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Abstract

This paper presents Randomized AutoRegressive modeling
(RAR) for visual generation, which sets a new state-of-the-
art performance on the image generation task while main-
taining full compatibility with language modeling frame-
works. The proposed RAR is simple: during a standard
autoregressive training process with a next-token predic-
tion objective, the input sequence—typically ordered in
raster form—is randomly permuted into different factor-
ization orders with a probability r, where r starts at 1
and linearly decays to 0 over the course of training. This
annealing training strategy enables the model to learn to
maximize the expected likelihood over all factorization or-
ders and thus effectively improve the model’s capability
of modeling bidirectional contexts. Importantly, RAR pre-
serves the integrity of the autoregressive modeling frame-
work, ensuring full compatibility with language modeling
while significantly improving performance in image gen-
eration. On the ImageNet-256 benchmark, RAR achieves
an FID score of 1.48, not only surpassing prior state-of-
the-art autoregressive image generators but also outper-
forming leading diffusion-based and masked transformer-
based methods. Code and models are available at https:
//github.com/bytedance/1d-tokenizer.

1. Introduction
AutoRegressive (AR) models have driven remarkable ad-
vancements across both natural language processing and
computer vision tasks in recent years. In language modeling,
they serve as the fundamental framework for Large Language
Models (LLMs) such as GPT [45], Llama [64, 65], and Gem-
ini [62], along with other state-of-the-art models [1, 72]. In
the realm of computer vision, autoregressive models1 have
also shown substantial potential, delivering competitive per-
formance in image generation tasks [22, 37, 41, 52, 53, 57,

1While MaskGIT-style models [10] could be classified as “generalized
autoregressive models” as defined in [38], in this paper, we primarily use
the term “autoregressive” to refer to GPT-style models [22, 57, 75], which
are characterized by causal attention, next-token prediction, and operate
without the need for mask tokens as placeholders.

200 400 600 800 1000 1200 1400 1600
model size (M)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

FI
D 

(lo
we

r i
s b

et
te

r)

LlamaGen

Open-MAGVIT2

RAR (ours)

VIM

TamingTrans

Figure 1. Comparison among different language modeling com-
patible autoregressive (AR) image generators. The proposed
RAR demonstrates significant improvements over previous AR
methods. RAR-B, with only 261M parameters, achieves an FID
score of 1.95, outperforming both LlamaGen-XXL (1.4B parame-
ters) and Open-MAGVIT2-XL (1.5B parameters).

75, 76] to diffusion models [6, 18, 29, 38, 47, 55] or non-
autoregressive transformers [10, 34, 70, 77–79]. More im-
portantly, autoregressive modeling is emerging as a promis-
ing pathway toward unified models across multiple modali-
ties and tasks [5, 9, 14, 60, 61, 71].

Despite the dominance of autoregressive models in lan-
guage modeling, they often yield suboptimal performance in
comparison to diffusion models or non-autoregressive trans-
formers in visual generation tasks [41, 57]. This discrepancy
can be attributed to the inherent differences between text
and visual signals. Text is highly compact and semantically
meaningful, while visual data tends to be more low-level
and redundant [30, 79], making bidirectional context mod-
eling more critical. For instance, several studies [7, 21, 38]
have demonstrated that causal attention applied to image to-
kens leads to inferior performance compared to bidirectional
attention in vision tasks.

To address this, recent works [38, 63] have attempted
to reintroduce bidirectional attention by redesigning the au-
toregressive formulation, achieving state-of-the-art results in
image generation. However, these approaches often deviate
from the traditional autoregressive paradigm. For example,
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Figure 2. Overview of the proposed Randomized AutoRegressive (RAR) model, which is fully compatible with language modeling
frameworks. Left: RAR introduces a randomness annealing training strategy to enhance the model’s ability to learn bidirectional contexts.
During training, the input sequence is randomly permuted with a probability r, which starts at 1 (fully random permutations) and linearly
decreases to 0, transitioning the model to a fixed scan order, such as raster scan, by the end of training. Right: Randomly selected images
generated by RAR, trained on ImageNet.

VAR [63] shifts from next-token prediction to next-scale
prediction, enabling bidirectional attention within each scale,
and MAR [38] generalizes MaskGIT-style framework [10]
to the autoregressive definition, which naturally introduces
back the bidirectional attention. While effective, these mod-
ifications complicate their integration into universal trans-
former architectures that aim to unify different modalities,
which proves to work well with conventional autoregressive
modeling [60, 61].

