖, 𝑦 + 𝑗], (4)

where 𝐺 [𝑖, 𝑗] = 1
2𝜋𝜎2 exp

(
−(𝑖2 + 𝑗2)/(2𝜎2)

)
and constant

𝑅 =
∑

[𝑖, 𝑗 ]∈window 𝐺 [𝑖, 𝑗]. Window in Figure 6 (b) defines
position [𝑖, 𝑗] in a square of width 𝑤 centered at [𝑥, 𝑦].

3.2. Flow-based edge detection
Flow-based edge detection aims to capture occluded edges
𝑒𝑜 in the projection 𝑍 . As shown in Figure 6 (a), depth-
based edge detection alone can fail when body parts over-
lap (e.g. an arm over a torso) because their depths are too
similar, causing flickering. To this end, as shown in Fig-
ure 4, we propose flow-based edge detection that leverages
optical flow between the current frame 𝑍𝑖 and the previ-
ous frame 𝑍<𝑖 (hereafter 𝑍𝑖−1 for convenience) to recover
missing edges in occluded regions. To be specific, we ob-
tain optical flow vector 𝑣𝑖−1 using optical flow estimators
[31, 52] between the 𝑍𝑖−1 and 𝑍𝑖 in Figure 5 (a). This vec-
tor 𝑣𝑖−1 is a 2-dimensional vector connecting corresponding
points between 𝑍𝑖−1 and 𝑍𝑖 to estimate optical flow. As
shown in Figure 5 (b), we define these corresponding points
of 𝑍𝑖−1 that lie on the edge6 𝑑𝑖−1 as source points 𝑝𝑖−1
(i.e. blue points). To estimate the positions of the source
points in the 𝑖-th frame, we shift them by 𝑣𝑖−1, computed as
𝑝∗
𝑖
= 𝑝𝑖−1 + 𝑣𝑖−1. As we focus on finding undetected edges

by occlusion, as shown in Figure 5 (c), we retain only 𝑝∗
𝑖

that
6To focus on the problem of predicting new edges based on existing

ones, we assume that the chosen edges 𝑑𝑖−1 are well-constructed without
occlusion. Occlusion-free frames can be identified by checking the over-
laps between joint points of 3D coordinate space or can be automatically
detected using deterministic retrievals [33, 36, 58, 59, 61, 63].
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lie within the interior of 𝑑𝑖 . Finally, the remaining points
are interpolated to construct flow-based edge 𝑓 in Figure 5
(d). This can be formulated on 𝑖-th frame as:

𝑓𝑖 = ℎ · 𝑔(𝑝∗𝑖 , 𝑑𝑖), (5)

where the 𝑔 is a filter selecting valid points inside the depth-
based edge 𝑑𝑖 , and ℎ is an interpolator constructing edge
from points (we use dilation for efficiency). Therefore, we
finally define the occluded edge as 𝑒𝑜 = 𝑓 .

Stage 1: Texture styization

Contour

Stage 2: Contour stylization
Texture Texture

Texture &
Contour
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Figure 7. (a) two-stage stylization framework and (b) our single-
stage unified stylization with edge-guided contrastive learning.

3.3. Unified Stylization Network
Since multiple drawing images for various poses of an ob-
ject are not always available, we assume stylization operates
in the most general scenario, where each object provides
only a single drawing image for training. Figure 7 (a) shows
the existing two-stage method [68], where texture styliza-
tion produces an intermediate output 𝑌 ∗ from 𝑍 , followed
by contour stylization to produce final 𝑌 . Although this
method improves contour training despite the limited con-
tour (compared to texture) in the drawing, it uses extra la-
bels (ground-truth 𝑌 ∗) and increases both memory and time
costs. To address these, Figure 7 (b) shows our unified
(single-stage) stylization network (USNet), which learns all
drawing properties at once. As contours are relatively sparse
compared to textures, we introduce edge-guided contrastive
learning for more discriminative contour stylization. To be
specific, we first apply patch-wise reconstruction loss for
stylization by predicting original drawing-style input frame
𝑋 ∈ R𝑁×3 from the 2D projection frame 𝑍 ∈ R𝑁×3 as
L𝑟𝑒𝑐𝑜𝑛 =

