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Figure 1. Zero-shot vision encoder grafting via a small language
surrogate (srgt) model to trigger the target LLM to perform visual
understanding task without any additional training.

Abstract

Vision language models (VLMs) typically pair a modestly

sized vision encoder with a large language model (LLM),

e.g., Llama-70B, making the decoder the primary computa-

tional burden during training. To reduce costs, a potential

promising strategy is to first train the vision encoder using a

small language model before transferring it to the large one.

We construct small “surrogate models” that share the same

embedding space and representation language as the large

target LLM by directly inheriting its shallow layers. Vi-

sion encoders trained on the surrogate can then be directly

transferred to the larger model, a process we call zero-shot

grafting
1

– when plugged directly into the full-size target

LLM, the grafted pair surpasses the encoder-surrogate pair

and, on some benchmarks, even performs on par with full

decoder training with the target LLM. Furthermore, our

surrogate training approach reduces overall VLM training

costs by ∼45% when using Llama-70B as the decoder.

Most modern auto-regressive VLMs are built by extracting
visual features from images using an encoder like CLIP
[37] or SigLIP [47, 52], and placing these features into

1We define zero-shot grafting as plugging a vision encoder trained on
a surrogate model directly into its target LLM without additional training.
In contrast, transferring involves further fine-tuning after grafting.

Figure 2. Reducing full decoder training cost with our surrogate-
trained encoder for Llama-70B in VLMs. Hollow ! indicates the
average score of the surrogate-trained encoder on the left.

the context window of an LLM. The image features must
be aligned with the representation space of the LLM, and
this is achieved by training the entire pipeline end-to-end.
The cost of such training is often severely dominated by
the language model. For example, plugging CLIP (approx
400M parameters) into Llama-70B [9] results in a pipeline
where vision encoder training occupies almost none of the
required memory and computation.

In this paper, we explore methods of performing encoder
alignment using relatively small lightweight language mod-
els, and transferring the resulting features to a large lan-
guage model. We train small surrogate language models
with the same representation space as a larger target LLM.
After training the vision encoder on this small surrogate
model, we can then transfer it to the larger model, either
directly (grafting) or with fine-tuning.

A major focus of our work is on understanding how to con-
struct small surrogate models that accurately mock larger
target LLMs. Our method of creating such small models
stems from analyzing the internal prediction dynamics of
LLMs, particularly how predictions evolve across layers.
This analysis reveals two distinct phases in the prediction
trajectory, separated by a clear transition point. We con-
struct our small models by preserving the layers that partic-
ipate in the early feature extraction phase of inference, and
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condensing all other layers. Since the small model inherits
its shallow parameters from the target LLM, it shares the
same embedding space as the original larger model and can
effectively stand in as its surrogate. Our surrogate model
has two major advantages:

Zero-shot grafting capability. Vision features trained on a
smaller and less resource-intensive surrogate can be directly
used by the larger target LLM without any fine-tuning, as
depicted in Figure 1. This zero-shot grafting demonstrates
these surrogate-trained encoders effectively trigger visual
understanding in target LLMs.

Fast-converging VLM training. The encoders trained on
surrogate models can be further fine-tuned with the full-size
target LLM. Since they are already aligned with the LLM’s
embedding space, they achieve high performance with com-
paratively little full-scale training. Our experiments show a∼45% cost reduction for full decoder training with Llama-
70B, as shown in Figure 2, highlighting the efficiency of our
surrogate-trained encoders.

Table of Main Contents

• Section 1: We detail the method of constructing our sur-
rogate model, providing analysis that demonstrates how
we discovered, developed, and validated our approach
through experimental ablations.

• Section 2: We show our surrogate models for giant LLMs
like Llama-70B, producing encoders with a strong zero-
shot grafting ability, which can also accelerate the full
decoder training of giant language models for VLMs.

1. Building Surrogate Models
In this section, we present our approach for building small
surrogate models for target LLMs. First, we analyze the
LLM’s hidden features to identify the critical transition
point between shallow and deep information processing lay-
ers. Next, we observe that the second/deep phase of infer-
ence contributes very little to encoder transferability, and
observe that image features transfer well between models
when they share their early/shallow processing layers. Fi-
nally, we validate these findings and propose to construct
surrogate models by preserving the early-phase layers while
replacing late-phase layers with a translator.