In this paper, we aim to enhance the generation quality
of autoregressive image models while preserving the core
autoregressive structure, maintaining compatibility with lan-
guage modeling frameworks. Specifically, we enable bidirec-
tional context learning within an autoregressive transformer
by maximizing the expected likelihood over all possible fac-
torization order. In this way, all tokens will be trained and
predicted under all possible contexts, facilitating learning
bidirectional representation. Moreover, we introduce a per-
mutation probability r, which controls the ratio of training
data between a random factorization order and the standard
raster order. Initially, r is set to 1 (fully random factoriza-
tion) and it linearly decays to 0 over the course of training,
gradually reverting the model to the raster order commonly
used by other autoregressive image generators.

To this end, we present a simple, effective, and scalable
autoregressive model training paradigm named Randomized
AutoRegressive modeling (RAR). RAR retains the origi-
nal autoregressive model architecture and formulation, en-
suring full compatibility with language modeling. At the
same time, it significantly improves the generation qual-
ity of autoregressive models at no additional cost. On the

ImageNet-256 benchmark [16], RAR achieves an FID score
of 1.48, substantially outperforming previous state-of-the-art
autoregressive image generators, as illustrated in Fig. 1. By
addressing the limitations of unidirectional context model-
ing, RAR represents a critical step towards autoregressive
visual generation and opens up new possibilities for further
advancements in the field.

2. Related Work

Autoregressive Language Modeling. The advent of au-
toregressive language models [1–4, 9, 13, 20, 45, 48, 49,
62, 64, 65, 72] has paved a promising path toward general-
purpose AI systems. At the core of these models is a simple
yet powerful next-token prediction paradigm, where the ob-
jective is to predict the next word or token in a sequence
based on preceding inputs. This approach has demonstrated
both scalability, as evidenced by scaling laws, and versatil-
ity through zero-shot generalization, enabling explorations
beyond traditional language tasks to diverse modalities.
Autoregressive Visual Modeling. Pioneering research [12,
27, 46, 67, 68] in autoregressive visual modeling has fo-
cused on representing images as sequences of pixels. Nev-
ertheless, inspired by advancements in autoregressive lan-
guage modeling, a subsequent wave of studies has transi-
tioned to modeling images as sequences of discrete-valued to-
kens [22, 50, 51, 69, 75], resulting in notable improvements
in performance. This direction has been further explored
through efforts [41, 57] aimed at enhancing tokenization
quality and leveraging modern autoregressive architectures
initially developed for language tasks. However, all of these

18432



works strictly adhere to a raster-scan order for processing
pixels or tokens, resulting in a unidirectional information
flow that is sub-optimal for visual modeling. In this work,
we instead explore learning across all possible factoriza-
tion orders to enhance bidirectional context learning while
retaining the core autoregressive framework.
Other Visual Generation Models. In addition to autore-
gressive visual modeling, there have been numerous efforts
in exploring other formats of visual generation models, in-
cluding generative adversarial networks (GANs) [8, 26, 33],
diffusion models [18, 23, 32, 39, 47, 54, 73], masked trans-
formers [10, 11, 70, 77, 79], scale-wise autoregressive mod-
eling (VAR) [43, 59, 63, 81], and masked autoregressive
modeling with diffusion loss (MAR) [24, 38]. It is worth
noting that MAR [38] also experimented a random order
based AR framework similar to the proposed RAR. How-
ever, as indicated in our experiments (see Sec. 4.2), simply
replacing the raster order with random order only brings
marginal improvement, coinciding the observation in [38].
This further demonstrates the importance on the randomness
annealing strategy in RAR, leading to a substantial improve-
ment for the AR image generators.

3. Method
In this section, we first provide an overview of autoregressive
modeling in Sec. 3.1, followed by our proposed Randomized
AutoRegressive modeling (RAR) in Sec. 3.2.

3.1. Background
We provide a brief overview of autoregressive modeling with
a next-token prediction objective. Given a discrete token se-
quence x = [x1, x2, · · · , xT ], the goal of autoregressive
modeling is to maximize the likelihood of the sequence
under a forward autoregressive factorization. Specifically,
the objective is to maximize the joint probability of pre-
dicting the current token xt based on all preceding tokens
[x1, x2, · · · , xt−1], ∀t = 1, · · · , T :

max
θ

pθ(x) =

T∏
t=1

pθ(xt|x1, x2, · · · , xt−1), (1)

where pθ denotes a token distribution predictor with a model
parameterized by θ.