∑𝑁
𝑖=1 (𝑌𝑖 − 𝑋𝑖)2, where 𝑌 is the stylization output

in Equation (1), 𝑁 is the number of patches, and each patch
has 3 channels (RGB). We then extend this to contrastive
learning, enforcing an inequality as:

cos(𝑌 𝑗 , 𝑋 𝑗 ) > cos(𝑌 𝑗 , 𝑋𝑘), ∀𝑘 ≠ 𝑗 , (6)

so that the cosine similarity between 𝑌 𝑗 and its ground-
truth 𝑋 𝑗 for contour patches exceeds that of 𝑌 𝑗 with other
patches 𝑋𝑘 as hard negatives. The 𝑋𝑘 are randomly sampled
from patches containing the occlusion-robust edge 𝑒. This
inequality is ensured by contrastive ranking loss as below:

L𝑐 =
∑︁

𝑗
max

(
0, cos(𝑌 𝑗 , 𝑋𝑘) − cos(𝑌 𝑗 , 𝑋 𝑗 ) + 𝛿

)
, (7)

where 𝛿 = 0.1 maintains a margin. Our final loss for USNet
combines the two terms as L = L𝑟𝑒𝑐𝑜𝑛 + L𝑐.

4. Experiment
4.1. Experimental Settings
Implementation Details. We use RAFT [52] for optical
flow. Hyperparameters were chosen by study in Table 2,
confirming 𝑤 = 9 and dilation-based interpolation for ℎ. For
image-to-3D diffusion, we use Wonder3D [30] and Adobe
Mixamo7 skeleton of 65 joints for automatic rigging.

Data and Baselines. We selected 120 test characters from
the Amateur Drawings [46], following the same set in [68].
Training (fine-tuning) uses a single pose given by the char-
acters, while inference applies stylization to various poses.
For inference, each character is given 20 non-occluded mo-
tions (non-occlusion set) and 20 occluded motions (occlu-
sion set)8 for a total of 4800 samples. We also prepare 80
separate characters for a validation set to investigate the ef-
fectiveness of occlusion. The 3D animation system includes
non-stylization (DreamGaussian [51], Wonder3D [30]) and
stylization methods (DrawingSpinUp [68], OSF).

4.2. Evaluation Metrics
We evaluate each drawing animation in terms of overall tex-
ture and contour by separating the two. For texture quality,
we measure temporal consistency (via CLIP [42] similarity,
SSIM [55] for smoothness, and FID [11] for naturalness) and
fidelity (via LPIPS [67] to assess perceptual preservation of
object identity). We construct ground-truth distributions
using input drawings, and then measure FID by comparing
distributions of the generated drawings. For contour quality,
we extract contours using the method in [68] and evaluate
their temporal consistency with CLIP, SSIM, and FID. All
metrics are averaged over 10 runs with different seeds and
Human evaluation of preferences is performed.

4.3. Experimental Results
Qualitative Comparisons. Figure 8 presents the 3D an-
imation results of drawings across different 3D animation
systems. Our comparison evaluates dynamic motions, such
as dancing and sitting, applied to a variety of character
drawings, ranging from humans to animals. Wonder3D
[30] and DreamGaussian [51] are image-to-3D models, ap-
plied to drawing-based 3D animation task without including
a stylization process. Without a stylization process, these
models exhibit distortions in the drawing style, such as thick-
ened contours and blurred stroke patterns. DrawingSpinUp
(DSU) [68] and our proposed Occlusion-robust Stylization
Framework (OSF) are stylization-based models designed for
3D animation of drawings, performing stylization to pre-
serve the original style of the input image. Both models

7we use online platform (https://www.mixamo.com), but other auto-
matic joint estimation methods [6, 13] can also be applicable.

8Our supplemental material provides all Mixamo motion names
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Figure 8. Qualitative comparisons across different drawing-based 3D animation models. The red box highlights a zoomed view of the
stylization applied to animated drawing objects. The contour in the bottom right is extracted by the contour estimator from [68]. Appendix
also provides more qualitative results. DSU: DrawingSpinUp, DG: DreamGaussian.

retain the style of the input image well. However, DSU
tends to lose contour details in occluded body parts (i.e. red
box), leading to flickering. This issue is particularly evident
in the contour, as shown in the box visualizing extracted
giraffe’s contours in bottom-right of Figure 8. OSF demon-
strates robust contour preservation, even in the presence of
occlusions occurring during various motions.

