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Abstract

Recently, there has been gradually more attention paid to
Out-of-Distribution (OOD) performance prediction, whose
goal is to predict the performance of trained models on un-
labeled OOD test datasets, so that we could better leverage
and deploy off-the-shelf trained models in risk-sensitive sce-
narios. Although progress has been made in this area, eval-
uation protocols in previous literature are inconsistent, and
most works cover only a limited number of real-world OOD
datasets and types of distribution shifts. To provide conve-
nient and fair comparisons for various algorithms, we pro-
pose Out-of-Distribution Performance Prediction Bench-
mark (ODP-Bench), a comprehensive benchmark that in-
cludes most commonly used OOD datasets and existing
practical performance prediction algorithms. We provide
our trained models as a testbench for future researchers,
thus guaranteeing the consistency of comparison and avoid-
ing the burden of repeating the model training process. Fur-
thermore, we also conduct in-depth experimental analyses
to better understand their capability boundary.

1. Introduction

Although deep learning has achieved significant progress in
many applications [1, 10, 55, 83], their performance heav-
ily relies on the assumption that test data follows the same
distribution as training data does, known as the L.ID. as-
sumption. Yet in wild environments, such an assumption
can be easily violated and models are likely to encounter
severe performance degradation in the face of distribution
shifts [74], which severely hinders applications of deep
learning models in risk-sensitive areas like autonomous
driving [13] and medical imaging [92]. In recent years,
there have been many algorithms proposed to improve the
Out-of-Distribution (OOD) generalization ability of mod-

tEqual contribution, *Corresponding author

1kh20@mails.tsinghua.edu.cn,

xingxuanzhang@hotmail.com,

1846

1db22@mails.tsinghua.edu.cn

cuip@tsinghua.edu.cn

. ATC
Nuclear Norm
bocC

B Dispersion
Agreement
. coT
COoTT

Rank Correlation

Natural

Synthetic

Shift Type

Figure 1. Rank correlation between predicted scores and ground
truth performances. We can see that most of current algorithms do
well in synthetic corruptions, but generally fail in natural shifts.

els, including invariant learning [2, 20, 51], domain gen-
eralization [11, 40, 66], distributionally robust optimiza-
tion [28, 76, 85], stable learning [21, 94, 102], etc. Nev-
ertheless, none of these algorithms could substantially im-
prove the OOD performance [31, 42] and learn trustworthy
models that can be deployed under risk-sensitive scenarios.
Instead of developing algorithms and training new mod-
els to improve the OOD generalization ability, with a
tremendous number of off-the-shelf trained models nowa-
days, it is efficient and meaningful to directly leverage them
by taking a look at the other side of the coin [95]: Given
trained models, we aim to predict their performance on un-
labeled OOD datasets, i.e. OOD performance prediction.
With successful performance prediction, we could safely
apply models to their well-performing scenarios and use
them with caution in their poorly-performing scenarios, e.g.
simply avoiding their usage or cooperating with humans in
such scenarios. Meanwhile, we could conduct model se-
lection from a pool of models when facing unseen environ-
ments. Therefore, we could broaden the application of off-
the-shelf deep learning models in risk-sensitive areas.