As shown in the equation, each token xt at position t is
conditioned solely on the preceding tokens, which limits
context modeling to a unidirectional manner. This contrasts
with methods such as masked transformer [10, 70, 77, 78]
and diffusion models [32, 39, 47, 54], which can leverage
bidirectional context at the training time. Additionally, while
natural language has an inherent sequential order (left-to-
right in most languages), image data lacks a clear, predefined
order for processing tokens. Among the possible orders for
image generation, the row-major order (i.e., raster scan)

is the most widely adopted and has demonstrated superior
performance compared to other alternatives [22].

3.2. RAR: Randomized AutoRegressive Modeling

Visual signals inherently exhibit bidirectional correlations,
making effective global context modeling essential. How-
ever, conventional autoregressive models rely on causal atten-
tion masking, which enforces a unidirectional dependency
on the token sequence, contradicting the nature of visual
data, as noted in prior works [7, 21, 38], where bidirectional
attention works significantly better than causal attention for
visual modality. Furthermore, there is no universally “cor-
rect" way to arrange image tokens into a causal sequence.
While the widely adopted raster order has achieved some
success, it introduces biases in the autoregressive training
process. For instance, each token is conditioned solely on
the preceding tokens in the scanning order, restricting the
model’s ability to learn dependencies from other directions.

To address these challenges, we propose a randomized
autoregressive modeling approach that incorporates opti-
mization objective with bidirectional context:

max
θ

pθ(x) =

T∏
t=1

pθ(xt|x1, · · · , xt−1, xt+1, · · · , xT ).

(2)
Unlike BERT-style [17] or MaskGIT-style [10] methods,

our method follows the permuted objective approach [66,
74], where the model is trained in an autoregressive manner
across all possible factorization orders. This enables the
model to gather bidirectional context while preserving the
autoregressive framework in expectation. Formally, we have:

max
θ

pθ(x) = Eτ∼ST

[
T∏

t=1

pθ(xτt |xτ<t)

]
, (3)

where ST denotes the set of all possible permutations of the
index sequence [1, 2, · · · , T ], and τ represents a randomly
sampled permutation from ST . The notation τt refers to the
t-th element in the permuted sequence, and τ<t represents
all preceding positions to τt. Since the model parameters
θ are shared across all sampled factorization orders, each
token xt is exposed to every possible context and learns rela-
tionships with every other token xi ∀i ̸= t, during training.
This allows the model to effectively capture bidirectional
context while preserving the integrity of the autoregressive
formulation.

Although simple, this modification significantly improves
image generation performance, highlighting the power of
bidirectional context in improving autoregressive image
generator capability. Our findings align with those ob-
served in autoregressive training for language modeling in
NLP [9, 17, 66, 74] as well.
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Figure 3. Illustration of the target-aware positional embedding. Subfigure (a) shows the training process of the proposed Randomized
AutoRegressive (RAR) model, along with the target-aware position embedding. Following Vision Transformer [19], images are tokenized
into patches with original position embeddings (blue tokens). The token sequence is then randomly permuted, with the target-aware
positional embeddings (green tokens) added to guide the model. Subfigures (b) and (c) highlight the importance of the target-aware positional
embedding: (b) demonstrates a failure case where both permuted sequences yield identical prediction logits, while (c) shows that the
target-aware positional embedding correctly guides the model to predict the next token accurately.

Discussion. While the permutation objective allows for bidi-
rectional context learning within the autoregressive frame-
work in expectation, it remains challenging to fully capture
“global context" during the generation process. This is be-
cause there are always some tokens generated before others,
without having access to the full global context. This limi-
tation is not unique to autoregressive methods [22, 57] but
also present in non-autoregressive models [10]. Techniques
such as resampling or refinement [28, 44] may help address
this issue by ensuring that every token is generated with
sufficient context. However, such designs may complicate
the system; thus, exploring such solutions lies beyond the
scope of this paper and is left for future work.