1.1. Analyzing the Prediction Trajectory
For a target LLM and input array2 of N text token IDs
t ∈ ZN , we trace the evolution of features over a forward
pass of the model. By propagating these tokens through all
L transformer layers, we obtain intermediate hidden states
Xω ∈ RN⌐D from each layer, where ω ∈ [0, L⌐1] denotes the

2Bold capital letters denote a matrix X, and bold lower-case letters a
column vector x. X[i, j] refers to the element at row i and column j in
matrix X. All non-bold letters represent scalars.

layer index and D is the hidden dimension. The final hid-
den states XL−1 are passed through a normalization layer
and the final linear layer W ∈ RV ⌐D to produce the logits,
where V is the vocabulary size. The probability distribu-
tion for the predicted next token can be computed for all
positions:

P = softmax ⌜norm(XL−1)W⋊⌜ ∈ RN⌐V . (1)

The probability for the next output token at each individual
position is

p = P[∶ ⌐1, t[1 ∶]] ∈ RN−1, (2)

where P[∶ ⌐1, t[1 ∶]] shifts t one position forward and in-
dexes by P up to the second-to-last position, aligning each
token’s probability with its following token in the sequence.

For each layer’s hidden states Xω, we compute the interme-
diate probability distribution qω following the same proce-
dure:

qω = softmax ⌜norm(Xω)W⋊⌜ [∶ ⌐1, t[1 ∶]]. (3)

To capture the trajectory of evolving predictions, we calcu-
late the KL divergence between the normalized layer-wise
distribution qω and the final distribution p:

DKL(qω ⌝⌝ p) = 1⋊(qω log
qω

p
), (4)

where 1 ∈ RN−1 is a vector of ones, log is applied element-
wise. Eq. (4) quantifies the deviation of each layer’s predic-
tion from the final model output, offering insight into how
much each layer’s distribution shifts along the prediction
trajectory. This measure enables a deeper understanding of
each layer’s role in shaping the model’s eventual output dis-
tribution.

In Figure 3, we plot Eq. (4) across different layers of the
Llama-3B, 8B, and 70B3 models by feeding4 300 random
samples from GenQA [5]. To demonstrate the same curve
pattern in a different model family, Gemma-2B is also in-
cluded. Each model displays a distinct phase transition

where the curves abruptly coalesce and then monotonically
converge to the final distribution. For example, in Llama-
8B, this point appears to occur around layer 17 whereas
for Llama-70B it is closer to layer 40. We speculate that
this point marks a transition in the type of position-wise
information processing occurring in the model, where the
internal states shift from early phase before the transition
point to the late phase after it. The layers in the early phase

3Unless stated otherwise, each model mentioned refers to its latest in-
struct version. For example, Llama-3B indicates Llama-3.2 3B, Llama-
70B represents Llama-3.1 70B, and Gemma-2B denotes Gemma-2 2B.

4One concern about this teacher-forced manner is ablated in Sec. A.7.
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Figure 3. The trajectory of prediction across different layers of Llama-3B, 8B, and 70B, and Gemma-2B from a different model family.
The arrow marks the transition point where the trajectories of 300 random samples converge.

process information from individual token embeddings and
combine simple representations together to form higher or-
der concepts, then layers in the late phase converge towards
a specific next-token prediction.

Figure 4. Replacing layers with a translator. Despite the rel-
ative size in the illustration, our translator is simply an identical
transformer layer inherited from the target LLM. The translator
bypasses many network layers, and is initialized from the shallow-
est original layer that it replaced.

1.2. Studying the Transition Phases
To test our hypothesis on the transition point, we exper-
iment with Llama-3B5 by replacing consecutive layers of
each phase with a single transformer layer called a transla-

tor (terminology adopted from [3]), as depicted in Figure 4.
From Llama-3B’s 28 layers, we preserve the first (ω = 0)
and last (ω = 27) layers while replacing two groups of eleven
layers each with a translator T : layers from ω = 1 to 11 in-
dicated as T (1,11) for the early phase before Llama-3B’s
transition point (ω = 16 in Figure 3) and T (16,26) for the
late phase after it. Each is a 2B small model.

Next, we examine the two transition phases by evaluating
vision encoders trained on models T (1,11) and T (16,26).
To understand their differences and how they affect encoder
transferability to the target LLM, we construct two LLaVA-
like VLMs using these small models as decoders. We em-
ploy a two-stage training approach to conduct the initial ex-
periments:
1) First, we simultaneously pre-train a vision adapter (a two-
layer MLP) and the translator on 1M instructions6, combin-

5Initial experiments with Gemma-2B showed similar results. In later
sections we adapt the method to a 70B model.