Recently, more attention has been paid to the area of



OOD performance prediction from various perspectives.
They try to leverage model confidence [29, 30], distribution
discrepancy [24, 58], model agreement [3, 69], etc., to carry
out the task of performance prediction. Some literature tries
to predict the value of model performance [25, 29, 60] while
more proposes to calculate a score as the surrogate of per-
formance [62, 87, 88]. Although their improvement and ef-
fectiveness have been preliminarily verified through exper-
iments on real-world datasets [34, 36, 67, 68], the evalua-
tion protocols in previous works are inconsistent, includ-
ing details of training models whose performance needs
to be predicted, OOD test datasets, and evaluation met-
rics. Meanwhile, both the number of real-world test datasets
and the types of distribution shifts are relatively limited.
For example, datasets widely used in domain generaliza-
tion [46, 52, 84] and subpopulation shift [43, 56, 70], which
are two vital sub-areas in OOD generalization, are rarely
covered in previous works of OOD performance prediction.
In such cases, it becomes difficult to make fair and compre-
hensive comparisons between different performance predic-
tion algorithms. Moreover, the application range and ca-
pability boundary of current performance prediction algo-
rithms have not been well-determined and clearly explored.
To fully understand and investigate existing algorithms
and better promote future research in this area, in this pa-
per we establish Out-of-Distribution Performance Predic-
tion Benchmark (ODP-Bench). We provide 1,444 trained
models of various architectures, weight initializations, and
training algorithms, which are open-sourced and directly
available for future researchers so that they do not need
to repeat the model training process. Our benchmark in-
cludes 29 OOD datasets that cover diverse types of dis-
tribution shifts, and 10 performance prediction algorithms.
Besides, we provide our codebase' where a new proposed
algorithm can be easily added with small efforts of code
implementation. In this way, we enable convenient and fair
comparisons for both current and future algorithms. Fur-
thermore, we conduct empirical analyses of performance
prediction algorithms. One pivotal conclusion is that, as
revealed in Figure I, current algorithms show their effec-
tiveness on OOD datasets with synthetic corruptions, which
are exactly the most commonly adopted datasets in previ-
ous works of performance prediction, but cannot address di-
verse and complex natural distribution shifts well. This sug-
gests the necessity and significance of our comprehensive
benchmark for promoting future research on performance
prediction. Our contributions are listed below:
* We propose ODP-Bench, a large comprehensive bench-
mark of OOD performance prediction covering 29 OOD
datasets and 10 algorithms, where diverse types of distri-
bution shifts are included.
Our benchmark provides 1,444 off-the-shelf models and

Uhttps://github.com/h-yu16/Performance_Prediction/
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a codebase for future researchers to easily add and test
newly proposed algorithms on. This enables fair and con-
venient comparisons between different algorithms.

* We conduct further experimental analyses to better under-
stand the capability boundary of current algorithms.

2. Related Work

Out-of-Distribution Generalization There have been
multiple branches of research devoted to OOD generaliza-
tion of machine learning models [74]. Invariant learning
aims to capture the invariant relationship between the out-
come and input covariates given training data from different
environments [2, 48, 51], but usually limited in the range
of tabular data. Distributionally robust optimization (DRO)
pursues a different objective, i.e. finding the worst per-
forming distribution in a ball centered around the training
distribution and optimizing under it [28, 76], yet it suf-
fers from over-pessimism. Focusing on visual data, do-
main generalization proposes diverse solutions, including
invariant representation learning [66, 72], data augmenta-
tion [106], meta learning [4, 53, 54], flatness-aware op-
timization [11, 104, 105], etc. Another branch is stable
learning which aims to decorrelate covariates via sample
reweighting to remove spurious correlations [21, 102] but
suffers from variance inflation [94, 97].

Out-of-Distribution Performance Prediction Despite
progress has been made in OOD generalization, none
of current algorithms have empirically shown a signifi-
cant improvement over simple empirical risk minimization
(ERM) [31, 42]. As suggested [95], we can put more em-
phasis on the evaluation of OOD generalization, among
which OOD performance prediction is an important aspect.
Some take advantage of different model output properties
like model confidence [29], prediction dispersity [26], ma-
trix norm [88], feature separability [87], neighborhood in-
variance [60], rotation invariance [25], etc. Some measures
the discrepancy between covariates of training distribution
and those of OOD test distribution [24, 58]. Another series
leverages the phenomenon of agreement-on-the-line [3, 69]
given a number of trained models.

3. Notations and Problem

Notations We use X € X to denote input variables and
Y € )Y to denote the outcome, where X and ) denote
their support. P! (X,Y’) denotes training distribution and
P*(X,Y) denotes test distribution. In the OOD circum-
stance, P**(X,Y) # P (X,Y). A trained model is de-
noted as fp, : X — Y with fixed parameters 6. A val-
idation dataset is denoted as {z}?,yy*}:*¢ and an OOD
test dataset is denoted as {z!®,y!¢}"s. Usually valida-

tion data follows the training distribution, i.e. (z?%,y¢®) ~



Table 1. Information of all datasets included in ODP-Bench. For domain generalization (DG), there is multiple training and test settings
for each dataset, so the sample size indicates the entire dataset. “DG” is short for domain generalization. “#” indicates the number or size.