Target-aware Positional Embedding. One limitation of the
permuted training objective is that standard positional em-
beddings may fail in certain scenarios. For instance, consider
two different permutations: τa = [1, 2, · · · , T −2, T −1, T ]
and τb = [1, 2, · · · , T − 2, T, T − 1] (i.e., only the last
two tokens’ positions are swapped). When predicting the
second to last token, both permutations will yield iden-
tical features and thus identical prediction logits, even
though they correspond to different ground-truth labels (i.e.,
pθ(xτT−1

|xτ1 , xτ2 , · · · , xτT−2
) is the same for both permu-

tations τa and τb). This problem, in a general randomized
autoregressive training process and beyond this specific ex-

ample, can happen for all token locations except the last
one (since the last token does not need to predict next to-
ken). To address this issue, we introduce an additional set of
positional embeddings, which we refer to as target-aware po-
sitional embeddings. These embeddings encode information
about which token is being predicted next.

Formally, we define a set of target-aware positional em-
beddings pta = [p1, p2, · · · , pT ]. The positional embedding
corresponding to the next token is added to the current token
embedding, resulting in a target-aware token embedding x̂τ :

x̂τ = xτ+pτ = [xτ1+pτ2 , xτ2+pτ3 , · · · , xτT−1
+pτT , xτT ],

(4)
where xτ and pτ are permuted tokens for x and pta w.r.t.
to the permutation τ , respectively. By associating the target
token’s positional embedding with the next-token prediction,
each token prediction is aware of the target token’s index,
alleviating the potential confusion in permuted objective.

Notably, we omit the target-aware positional embedding
for the final token xτT , as it does not participate in the loss
computation and has no prediction target. A visual illustra-
tion of this concept is provided in Fig. 3. It is also noteworthy
that the target-aware positional embedding only has impacts
during training with permutation, and it can be merged with
original positional embedding after the training is finished,
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because our method anneals to a fixed raster scan in the end,
and thus leads to no increase on the parameters or computa-
tion during inference.

Randomness Annealing. While the proposed randomized
autoregressive training with permutation enables the model
to capture bidirectional context within a unidirectional frame-
work, it may introduce sub-optimal behavior for visual gen-
eration due to two main factors: (1) The sheer number of
possible permutations is vast, potentially causing the model
to focus on learning how to handle the different permutation
orders rather than improving generation quality. For exam-
ple, for a token sequence of length 256, the number of possi-
ble permutations is 256! > 10506, which can overwhelm the
model and reduce training efficiency. (2) Although images
can be processed in arbitrary orders, certain scan orders tend
to outperform others. For instance, [22] evaluated six dif-
ferent scan orders (row-major, spiral in, spiral out, z-curve,
subsample, and alternate) and found that row-major (i.e.,
raster order) consistently performed the best, a result that
has made it the most widely used order for visual generation.

To address these issues, we propose Randomness An-
nealing, a strategy designed to balance the randomness of
permutations with the known effectiveness of the raster order.
This method introduces a single parameter, r, which con-
trols the probability of using a random permutation versus
the raster order. At the start of training, r = 1, meaning
that the model exclusively uses random permutations. Over
the course of training, r linearly decays to 0, transitioning
the model to the raster order by the end of training. Specif-
ically, we define a training schedule for r, controlled by
two hyper-parameters start and end indicating the training
epoch when r starts to anneal and when the annealing ends.
Formally, we have:

r =


1.0, if epoch < start,

0.0, if epoch > end,

1.0− epoch−start
end−start , otherwise,

(5)

where epoch is the current training epoch. We will ablate
the hyper-parameters start and end in the experiments.

The schedule allows the model to initially explore the di-
verse random permutations for better bidirectional represen-
tation learning, and ultimately converge to the more effective
row-major scan order for better visual generation quality,
as is used by other typical autoregressive methods [22]. It
is worth noting that this strategy not only improves genera-
tion performance but also maintains compatibility with the
optimization techniques for standard scan orders used in
previous works.

4. Experimental Results
In this section, we outline the implementation details of our
method in Sec. 4.1. Next, we present ablation studies on key

model depth width mlp heads #params
RAR-B 24 768 3072 16 261M
RAR-L 24 1024 4096 16 461M
RAR-XL 32 1280 5120 16 955M
RAR-XXL 40 1408 6144 16 1499M

Table 1. Architecture configurations of RAR. We follow prior
works scaling up ViT [19, 80] for different configurations.

design choices in Sec. 4.2. The main results are discussed
in Sec. 4.3, followed by scaling study and visualizations.