6This differs from the typical pre-training of vision adapters, which use
captions rather than instructions.

ing LLaVA-1.5-665K [27] vision-language instructions and
random GenQA [5] 500K text instructions, for one epoch.
2) Then, we fine-tune the encoder (ViT-L/14@336px) and
vision adapter with the frozen decoders on the LLaVA-1.5-
665K instructions for one epoch.
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Llama-3B 60.7 73.0 71.1 52.7 70.6 77.1 78.9 39.2T ( 1,11) 26.6 42.5 50.3 27.7 53.5 66.6 57.5 32.4T (16,26) 58.9 57.2 54.8 38.5 64.3 67.6 78.2 32.6T (16,26)⌐ 56.9 57.3 57.5 40.7 64.3 70.1 79.9 35.2

Table 1. Accuracy (%) of small models for Llama-3B on text
benchmarks. ⌐ is a control experiment added later in the study.

Evaluating decoders. After fine-tuning translators in the
first stage, we evaluate models T (1,11) and T (16,26) on
text benchmarks7 (Table 1). The first row is the baseline
performance of Llama-3B. The second and third rows show
the performance of the decoders with early- and late-phase
layers replaced, respectively. A significant performance
drop occurs when replacing early-phase layers, underscor-
ing their critical role in understanding and generation.

Evaluating encoders. During the second stage, encoders
are fine-tuned with small models T (1,11) and T (16,26).
We also train an encoder with the full-size Llama-3B as our
baseline, listed in the first row of Table 2. For each model,T (1,11) and T (16,26), we report two results: a) perfor-
mance with their respective encoders, and b) performance
with these encoders zero-shot grafted to Llama-3B. For case
b), since Llama-3B is never trained on vision-language in-
structions, it cannot consistently follow special instructions
in benchmarks like MME [10] and POPE [26] that expect
“yes” or “no” answers by prompting with “single word or
phrase”. For these benchmarks, we prompt the model with
binary prompts, directing it to answer with “yes” or “no” to
ensure measurable responses.

7To ease the benchmarking, we evaluate our instruct models on the
same benchmarks as the non-instruct models, i.e., base models, and report
accuracy produced by log-likelihood.
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Figure 5. Qualitative results on zero-shot grafting capability of encoders trained with small models for Llama-3B. For comparison, we
also include responses from the encoder trained with Llama-3B and the fine-tuned Llama-3B. The encoder trained on T (16,26) achieves
strong zero-shot transfer to Llama-3B. Response is sampled with greedy decoding. A → B denotes plugging A into B.
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Llama-3B 1028 81.7 54.2 24.1 42.9 41.8
model T ( 1,11) 599 63.2 25.8 14.3 37.2 0.6
zero-shot grafting 540 2.7 25.3 6.9 26.3 9.2 ↓
model T (16,26) 923 70.4 53.2 20.6 42.7 45.4
zero-shot grafting 1022 80.1 53.1 23.1 56.6 47.4 ↢
model T (16,26)⌐ 1162 84.4 59.8 25.0 48.1 50.3
zero-shot grafting 714 22.3 40.7 11.2 34.2 30.1 ↓

Table 2. Accuracy (%) of encoders fine-tuned by small models
for Llama-3B on VLM benchmarks. ⌐ indicates a control experi-
ment added later in the study.

Table 2 clearly shows that the encoder trained with early-
phase layers preserved model T (16,26) outperforms the
one with early-phase layers discarded model T (1,11). Re-
markably, performance improves further when the encoder
fine-tuned on T (16,26) is zero-shot grafted to Llama-3B,
as shown in the third row block. This improvement high-
lights that the encoder trained with T (16,26) can produce
image features that are interpretable by Llama-3B.

In Figure 5, we present qualitative results showcasing the
zero-shot grafting cabability of the encoders trained viaT (1,11) and T (16,26). The responses enhance the above
results that replacing the early-phase layers causes the en-
coder to fail in generating image features that are directly
interpretable by the full-size Llama-3B.