Source | TestDataset | #Classes | #Train Set | #Val Set | #TestSet |  Shift Type | #Trained Models
CIFAR-10-C 10 19*#50000 Corruption
CIFAR-10.1 0 2021+2000 | Data collection
CIFAR-10 CIFAR-10.2 10 50000 10000 2000 Data collection 57
CINIC-10 10 70000 Data collection
STL-10 10 7200 Data collection
CIFAR-100 | CIFAR-100-C 100 50000 10000 19*#50000 Corruption 108
TinylmageNet-C 200 15*5%10000 Corruption
ImageNet-C 1000 19*5%50000 Corruption
ImageNet-S 1000 50889 Style
. ImageNet-R 200 30000 Style
[mageNet ObjectNet 313 1281167 50000 18574 Camera location 109
ImageNet-V2 1000 3*10000 Data collection
ImageNet-A 200 7500 Adversarial
ImageNet-Vid 30 22179 Time
WILDS iWildCam 182 129809 7314 42791 Camera location 90
FMoWw 62 76863 11483 22108 Time, region 90
Camelyon17 2 302436 33560 85054 Data collection 90
RxRx1 1139 40612 40612 34432 Batch effect 90
Amazon 5 245502 46950 100050 Data collection 39
CivilComments 2 269038 45180 133782 Demographics 30
PACS 7 9991 Style 120
OfficeHome 65 15588 Style 120
DG DomainNet 345 586920 Style 90
NICO++ 60 88926 Background 90
VLCS 5 10729 Data collection 120
Terralnc 10 24330 Camera location 120
Waterbirds 2 4795 1199 642 Background 30
Subpop CelebA 2 162770 19867 180 Demographics 30
CheXpert 2 167093 22280 661 Demographics 30

t

P (X,Y), and test data (z!¢, y!¢) ~ P**(X,Y).

Problem Given a trained model fy,, a labeled validation
dataset {z}®, y?*};"*$, and an unlabeled OOD test dataset
{xle} e, the goal is to predict performance of the model
on the test dataset so that it is close to ground truth per-
formance, or to calculate a score positively correlated with
ground truth performance. For a few algorithms of direct
performance estimation, we can calculate the gap between
estimated performances and ground truth performances for
evaluation. For algorithms predicting a surrogate score in-
stead of estimating the value of performance, since usu-
ally there are multiple trained models or multiple OOD test
datasets, we can measure the correlation between surrogate
scores and ground truth performances for evaluation.

4. Benchmark Design

In this section, we introduce the organization of our bench-
mark. More details are in Appendix A.1.

4.1. Datasets

In previous works of OOD performance prediction, they
only evaluate on a limited number of datasets, and they
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mostly focus on the case where ImageNet and CIFAR-10
are treated as the training dataset. They seldom evaluate
performance prediction algorithms on OOD datasets that
are widely adopted in domain generalization and subpop-
ulation shift. Besides, the types of distribution shifts pre-
vious works have covered are not diverse enough. They
have mostly covered shifts of synthetic corruptions, style,
and the process of data collection, but they seldom in-
vestigate shifts caused by camera locations, image back-
grounds, and demographic attributes. To establish a com-
prehensive benchmark, we include 29 OOD datasets in
our benchmark, covering most commonly used datasets
in the area of OOD generalization and OOD performance
prediction and more diverse types of distribution shifts.
We list detailed information of the included OOD datasets
in Table 1. We also provide examples from represen-
tative OOD datasets for common types of shifts in Ta-
ble 2. For variants of CIFAR [50], we include CIFAR-
10-C and CIFAR-100-C [34] as synthetic distribution shifts
induced by corruptions, and we include CIFAR-10.1 [67],
CIFAR-10.2 [57], CINIC-10 [22], and STL-10 [19] as
representatives of real-world shifts. For variants of Im-
ageNet [23], we include ImageNet-C and TinylmageNet-
C [34] as synthetic distribution shifts also caused by corrup-



Table 2. Examples of representative datasets for various types of distribution shift. For the shift type of demographics, it represents
demographic attributes like sex. For example, in training and validation data of CelebA, they mostly consist of blond hair female and black

hair male, but in test data it mostly consists of blond hair male.