4.1. Implementation Details
We implement the RAR on top of language modeling autore-
gressive framework with minimal changes.
VQ Tokenizer. Following prior works [10, 22] which use
a VQ tokenizer to tokenize the input images into discrete
token sequences, we use the MaskGIT-VQGAN [10] with
the official weight trained on ImageNet. This tokenizer is a
purely CNN-based tokenizer which tokenizes a 256× 256
image into 256 discrete tokens (i.e., downsampling factor
16) with a codebook size (i.e., vocabulary size) 1024.
Autoregressive Transformer. We use vision transform-
ers [19] of different model configurations [80] including
RAR-S (133M), RAR-B (261M), RAR-L (461M), RAR-XL
(955M), and RAR-XXL (1499M). For all of these model vari-
ants, we apply causal attention masking in the self-attention
module and QK LayerNorm [15] to stabilize the large-scale
model training. We use plain ViT for all ablation studies
to speed up the experiments, and we enhance the model
with adaLN [47] for final models. The detailed architecture
configuration and model size are available at Tab. 1.
Positional Embedding. We use learnable embeddings for
both original positional embedding in ViT and target-aware
positional embedding. Notably, as our model anneals to
raster order-based autoregressive image generation after the
training is finished, the two positional embeddings can be
combined into one, making it identical to a conventional
autoregressive image generator.
Dataset. We train our model on ImageNet-1K [16] training
set, which contains 1, 281, 167 training images across 1000
object classes. We pre-tokenize the whole training set with
MaskGIT-VQGAN tokenizer [10] to speed up the training.
For ablation studies, we pre-tokenize the dataset with only
center crop and horizontal flipping augmentation, while we
further enhance the diversity in pretokenized datasets with
ten-crop transformation [57, 58] for final models.
Training Protocols. We use the same training hyper-
parameters for all model variants. The model is trained
with batch size 2048 for 400 epochs (250k steps). The learn-
ing rate will be linearly increased from 0 to 4 × 10−4 at
the first 100 epochs (warm-up), then it will be gradually
decayed to 1 × 10−5 following a cosine decay schedule.
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start epoch end epoch FID↓ IS↑ Pre.↑ Rec.↑
0 0† 3.08 245.3 0.85 0.52
0 100 2.68 237.3 0.84 0.54
0 200 2.41 251.5 0.84 0.54
0 300 2.40 258.4 0.84 0.54
0 400 2.43 265.3 0.84 0.53

100 100 2.48 247.5 0.84 0.54
100 200 2.28 253.1 0.83 0.55
100 300 2.33 258.4 0.83 0.54
100 400 2.39 266.5 0.84 0.54
200 200 2.39 259.7 0.84 0.54
200 300 2.18 269.7 0.83 0.55
200 400 2.55 241.6 0.84 0.54
300 300 2.41 269.1 0.84 0.53
300 400 2.74 236.4 0.83 0.54
400 400‡ 3.01 305.6 0.84 0.52

Table 2. Different start and end epochs for randomness anneal-
ing, with a total of 400 training epochs and model size RAR-L.
The final setting is labeled in gray. †: When start epoch and end
epoch are both 0 (1st row), the training reverts to a standard raster
order training. ‡: When start epoch and end epoch are both 400
(last row), the training becomes a purely random order training.
After training is finished, all results are obtained with raster or-
der sampling, except for the purely random order training (i.e., last
row), where we also randomly sample the scan order following [38],
which otherwise could not produce a reasonable result.

We use AdamW [35, 40] optimizer with beta1 0.9, beta2
0.96, and weight decay 0.03. We perform gradient clipping
with maximum gradient norm 1.0. During training, the class
condition will be dropped at a probability 0.1. The training
setting remain the same for both ablation studies and main
results across all RAR model variants.
Sampling Protocols. We sample 50000 images for FID
computation using the evaluation code from [18]. We do
not use any top-k or top-p based filtering techniques. We
also follow prior arts [11, 25, 79] to use classifier-free guid-
ance [31]. In the ablation study, we use a simpler linear
guidance schedule [11], and for final models we use the
improved power-cosine guidance schedule [25]. The final
detailed hyper-parameters for each model variant can be
found in the appendix.