Are early layers the most critical for encoder transfer?
The shallow phase of inference plays a crucial role in trans-
ferring a pre-trained encoder to the full-size target LLM.
To concretely verify this observation, we conduct a control

run based on T (16,26), in which we unfreeze every other
layer before the translator and train them alongside it dur-
ing the first stage. This control experiment is designed to
disrupt the original early-phase parameters, allowing us to
completely assess their impact on encoder transferability.
We denote this modified model as T (16,26)∗.
First, back in Table 1, the last row indicates that fine-tuning
additional layers alongside the translator leads to better per-
formance on text benchmarks. However, in Table 2, when
evaluating the encoder trained on T (16,26)∗, we actually
observe a huge loss of zero-shot grafting ability. This sug-
gests that modifying early-phase parameters in T (16,26)
enhance performance on both text and VLM benchmarks
when evaluated through itself, but fails to preserve the
encoder’s zero-shot grafting capability as the embedding
space of T (16,26)∗ drifts away from the target model.

How many early-phase layers should be preserved? If
retaining the original early-phase parameters is necessary,
the next question is how many layers to preserve for effec-
tive zero-shot grafting. In other words, we seek to confirm
the transition point in Figure 3 as the optimal starting point
for layer removal and translator insertion.

To ensure generalization, we conduct this ablation with
Llama-8B, where the transition point is around layer ω = 17.
To validate the transition point, we create three small mod-
els by progressively reducing the replaced layers before the
transition point: T (6,30), T (12,30), and T (17,30). As
shown in Table 3, the performance of these three models on
text benchmarks corroborates our findings from Llama-3B,
demonstrating that early layers are indeed important. Keep-
ing more early layers leads to better performance, with the
best achieved by the model T (17,30).

4278



Figure 6. Qualitative results on zero-shot grafting capability of encoders trained with surrogate models for Llama-8B. For comparison,
we also include responses from the encoder trained with Llama-8B and the fine-tuned Llama-8B. More early-phase layers preserved lead
to stronger zero-shot grafting capability. Responses are sampled with greedy decoding. A → B denotes plugging A into B.
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Llama-8B 68.4 80.5 79.8 61.8 77.3 81.5 85.4 44.8T ( 6,30) 25.5 31.8 36.8 24.7 50.9 58.8 61.3 25.8T (12,30) 25.4 42.9 40.5 29.0 59.6 62.6 69.4 29.6T (17,30) 66.8 61.2 59.3 44.8 70.9 71.0 69.3 34.2

Table 3. Accuracy (%) of small models for Llama-8B on text
benchmarks.
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Llama-8B 1165 84.7 57.5 23.2 47.6 44.9
model T ( 6,30) 583 73.3 25.8 8.9 22.4 8.6
zero-shot grafting 767 20.6 30.9 13.4 28.1 - ↓
model T (12,30) 983 77.9 26.9 13.6 29.1 0.43
zero-shot grafting 1022 81.7 50.7 20.5 47.9 45.4 ↢
model T (17,30) 1041 81.3 55.4 20.9 42.0 49.7
zero-shot grafting 1044 83.4 56.1 25.2 56.8 53.5 ↢

Table 4. Accuracy (%) of encoders fine-tuned by small models
for Llama-8B on VLM benchmarks.

We evaluate the zero-shot grafting capability of the en-
coders trained with these three models to Llama-8B in Ta-
ble 4. Performance improves with more preserved early lay-
ers, showing particularly strong results when retaining all
early-phase layers before the transition point in T (17,30).
Figure 6 depicts a qualitative example demonstrating the
zero-shot grafting capability of three trained encoders. As
expected, the encoder trained by the model T (6,30) fails
to generate readable image features for Llama-8B as most
of the early-phase layers are removed. The encoder trained

by T (12,30) performs better, but its image features lack
fine-grained detail (e.g., no couch in response), which ex-
plains the zero-shot performance gap in Table 4. The en-
coder trained by T (17,30) generates more detailed and ac-
curate image features, achieving the best zero-shot grafting
response among the three, which covers the cat’s color, ex-
pression, eye direction, position, the presence of a couch,
and even the atmosphere.

In summary, our entire analysis of the prediction trajec-
tory reveals:
• The early phasea plays a pivotal role in the encoder’s

transferability to the target LLM.
• Retaining the original parameters of the early phase is

critical for maintaining the encoder’s zero-shot graft-
ing capability.

• The transition point in Figure 3 is a good starting point
for late-phase removal and translator insertion.
aWe believe the early phase of LLMs has potential beyond building

surrogate models, enabling more creative applications.