Type | Dataset | Val ‘ Test
Corruption ImageNet-C
Style PACS
Background NICO++
Data collection VLCS
Camera location | iWildCam
Demographics CelebA

tions, and we include ImageNet-V2 [68], ImageNet-S [86],
ImageNet-A [36], ImageNet-R [35], ObjectNet [6], and
ImageNet-Vid-Robust [73] covering various types of real-
world shifts. For WILDS [47], we choose iWildCam [8],
FMoW [18], Camelyonl7 [5], RxRx1 [78], Amazon [61],
and CivilComments [9] as representative datasets. For do-
main generalization, we include all commonly used ones:
PACS [52], VLCS [46], OfficeHome [84], Terralnc [7],
DomainNet [63], and NICO++ [103]. For subpopulation
shift, we include three most commonly used ones: Wa-
terbirds [70], CelebA [56], and CheXpert [43]. Note that
for variants of ImageNet and CIFAR, and datasets from
WILDS, each dataset corresponds to only one fixed set-
ting of training and testing, while for domain generalization
datasets, each employs leave-one-domain/group-out prac-
tice, i.e. testing on one domain or one group of domains and
training on the rest domains, thus leading to multiple set-
tings. For subpopulation shift, we treat the worst subgroup
as the OOD test dataset, which is fixed and determined in
advance according to experiments in previous literature.

4.2. Training

We provide a total of 1,444 off-the-shelf trained models for
subsequent researchers to directly test their performance
prediction algorithms on. Note that this not only enables
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fair comparisons between algorithms on the same testbench,
but also greatly reduces their burden of training models re-
peatedly. The number of trained models for each dataset
can also be referred to in Table 1. For variants of Ima-
geNet, we directly leverage 109 open-sourced models of
different architectures included in Torchvision. For variants
of CIFAR-10 and CIFAR-100, we train from scratch with
each architecture three random seeds following default set-
tings in two public repositories’’. The former yields 19 x 3
models while the latter 36 x 3 models. For WILDS, we
follow its default setting [47] to train one model initial-
ized from ImageNet supervised pretrained weights for 30
different model architectures. For domain generalization
datasets, we follow Gulrajani and Lopez-Paz [31] and Yu
et al. [96] to adopt the leave-one-domain-out setting for
PACS, VLCS, OfficeHome, and Terralnc, and the leave-
one-group-out setting for DomainNet and NICO++, and we
use supervised, MoCo-v2 [14], and CLIP [64] pretrained
weights as initialization for ResNet-50 [32], and supervised,
MoCo-v3 [15], and CLIP pretrained weights as initializa-
tion for ViT-B/16 [27]. Each setting leads to 5 models with
different random seeds, yielding 30 trained models. For
subpopulation shift datasets, we employ the same training

Zhttps://github.com/kuangliu/pytorch-cifar
3https://github.com/weiaicunzai/pytorch-cifar100



protocol as that of domain generalization, thus each also
yielding 30 trained models.

4.3. Algorithms

In our benchmark, we evaluate 10 performance prediction
algorithms, covering almost all practical ones. We do not
include algorithms that require additional training of mod-
els [12, 25, 98]. We list adopted algorithms below:
Average Thresholded Confidence (ATC) [29]: Learn a
threshold on model confidence and employ fraction of
samples with higher confidence as the predicted accuracy.
Difference of Confidences (DoC) [30]: Calculate the dif-
ference between average model confidence on the OOD
test dataset and the validation dataset.

Nuclear Norm [26]: Adopt nuclear norm of prediction
matrix to measure both confidence and dispersity.
Neighborhood Invariance (NI) [60]: Calculate the label
invariance across augmented examples in the neighbor-
hood of a given test sample.

Matrix Norm (MaNo) [88]: Calculate the L, norm of the
prediction matrix.

Dispersion Score (Dispersion) [87]: Measure inter-class
feature separability with average distances between each
feature cluster centroid induced by pseudo labeling and
the centroid of all features.

Meta-Distribution Energy (MDE) [62]: Calculate average
energy of unlabeled test data via probability density of the
Gibbs distribution.

Agreement [3]: Leverage agreement-on-the-line to pre-
dict model performance based on model agreement.
Confidence Optimal Transport (COT) [58]: Calculate
Wasserstein distance between predicted label distribution
on test data and true label distribution on validation data.
Confidence Optimal Transport with Thresholding
(COTT) [58]: A variant of COT that applies thresholding
to transport costs to improve estimation.