4.2. Ablation Studies
We study different configurations for RAR, including the
randomness annealing strategy and scan orders that RAR
converges to.
Randomness Annealing Strategy. In Tab. 2 we compare
different randomness annealing strategies. We adopt a linear
decaying schedule and focus on when should the random-
ization annealing starts and ends by changing two hyper-
parameters start and end, as defined in Eq. (5). For a training
lasting for 400 epochs, we enumerate all possible combina-
tions for every 100 epochs. For example, when start = 200
and end = 300, the model is trained with random permu-

scan order FID↓ IS↑ Precision↑ Recall↑
row-major 2.18 269.7 0.83 0.55
spiral in 2.50 256.1 0.84 0.54

spiral out 2.46 256.6 0.84 0.54
z-curve 2.29 262.7 0.83 0.55

subsample 2.39 258.0 0.84 0.54
alternate 2.48 270.9 0.84 0.53

Table 3. Effect of different scan orders RAR-L converges to.
We mainly consider 6 different scan orders (row major, spiral in,
spiral out, z-curve, subsample, alternate) as studied in [22]. Our
default setting is marked in gray. A visual illustration of different
scan orders are available in the appendix.

tations from 0 to 200 epochs and raster order from 300 to
400 epochs. During 200 to 300 epoch, the model is trained
via random permutation with probability r and raster order
with probability 1 − r, where r is computed as in Eq. (5).
It is noteworthy that when start = end = 0, the model
is trained with purely raster order, i.e., the standard autore-
gressive training. When start = end = 400, the model
is always trained with randomly permuted input sequence.
Both cases are important baselines of the proposed random-
ness annealing, and they achieve FID scores of 3.08 and
3.01, respectively. Notably, pure random order training does
not bring notable performance improvements. Interestingly,
we observe all other variants with randomness annealing
achieve substantial improvement over these two baselines.
For example, even simply replacing the first 100 epochs of
raster order with random permutation, it (i.e., start = 100
and end = 100) improves the FID to 2.48 by 0.6. Besides,
we also note that the model prefers to keep some beginning
epochs for pure random permutation training and some last
epochs for better adapting to raster scan order, which usually
leads to a better performance compared to other variants. All
the results demonstrate that adding randomized autoregres-
sive training with a permuted objective is beneficial to the
autoregressive visual generator and leads to a boosted FID
score, thanks to the improved bidirectional representation
learning process.

Additionally, among all variants, we found that the case,
where start = 200 and end = 300, works the best, which
improves the baseline (purely raster order) FID from 3.08 to
2.18. This strategy allocates slightly more computes on the
training with random permutation order, and focuses on the
purely raster order for the last 100 epochs. Therefore, we
default to adopt this annealing strategy for all RAR models.

Different Scan Orders Besides Raster. Although row-
major order (i.e., raster scan) has been the de facto scan
order in the visual generation, there lacks a systematic study
on how good it is compared to other scan orders. We note
that the work [22] conducted a similar study 4 years ago.
However, it is worth re-examining the conclusion consider-
ing the significant progress generative models have achieved
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in recent years. Specifically, we consider 6 different scan
orders (row-major, spiral in, spiral out, z-curve, subsample,
and alternative) following [22] that RAR may converge to.
Instead of reporting the training loss and validation loss as
the comparison metric [22], we directly evaluate their gen-
eration performance. The results are summarized in Tab. 3.
Interestingly, we observe that all variants achieve a reason-
ably good score, which indicates that RAR is capable of
handling different scan orders. Considering that the row-
major (raster scan) still demonstrates advantages over the
other scan orders, we thus use the raster scan order for all
final RAR models.

We provide more ablation experiments regarding
training epochs, different tokenizers etc. are available
in the supplementary material.

4.3. Main Results
We report RAR results against state-of-the-art image genera-
tors on ImageNet-1K 256× 256 benchmark [16].

As shown in Tab. 4, RAR achieves significantly better
performance compared to previous AR image generators.
Specifically, the most compact RAR-B with 261M parame-
ters only, achieves an FID score 1.95, already significantly
outperforming current state-of-the-art AR image generators
LlamaGen-3B-384 (3.1B, FID 2.18, crop size 384) [57] and
Open-MAGVIT2-XL (1.5B, FID 2.33) [41], while using
91% and 81% fewer model parameters respectively. It also
surpasses the widely used diffusion models such as DiT-
XL/2 (FID 1.95 vs. 2.27) and SiT-XL (FID 1.95 vs. 2.06)
while only using 39% model parameters compared to them.