Based on these three key findings, now we define the modelT (16,26) as our surrogate model for Llama-3B, the modelT (17,30) as our surrogate for Llama-8B, by inheriting the
early-phase layers and replacing the late-phase layers with
a translator, which can be fine-tuned with a small set of text
instructions, e.g., 500K for one epoch.

2. Generalizing to Giant Models
Having validated our approach at relatively small scales, we
now expand our methodology to construct surrogate mod-
els for giant LLMs – Llama-70B. In this section, our ex-
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Figure 7. Qualitative results on strong zero-shot grafting ability of surrogate-trained encoder for Llama-70B, which produces fine-
grained image features to trigger Llama-70B to perform complex visual understanding tasks. Response is sampled with greedy decoding.

periments demonstrate two key advantages of our surro-
gate approach: First, surrogates can bring a strong zero-
shot grafting ability to encoders, enabling them to trigger
target LLMs to perform visual understanding tasks without
additional training. Second, training target LLM decoders
on surrogate-trained encoders significantly reduces cost by
providing a warm start for fine-tuning.

2.1. A Surrogate for Llama-70B
We analyze the prediction trajectory for Llama-70B in Fig-
ure 3 to identify the transition point that marks the end of
token processing, which occurs around layer ω = 40. Then
we keep the first (ω = 0) and last layer (ω = 79), insert a
translator at ω = 40, and remove the late phase from ω = 41
to ω = 78, to build a 37B surrogate T (40,78). Text bench-
mark results of this surrogate are shown in Table 5, and
VLM benchmark results in Table 6. Table 6 shows the per-
formance of the encoder trained using surrogate T (40,78)
on VLM benchmarks, highlighting a significant improve-
ment through zero-shot grafting. These experiments show
that our approach can be scaled up to giant models, holding
the same principles of early phase preservation.

2.1.1. Results: Zero-shot Grafting
In Table 7, with encoder-only training, our surrogate out-
performs the full-size Llama-70B on most VLM bench-
marks, except for VisWiz. This demonstrates the effec-
tiveness of our surrogate models. The last row shows the
performance of zero-shot grafting the surrogate-trained en-
coder into Llama-70B. Notably, the performance of zero-
shot grafting surpasses the full-size Llama-70B decoder
training on some benchmarks by a big margin, demonstrat-
ing that our surrogate-trained encoder effectively prompts
LLaMA-70B to handle complex visual understanding tasks.

Figure 8. Qualitative OCR results on strong zero-shot grafting
ability of surrogate-trained encoder for Llama-70B. The input im-
age size is 3362.
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Llama-70B 82.6 86.9 83.4 71.2 85.4 83.7 89.1 47.6
surrogate-37B 80.8 70.4 67.3 56.6 77.9 73.9 86.9 37.8

Table 5. Accuracy(%) of surrogate model for Llama-70B on text
benchmarks.
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Llama-70B 1294 83.4 59.8 27.0 45.6 58.8
surrogate-37B 1287 84.8 64.2 29.6 54.2 59.5

zero-shot grafting 1315 86.1 64.1 37.4 59.7 60.7 ↢
Table 6. Accuracy (%) of encoder fine-tuned by surrogate for
Llama-70B on VLM benchmarks.

Figure 7 presents qualitative results showcasing the strong
zero-shot grafting capability of our surrogate-trained en-
coder, including questions about creativity, negation, and
reasoning. Additionally, Figure 8 demonstrates its effec-
tiveness on OCR tasks, showing that our surrogate models
are able to squeeze robust and detailed visual information
into encoders.
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MMEbinary MME POPEbinary POPE SEED-Bench MM LLaVA MMB CV-Bench GQA Vis-
training method cog perc cog perc acc. f1 acc. f1 all img vid -Vet -Wild en 2d 3d avg Wiz

Llama-70B decoder 327 1545 345 1524 84.9 83.1 84.8 82.9 63.6 68.9 43.7 35.5 67.5 71.8 61.8 73.3 67.5 62.4 53.0
Llama-70B encoder 285 1294 288 1321 83.4 82.6 82.7 81.2 59.8 65.4 38.6 27.0 45.6 58.8 62.2 59.4 60.8 54.4 47.4

surrogate-37B encoder 312 1329 291 1250 85.5 83.9 86.3 85.0 65.9 71.1 46.2 28.8 54.3 63.1 64.7 64.0 64.3 56.5 22.7
zero-shot grafting 295 1348 303 1298 86.8 86.1 87.0 86.4 65.4 70.7 45.3 32.8 68.9 65.6 63.2 67.2 65.2 51.9 40.0