4.4. Evaluation Metrics

In previous literature, only a few methods are capable of
directly estimating the value of accuracy. Actually, there
is usually a series of trained models or OOD datasets
available. Thus it is generally practical enough to pro-
vide a series of surrogate scores so that the predicted best-
performing model or dataset can be selected. Therefore, for
each OOD dataset, we calculate Spearman’s rank corre-
lation p between predicted scores and ground truth perfor-
mances of a set of trained models to evaluate the effective-
ness of performance prediction algorithms:

6%, (R(S) — R(Acer))?
n(n? —1)

p=1 (1)

Where S; represents the i-th predicted score, Acc; repre-
sents the i-th ground truth accuracy, and R(-) implies the
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rank of S‘i or Acc; in their sequence. This metric has been
widely adopted before [3, 26, 30, 62, 87-89]. We do not
choose coefficient of determination R? as the main evalua-
tion metric since it is quite sensitive to outliers and it cannot
address the nonlinear correlation. We will conduct analy-
ses of R? and p in Section 5.2. Besides, some previous
works calculate R? and p of models only when the mod-
els share the same architecture, and most of the results are
larger than 0.95, even quite close to 1 [26, 62, 87-89]. Al-
though this demonstrates the effectiveness of the proposed
algorithms to some extent, it might not be practical enough
since there are usually different architectures in a given pool
of trained models. Thus in our benchmark ODP-Bench, we
calculate these metrics for models across different architec-
tures, which is both more challenging and more meaningful.

5. Experiments

In this section, we present detailed results of our estab-
lished benchmark ODP-Bench and conduct other experi-
mental analyses of evaluation metrics, model architectures,
pretrained weights, etc.

5.1. Benchmark results

The complete results are shown in Table 3, where the
datasets are sorted in a descending order of average rank
correlations achieved by the 10 algorithms. The last col-
umn is the number of effective algorithms for a specific
OOD dataset, where we defined “effective as p > 0.7. We
can see that many algorithms achieve a considerable rank
correlation on OOD datasets whose shifts are created by
synthetic corruptions, including CIFAR-10-C, CIFAR-100-
C, and ImageNet-C. These are exactly the most commonly
adopted datasets in previous literature. This indicates that it
would be better to shift focus to more complex real-world
distribution shifts when evaluating performance prediction
algorithms in the future. For OOD datasets whose shifts are
induced by image style, effectiveness of current algorithms
gradually decrease with the increasing complexity and di-
versity of styles. For PACS and OfficeHome that have four
different styles, about half of algorithms achieve satisfying
results. For DomainNet with six styles, only two algorithms
exhibit effectiveness. For OOD datasets whose shifts come
from the process of data collection, including CINIC-10,
STL-10, CIFAR-10.1/10.2, and VLCS, fewer than half of
algorithms work well. This might be due to the complexity
of data collection process. Nevertheless, for NICO++ com-
posed of six different domains whose shifts are generated
by image background, the shifts should have been complex
enough, while almost all algorithms are capable of achiev-
ing a high rank correlation. This could be because the com-
plex shifts of background contribute mostly to the covariate
shift, i.e. shift caused by P(X) instead of concept shift,
i.e. shift caused by P(Y|X) in NICO++, since Zhang et al.



Table 3. Complete results of ODP-Benchincluding 29 OOD datasets and 10 OOD performance prediction algorithms. The adopted metric
is Spearman’s rank correlation between predicted scores and ground truth performances. The last column represents the number of effective
algorithms on the corresponding dataset, where “effective” is defined as p > 0.7.