In Tab. 4, we further explore RAR at different model sizes
(from 261M to 1.5B), where we observe strong scalability
behavior with consistent performance improvement as model
size scales up. Notably, the largest variant RAR-XXL sets
a new state-of-the-art result on ImageNet benchmark, with
an FID score 1.48. When compared to the other two recent
methods VAR [63] and MAR [38], both of which attempt to
amend AR formulation for better visual generation quality,
RAR not only demonstrates a superior performance (FID
1.48 from RAR vs. 1.73 from VAR and 1.55 from MAR), but
also keeps the whole framework compatible with language
modeling and thus is more friendly for adapting the mature
optimization and speed-up techniques for large language
models to visual generation [57].

Moreover, RAR demonstrates superior performance to
state-of-the-art visual generators in different frameworks.
It performs better against the leading autoregressive mod-
els, diffusion models and masked transformer models,
surpassing LlamaGen-3B-384 [57], MDTv2-XL/2 [25]
and MaskBit [70] respectively (FID 1.48 from RAR vs.
2.18 from LlamaGen, 1.58 from MDTv2, and 1.52 from
MaskBit). To the best of our knowledge, this is the first
time that the language modeling style autoregressive visual

tokenizer type generator #params FID↓ IS↑ Pre.↑ Rec.↑
VQ [54] Diff. LDM-8 [54] 258M 7.76 209.5 0.84 0.35
VAE [54] Diff. LDM-4 [54] 400M 3.60 247.7 0.87 0.48

VAE [56] Diff.

UViT-L/2 [6] 287M 3.40 219.9 0.83 0.52
UViT-H/2 [6] 501M 2.29 263.9 0.82 0.57
DiT-L/2 [47] 458M 5.02 167.2 0.75 0.57

DiT-XL/2 [47] 675M 2.27 278.2 0.83 0.57
SiT-XL [42] 675M 2.06 270.3 0.82 0.59

DiMR-XL/2R [39] 505M 1.70 289.0 0.79 0.63
MDTv2-XL/2 [25] 676M 1.58 314.7 0.79 0.65

VQ [10] Mask. MaskGIT [10] 177M 6.18 182.1 - -
VQ [79] Mask. TiTok-S-128 [79] 287M 1.97 281.8 - -
VQ [78] Mask. MAGVIT-v2 [78] 307M 1.78 319.4 - -
VQ [70] Mask. MaskBit [70] 305M 1.52 328.6 - -

VAE [38] MAR
MAR-B [38] 208M 2.31 281.7 0.82 0.57
MAR-L [38] 479M 1.78 296.0 0.81 0.60
MAR-H [38] 943M 1.55 303.7 0.81 0.62

VQ [63] VAR
VAR-d30 [63] 2.0B 1.92 323.1 0.82 0.59

VAR-d30-re [63] 2.0B 1.73 350.2 0.82 0.60

VQ [22] AR
GPT2 [22] 1.4B 15.78 74.3 - -

GPT2-re [22] 1.4B 5.20 280.3 - -

VQ [75] AR
VIM-L [75] 1.7B 4.17 175.1 - -

VIM-L-re [75] 1.7B 3.04 227.4 - -

VQ [41] AR
Open-MAGVIT2-B [41] 343M 3.08 258.3 0.85 0.51
Open-MAGVIT2-L [41] 804M 2.51 271.7 0.84 0.54

Open-MAGVIT2-XL [41] 1.5B 2.33 271.8 0.84 0.54

VQ [57] AR

LlamaGen-L [57] 343M 3.80 248.3 0.83 0.51
LlamaGen-XL [57] 775M 3.39 227.1 0.81 0.54

LlamaGen-XXL [57] 1.4B 3.09 253.6 0.83 0.53
LlamaGen-3B [57] 3.1B 3.05 222.3 0.80 0.58

LlamaGen-L-384 [57] 343M 3.07 256.1 0.83 0.52
LlamaGen-XL-384 [57] 775M 2.62 244.1 0.80 0.57

LlamaGen-XXL-384 [57] 1.4B 2.34 253.9 0.80 0.59
LlamaGen-3B-384 [57] 3.1B 2.18 263.3 0.81 0.58

VQ [10] AR

RAR-B (ours) 261M 1.95 290.5 0.82 0.58
RAR-L (ours) 461M 1.70 299.5 0.81 0.60

RAR-XL (ours) 955M 1.50 306.9 0.80 0.62
RAR-XXL (ours) 1.5B 1.48 326.0 0.80 0.63

Table 4. ImageNet-1K 256× 256 generation results evaluated
with ADM [18]. “type” refers to the type of the generative model,
where “Diff.” and “Mask.” stand for diffusion models and masked
transformer models, respectively. “VQ” denotes discrete tokenizers
and “VAE” stands for continuous tokenizers. “-re” stands for rejec-
tion sampling. “-384” denotes for generating images at resolution
384 and resize back to 256 for evaluation, as is used in [57].

generators outperform state-of-the-art diffusion models and
masked transformer models.