Quantitative Results. Table 1 presents quantitative re-
sults on different animation models. We evaluated the
animation quality on motions without occlusion (i.e. non-

occlusion set) and with occlusion (i.e. occlusion set). As
contours are a key attribute defining an object’s shape, we
extract them for more detailed evaluation. The proposed
FDED can serve as an additional condition for any styliza-
tion model, such that we also integrate it into DSU, observing
steady gains in both stylization baselines (DSU and USNet).
With the application of FDED, both consistency and fidelity
have improved, with consistency enhancements largely at-
tributed to improved contour stability. Our proposed USNet
resolves the complex two-stage inference structure of DSU,
while its performance is also comparable to or better than
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Table 1. Quantitative evaluations on recent drawing-based 3D animation models, reported in a format of (non-occlusion set / occlusion
set). DSU: DrawingSpinUp, USNet: Unified Stylization Network, FDED: Flow-Depth Edge Detection. (OSF = USNet + FDED).

Method Texture Contour HumanCLIP ↑ SSIM ↑ FID ↓ LPIPS ↓ CLIP ↑ SSIM ↑ FID ↓

DreamGaussian [51] 0.903/0.898 0.842/0.813 554/592 0.725/0.798 0.894/0.875 0.828/0.786 441/513 0.01
Wonder3D [30] 0.914/0.891 0.844/0.816 531/586 0.714/0.782 0.906/0.886 0.832/0.801 432/476 0.03
DSU [68] 0.958/0.927 0.889/0.842 313/368 0.629/0.692 0.941/0.919 0.879/0.830 215/240 0.35
DSU + FDED (Ours) 0.971/0.962 0.903/0.881 297/331 0.601/0.637 0.978/0.974 0.936/0.910 191/199 -
USNet (Ours) 0.963/0.936 0.896/0.851 308/361 0.612/0.685 0.946/0.925 0.882/0.832 212/236 -
USNet + FDED (Ours) 0.974/0.963 0.910/0.888 293/325 0.586/0.622 0.982/0.977 0.938/0.914 188/195 0.61
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Figure 9. Effectiveness of FDED on stylization models, showing
(a) resulting frames and (b) their contours with and without FDED.

DSU due to the edge-guided contrastive learning. The effec-
tiveness of the contrastive learning is also validated in Figure
10 about learning optimization and qualitative comparisons.

4.4. Ablation Study
Effectiveness of FDED. Figure 9 demonstrates the effec-
tiveness by applying FDED to stylization-based animation
models (DSU and USNet). Without FDED (Figure 9 (b)),
both struggle to render contours in occluded regions ac-
curately, whereas FDED-integrated versions preserve con-
tours more clearly. Table 2 shows an ablation study on
depth-based edge (for unoccluded edge) and flow-based
edge (for occluded edge), along with hyperparameter varia-
tions. From the first section, providing guidance edges sig-
nificantly boosts performance, especially with flow-based
edges, revealing the vulnerability of existing methods to oc-
clusion. This improvement mainly stems from enhanced

Table 2. Ablation study on the main modules of FDED and their
hyperparameters under validation occlusion set (D: depth-based
edge, F: flow-based edge, 𝑤: window size of adaptive thresholding,
ℎ: edge reconstruction, and spline: B-spline interpolation).

Method Texture Contour
CLIP↑ SSIM↑ CLIP↑ SSIM↑

w/o FDED 0.946 0.873 0.929 0.849
w/ FDED (D) 0.956 0.887 0.941 0.876
w/ FDED (D + F) 0.971 0.906 0.980 0.934

D + F (𝑤: 7) 0.968 0.905 0.977 0.931
D + F (𝑤: 9) 0.971 0.906 0.980 0.934
D + F (𝑤: 11) 0.970 0.904 0.978 0.932
D + F (𝑤: 13) 0.968 0.903 0.977 0.930

D + F (ℎ: spline) 0.969 0.906 0.977 0.930
D + F (ℎ: dilation) 0.971 0.906 0.980 0.934
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with contrastive learning

(a) Reconstruction loss according to iterations (b) Qualitative comparisons
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Input Output   
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Figure 10. Ablation study on edge-guided contrastive learning.
(a) demonstrates enhanced reconstruction loss, integrated with our
contrastive learning and (b) shows qualitative comparisons of this.

contour quality. We also present qualitative results of this
according to different guidance edges in Figure 11. In the
second section, we also examine changes in the window
size for Gaussian adaptive thresholding used in depth-based
edge detection and find it to be relatively insensitive, pre-
sumably due to the continuous nature of the drawing. The
third section covers two approaches for flow-based edges:
B-spline interpolation [8] and dilation. Dilation produces
better results, as it mitigates the scarcity of source points.