Dataset ‘ ATC Nu.Norm DOC NI MaNo Dispersion MDE  Agreement COT COTT ‘ Avg.  #Effective
CIFAR-10-C \ 0.951 0.934 0.884 0.818 0.836 0.903 -0.832 0.991 0.980  0.990 \ 0.746 9
CIFAR-100-C \ 0.948 0.829 0.874  0.868  0.738 0.718 -0.703 0.971 0.892  0.985 \ 0.712 9

NICO++ \ 0.970 0.797 0.742 0929 0.846 0.802 -0.777 0.932 0.844  0.965 \ 0.705 9
OfficeHome \ 0.911 0.594 0465 0912 0.754 0.541 -0.409 0.936 0.693  0.933 \ 0.633 5

ObjectNet \ 0.794 0.674 0.640 0.875 0.672 0.689 -0.670 0.973 0.706  0.845 \ 0.620 5
ImageNet-C \ 0.933 0.596 0.556  0.790  0.453 0.581 -0.506 0.933 0.583  0.839 \ 0.576 4
ImageNet-V2 \ 0.993 0.260 0958 0.845 0.149 0.323 -0.216 0.996 0.357  0.986 \ 0.565 5
ImageNet-S \ 0.961 0.500 0480 0.846 0.343 0.438 -0.384 0.838 0.582  0.987 \ 0.559 4

PACS \ 0.708 0.769 0.657 0.825 0.489 0.772 -0.736 0.909 0.498  0.636 \ 0.553 5
CIFAR-10.1 \ 0.717 0.526 0423  0.766 0.524 0.533 -0.524 0.850 0.556  0.718 \ 0.509 4
CIFAR-10.2 \ 0.780 0.511 0.364 0.800 0.511 0.511 -0.508 0.807 0.541  0.750 \ 0.507 4
ImageNet-R \ 0.742 0.325 0.338 0.859 0414 0.232 -0.278 0.926 0.404  0.885 \ 0.485 4

TinyImageNet-C \ 0.617 0.553 0454 0530 0.487 0.274 -0.343 0.740 0.583  0.839 \ 0.473 2
DomainNet \ 0.841 0.563 0.344 0235 0.624 0.563 -0.565 0.433 0.601  0.874 \ 0.451 2

STL-10 \ 0.718 0.432 0.003 0.825 0412 0.419 -0.402 0.771 0.567  0.745 \ 0.449 4

FMoW \ 0.964 0.716 0.172  0.299 -0.305 0.678 -0.674 0.859 0.681  0.955 \ 0.435 4

CINIC-10 \ 0.706 0.318 -0.075  0.867  0.320 0.307 -0.301 0.794 0423  0.728 \ 0.409 4

VLCS \ 0.472 -0.036 0.142  0.699 0.520 0.145 0.060 0.777 0.112 0457 \ 0.335 1

iWildCam \ 0.669 0.103 0.341 0540 0.023 0.273 0.012 0.508 0.190  0.618 \ 0.328 0
ImageNet-Vid \ -0.095 0.712 -0.690 0.556  0.606 0.648 -0.597 0.654 0.743  0.737 \ 0.328 3

RxRx1 \ 0.983 0.882 -0.738  -0.538 -0.356 0.863 -0.888 0.979 0.885  0.979 \ 0.305 6
ImageNet-A \ 0.503 0.135 0.208 0.818 0.209 0.143 -0.158 0.197 0.122  0.530 \ 0.270 1

Amazon \ 0.749 0.077 -0.225 - 0.091 0.073 -0.131 0.810 0.123  0.640 \ 0.245 3
Camelyon17 \ 0.296 0.632 -0.506  -0.513  0.056 0.747 0.315 -0.637 0.796  0.668 \ 0.185 2

Terralnc \ 0.370 0.440 0.282 0355 -0.067 0.438 -0.482 0.422 -0.122 -0.062\ 0.157 0
CivilComments \ 0.806 -0.779 -0.096 - 0.454 -0.850 0.496 0.818 -0.350  0.537 \ 0.115 3
Waterbirds \ 0.219 0.449 0.825 -0.194 0.149 0.475 0.037 0.473 -0.960 -0.883 \ 0.059 1

CelebA \ 0.392 0.498 0.369 0.027 0.463 0.602 -0.350 0.162 -0.922  -0.825 \ 0.042 0

CheXpert \ 0.052 0.327 -0.752  -0.786 -0.472 0.782 0.535 -0.530 -0.786  -0.853 \ -0.248 1

[103] find that NICO++ has smaller concept shift and larger
covariate shift compared with other domain generalization
datasets. In addition, it is worth noting that all three sub-
population datasets seem to be extremely “hard” with no or
only one algorithm achieving a rank correlation higher than
0.7. Many algorithms even achieve a negative rank correla-
tion on these datasets. This might be due to over-confidence
in certain subpopulations. For example, in CelebA, ERM-
trained models tend to classify faces of blond hair male as
not blond hair with high confidence since it learns the strong
spurious correlation between blond hair and female. This
indicates that more attention could be paid to performance
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prediction associated with subpopulation shifts.