Sampling Speed. One key advantage of AR methods is
their ability to leverage established optimization techniques
from LLMs, such as KV-caching. In Tab. 5, we compare the
sampling speed (measured as images/sec) of RAR against
other types of generative models, such diffusion models [47],
masked transformers [70, 79], VAR [63], and MAR [38].
Among them, AR models (RAR) and VAR models (VAR-
d30) are compatible with the KV-cache optimization, pro-
viding a significant advantage in generation speed over other
methods. As shown in Tab. 5, RAR achieves a state-of-
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Figure 4. Scaling behavior of RAR models. The scaled-up RAR models demonstrate (a) reduced training losses, and improved FID scores
both (b) without and (c) with classifier-free guidance.

method type #params FID↓ steps images/sec
DiT-XL/2 [47] Diff. 675M 2.27 250 0.6

TiTok-S-128 [79] Mask. 287M 1.97 64 7.8
VAR-d30 [63] VAR 2.0B 1.92 10 17.3
MAR-B [38] MAR 208M 2.31 256 0.8
RAR-B (ours) AR 261M 1.95 256 17.0
MAR-L [38] MAR 479M 1.78 256 0.5
RAR-L (ours) AR 461M 1.70 256 15.0
MaskBit [70] Mask. 305M 1.52 256 0.7
MAR-H [38] MAR 943M 1.55 256 0.3

RAR-XL (ours) AR 955M 1.50 256 8.3
RAR-XXL (ours) AR 1.5B 1.48 256 6.4

Table 5. Sampling throughput comparison (including de-
tokenization process) categorized by methods with similar FID
scores. Throughputs are measured as samples generated per second
on a single A100 using float32 precision and a batch size of 128,
based on their official codebases. For VAR [63] and our RAR,
KV-cache is applied. “Diff.” and “Mask.” refer to diffusion models
and masked transformer models, respectively.

the-art FID score while also significantly surpassing other
methods in generation speed. For instance, at an FID score
around 1.5, MaskBit [70] and MAR-H [38] generate im-
age samples at 0.7 and 0.3 images per second, respectively.
In comparison, RAR-XL not only achieves a better FID
score but can generate 8.3 high-quality visual samples per
second—11.9× faster than MaskBit and 27.7× faster than
MAR-H. The largest RAR variant, RAR-XXL, further im-
proves the FID score while maintaining a notable speed
advantage, being 9.1× faster than MaskBit and 21.3× faster
than MAR-H. Additionally, RAR may benefit further from
LLM optimization techniques such as vLLM [36], as seen
with other AR methods [57].

Scaling Behavior. We study the scaling behavior of RAR.
Specifically, we plot the training loss curves and FID
score curves (with and without classifier-free guidance [31])
in Fig. 4. As shown in the figure, we observe that RAR
scales well at different model sizes, where larger model size
leads to a consistently lower training loss and better FID
score, regardless of using the enhancement of classifier-free

RAR-B

RAR-L

RAR-XL

RAR-XXL

loggerhead turtle (33) otter (360) panda (388) dogsled (537)red panda(387) balloon (417)

Figure 5. Visualization of samples generated by RAR across
various model sizes. RAR generates high-quality visual samples
across all model sizes. As model size increases, fidelity and diver-
sity improve, especially in challenging classes (e.g., dogsled).

guidance or not. We note that as RAR keeps the AR formu-
lation and framework intact, it also inherits the scalability
from AR methods.
Visualization. We visualize generated samples by different
RAR variants in Fig. 5, which shows that RAR is capable
of generating high-quality samples with great fidelity and
diversity. More visualizations are provided in the appendix.

5. Conclusion
In this paper, we introduced a simple yet effective strategy to
enhance the visual generation quality of language modeling-
compatible autoregressive image generators. By employing
a randomized permutation objective, our approach enables
improved bidirectional context learning while preserving the
autoregressive structure. Consequently, the proposed RAR
model not only surpasses previous state-of-the-art autoregres-
sive image generation methods but also outperforms leading
non-autoregressive transformer and diffusion models. We
hope this research contributes to advancing autoregressive
transformers toward a more powerful unified framework for
visual understanding and generation.
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