Effectiveness of contrastive learning. Figure 10 shows
the effectiveness of edge-guided contrastive learning in
terms of reconstruction loss and outcomes. Applying con-
trastive learning leads to a faster drop in reconstruction loss
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Figure 12. Comparison results about OSF with (a) 3D edge detec-
tion [27] and (b) Flow-Depth Edge Detection (FDED, Ours).

with fewer iterations (Figure 10 (a)), ultimately converging
to a lower value. Consequently, the stylization provides
sharper textures and contours, shown in Figure 10 (b).

Ablation study on edge guidance. Figure 11 shows qual-
itative animation results using various edges obtained from
FDED. With USNet as the base stylization network, we test
four edge configurations: (1) none, (2) depth-only, (3) depth
+ flow (no edge interpolation), and (4) depth + flow (with
interpolation). Without edge guidance, stylization is highly
unstable, producing blurred contours and strokes. We high-
light occluded regions in a zoomed view (red box). Depth-
only edges capture the overall silhouette but miss contours
in occluded regions, causing incomplete animations. Incor-
porating flow-based edges addresses occluded contours but
appears scattered when interpolation is absent. By adding
the edge interpolation, flow-based edges produce sharper
contours, improving the final result. Figure 12 presents the
comparison results of 3D edge detection [27]. Although the
drawn 3D edges convey finer detail and three-dimensional
depth, they were unsuitable for stylization guidance. Be-
cause stylization misinterprets them as contours, the result-
ing texture merges with them, causing a blurry appearance.

Robustness analysis on occlusion. Figure 13 presents the
occlusion robustness evaluation of the stylization-based 3D
animation system, comparing results with and without the
application of FDED. We define occlusion rate by calculat-
ing a reduction in the object’s visible area9 compared to the
original input drawing pose. The giraffe character in Figure
13 illustrates example poses at varying occlusion levels. As
occlusion increases, the output animation quality (i.e. blue)

9Samples only with visible occlusion are considered

0% 20% 40%

CLIP

Consistency according to occlusion rate

Occlusion rate
0% 20% 40%

Fidelity according to occlusion rate
1-LPIPS

Occlusion rate

0.90

0.94

0.28

0.36

USNet
USNet + FDED

Figure 13. Robustness analysis of FDED on stylization-based 3D
animation model (USNet). The characters illustrate examples of
varying occlusion levels based on occlusion rate.

Table 3. Inference time and memory usage across stylization net-
works (excluding 3D diffusion model for isolated analysis).

Method seconds/frame memory

DSU [68] 0.276 11.62 GB
DSU [68] + FDED (Ours) 0.282 11.91 GB

USNet (Ours) 0.108 4.81 GB
USNet + FDED (Ours) 0.115 5.05 GB

of the stylization system significantly deteriorates. Apply-
ing FDED to the system enhances robustness, extending the
range that ensures high-quality output in both consistency
and fidelity. However, with occlusion above 40%, quality
deteriorates, due to the complexity of multiple occluded ar-
eas, obscuring contours and strokes. For this, quantization
[34] into patch-wise encoding may enhance robustness.
Computational Complexity Analysis. Table 3 presents a
computational analysis of stylization processing in terms of
inference time and resource usage for the DSU and USNet
baselines. The proposed USNet resolves the DSU’s two-
stage complex inference process into a single-stage process,
achieving over twice the efficiency in inference time and
memory usage. Furthermore, the integration of FDED in-
troduces minimal overhead in inference time. This can be
improved with diffusion acceleration techniques [16, 25].

5. Conclusion
This paper addresses the challenge of generating 3D ani-
mations from hand-drawn images while preserving stylistic
details such as rough contours and strokes. Existing models
suffer from quality deterioration, especially under occlusion,
due to a stylization pose gap between the unoccluded poses
used in a training and the dynamic poses encountered in
an inference. To this end, we introduce Occlusion-robust
Stylization Framework (OSF), which improves robustness
of stylization under occlusion via our designed flow-depth
edge detection. Furthermore, OSF operates in a single pass,
achieving faster inference and reducing memory usage.
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