From the perspective of the evaluated algorithms, we can
see that ATC, NI, Agreement, and COTT achieve relatively
desirable overall results in performance prediction, even
some of them are quite simple and straightforward com-
pared with the rest of algorithms. Nevertheless, all of them
still fail on many datasets, indicating that they are not uni-
versal enough to address diverse and complicated scenarios.
It is also worth noting that the four algorithms adopt com-
pletely different practices: ATC employs model confidence,
NI leverages invariance under data augmentations, Agree-
ment takes advantage of the property of generalization dis-
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(a) MaNo applied on Real domain of OfficeHome, (b) MDE applied on Art domain of PACS, where (c) Dispersion applied on Product domain of Office-

where R? = 0.912, p = 0.475.

R? =0.881, p = —0.911.

Home, where R2 = 0.475, p = 0.793.

Figure 2. Scatter plots of predicted scores against ground truth accuracies.

Table 4. Rank correlation measured on PACS with models trained by different OOD generalization algorithms. Overall, performance
prediction algorithms achieve slightly higher rank correlation for models trained with OOD generalization algorithms than with ERM.

OOD Algorithm ‘ ATC Nu. Norm DOC NI  MaNo Dispersion MDE Agreement COT COTT ‘ Avg.
ERM 0.708 0.769 0.657 0.825 0.489 0.772 -0.736 0.909 0.498 0.636 | 0.553
RSC 0.744 0.762 0.653 0.728 0.788 0.778 -0.716 0.893 0.534 0.785 | 0.595
Mixup 0.784 0.758 0.678 0.798 0.610 0.766 -0.687 0.854 0.804 0.831 | 0.620
SWAD 0.698 0.730 0.642 0.778 0.589 0.715 -0.631 0.856 0.605 0.704 | 0.569

CORAL 0.740 0.719 0.672 0.740  0.460 0.729 -0.619 0.885 0.599  0.770 | 0.569

agreement equality [44], and COTT focuses on pseudo label
shift. This implies that it is still not clear which direction is
the correct and most promising one in the area of OOD per-
formance prediction, and the development of performance
prediction algorithms is far from convergence.

5.2. Analysis of evaluation metrics

We mainly focus on the comparison between Spearman’s
rank correlation p and the coefficient of determination RZ.
We pick three showcases for analyses shown in Figure 2:
MaNo applied on Real domain of OfficeHome, MDE ap-
plied on Art domain of PACS, and Dispersion applied on
Product domain of OfficeHome. In Figure 2a, it shows that
R? is relatively high but p is quite low, and we can clearly
see that there are several outliers with accuracies lower than
0.4. When there are outliers, R? could become rather large
without really exhibiting a strong linear correlation. In such
a case, p is more appropriate. In Figure 2b, the scores and
the ground truth accuracies are reversely correlated but R?
is very high since there is a strong linear correlation. In such
a case, p is also more appropriate. Figure 2¢ shows the op-
posite, i.e. R? is relatively low but p is quite high. We can
see that although the scores and the ground truth accuracies
are not linearly correlated, they still show a relatively mono-
tonic pattern, which also matches our requirement of eval-
uation. Overall, considering these failure cases of R?, we
treat Spearman’s rank correlation p as a more proper and ef-
fective evaluation metric for OOD performance prediction,
and we adopt it in our main experiments. Discussion related
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to other metrics can be referred to in Appendix A.2.1.

5.3. Analysis of OOD generalization methods

In previous works, performance prediction algorithms were
only applied on models trained with simple ERM. To in-
vestigate the effect of OOD generalization methods that
are used to train models, we choose four representative
OOD generalization methods: RSC [40], Mixup [99],
SWAD [11], and CORAL [77], and train models on PACS
with them. Results are in Table 4. We can see that the
change of OOD generalization methods has a large influ-
ence in some cases, e.g. MaNo applied to models trained
with ERM and RSC, COTT applied to models trained with
ERM and Mixup. Overall, when applied to models trained
with OOD generalization methods, performance prediction
algorithms could achieve higher rank correlations compared
with models trained with ERM. This could be because OOD
generalization methods help reduce the performance gap
between training and test distribution, which might be eas-
ier for performance prediction algorithms to work.

5.4. Analysis of pretraining strategies

We investigate pretraining strategies including supervised
pretraining, MoCo (MoCo-v2 for ResNet-50 and MoCo-
v3 for ViT-B/16), and CLIP on PACS. Results of ATC,
NI, Agreement, and COTT, the four most effective algo-
rithms, are shown in Figure 3a. We can see that pretrain-
ing strategies have a large influence on the effectiveness of
performance prediction. For ATC, NI, and COTT, the rank
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Figure 3. Analyses of pretraining strategies, model architectures, and degree of distribution shift.

correlation increases as the pretraining strategy changes
from supervised to MoCo and CLIP. This could be because
MoCo and CLIP are contrastive learning strategies that do
not directly rely on the y label, so models initialized with
these pretrained weights are less likely to encounter over-
confidence and could be better calibrated, making it eas-
ier for performance prediction algorithms to apply to. For
Agreement, the supervised pretraining strategy performs
best, which could be because the property of generalization
disagreement equality [44] holds better with supervised pre-
trained weight initialization.

5.5. Analysis of model architectures

To investigate the effect of model architectures on the re-
sults of performance prediction, we compare ResNet-50 and
ViT-B/16 on PACS. From Figure 3b, we can see that for
most algorithms, changing to a larger architecture results in
even lower rank correlations except for ATC. This indicates
that it is generally harder to predict performances of larger
models, but confidence-based algorithms are worth being
explored for scaling to larger models in future research.

5.6. Analysis of degree of distribution shift

To characterize the degree of distribution shift, we investi-
gate NI on TinyImageNet-C and ImageNet-C, both of which
have 5 degrees of distribution shift depicted by the sever-
ity of corruption. Figure 3c shows that the effectiveness of
NI decreases as the corruption severity grows. This could
indicate that performance prediction algorithms work bet-
ter with smaller distribution shifts. However, as mentioned
in Section 5.1 and revealed in Table 3, datasets like NICO++
and ObjectNet also exhibits strong distribution shift, but
many algorithms show their effectiveness on these datasets,
indicating the requirement of further in-depth analyses.

5.7. Analysis of subpopulations

In Table 3, results of our benchmark show that current per-
formance prediction algorithms fail on subpopulation shift
datasets where subpopulations are induced by attributes and
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categories with a strong spurious correlation. Here we con-
duct experiments by conducting performance prediction on
each category, which also formulates subpopulations but
without strong spurious correlations. We choose five al-
gorithms that do not require diversity of category labels.
From Table 5, we can see that the phenomenon of failure on
subpopulation shift datasets does not occur here. This im-
plies that spurious correlations play a key role in the failure
of performance predictions under subpopulation shift situa-
tions, which could be paid more attention to in the future.

Table 5. Rank correlation measured on each category of PACS.

Category | ATC DOC NI  MaNo Agreement | Avg.
y=0 0.737 0.782 0.822 0.425 0.915 0.736
y=1 0.817 0.811 0.847 0.328 0.895 0.740
y=2 0.737 0.769 0.779 0.445 0.892 0.725
y=3 0.815 0.752 0.760 0.360 0.916 0.721
y=4 0.770  0.671 0.790 0.277 0.677 0.637
y=2>5 0.878 0.829 0.831 0.511 0.880 0.786
y==6 0.798 0.798 0.851 0.409 0.838 0.739

6. Conclusion

In this paper, we propose a large and comprehensive bench-
mark named ODP-Bench. It includes 29 OOD test datasets
and 10 OOD performance prediction algorithms, covering
diverse types of distribution shifts. It provides a testbench
of 1,444 off-the-shelf trained models, which greatly reduces
the burden of model training for future researchers and en-
ables fair comparisons between different algorithms. It also
provides a codebase so that a newly proposed algorithm can
be easily added without complicated code implementation.
The experimental results show that although current perfor-
mance prediction algorithms exhibit effectiveness on cer-
tain types of shifts, e.g. synthetic corruptions, they are not
universal enough to address all kinds of complex real-world
shifts, which are left for future research.
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