Table 7. Accuracy (%) for Llama-70B on VLM benchmarks. The bold numbers indicate the best performance between the full-size
decoder training and our surrogate-trained encoder by zero-shot grafting. A special clarification for LLaVA-Wild is in Sec. A.13.

avg. MMEbinary MME POPEbinary POPE SEED-Bench MM LLaVA MMB CV-Bench GQA Vis-
method X% score cog perc cog perc acc. f1 acc. f1 all img vid -Vet -Wild en 2d 3d avg Wiz

baseline 10 0.5127 301 1178 333 1139 74.5 73.1 74.3 73.9 46.0 49.2 34.1 17.7 30.4 45.6 52.4 61.7 57.1 45.4 43.9
20 0.5153 255 1061 277 1116 71.4 61.1 71.6 61.3 52.2 55.5 39.5 20.6 41.3 58.3 56.6 66.8 61.7 47.5 38.5
30 0.6277 314 1447 316 1399 85.5 84.8 85.5 84.8 59.8 64.8 40.9 30.8 57.9 66.8 60.6 71.1 65.9 57.1 55.1
60 0.6444 353 1511 358 1515 84.8 83.1 84.4 82.4 62.4 67.9 41.5 32.4 64.5 70.9 61.5 72.2 66.8 61.3 48.1

100 0.6538 327 1545 345 1524 84.9 83.1 84.8 82.9 63.6 68.9 43.7 35.5 67.5 71.8 61.8 73.3 67.5 62.4 52.9
grafting - 0.6259 295 1348 303 1298 86.8 86.1 87.0 86.4 65.4 70.7 45.3 32.8 68.9 65.6 63.2 67.2 65.2 51.9 40.0

ours 10 0.6612 340 1404 342 1430 87.3 86.8 84.9 82.7 67.1 72.7 45.9 37.6 69.7 70.9 66.6 70.6 68.6 60.1 57.9
20 0.6701 369 1435 361 1486 86.7 85.6 86.4 84.9 67.2 72.8 46.0 38.8 70.5 73.2 65.7 74.8 70.3 60.6 52.4
30 0.6704 374 1449 349 1490 87.9 87.7 86.8 85.5 67.0 72.0 47.8 38.9 69.3 73.9 66.6 72.8 69.7 61.4 49.2

Table 8. Convergence comparison with using X% of training data between baseline and our surrogate training approach for Llama-70B
decoder training. The gray row indicates the training hours reported in the Table 9 with 20% of training data for ours. See Table A.1 for
extra columns with additional benchmarks.

While the surrogate-trained encoder enables zero-shot con-
version of the giant LLM into a VLM, its performance still
lags behind that of full-size decoder training. What benefits
can we expect from this surrogate-trained encoder? Next,
we demonstrate that it can accelerate training convergence
and improves the performance of full-size decoder training.

2.2. Reducing Full Decoder Training Cost
In the previous sections, we conduct the experiments with a
two-stage training strategy, where we simultaneously train
the vision adapter in encoder and the translator in decoder
during the first stage, and then fine-tune the encoder atop the
surrogate in the second stage. Currently, we are interested in
training the full-size decoder, which is the final third train-
ing stage. First, we introduce the training setup, and recipes
are introduced in Sec. A.9.

Models. As in previous sections, we use the CLIP-L/14 en-
coder with an input image size of 3362. The vision adapter
is a two-layer MLP, consisting of consecutive linear layers
with a GELU activation in between. Notably, we maintain
a fixed vision adapter size across all model scales, unlike
prior works [6, 24] that scale it with model size. This de-
sign choice ensures that variations in adapter size do not
introduce unknown effects on the encoder’s zero-shot graft-
ing capability, allowing for a controlled initial study. For
state-of-the-art performance, however, the vision adapter
can be scaled up with the model size. The decoders are our
surrogate-37B, i.e., T (40,78), and full-size Llama-70B.

Data. In the third training stage, the training data is still the
same as in the previous two stages – the LLaVA-1.5-665K
[27] instructions (without text-only samples). This choice
is based on the following considerations:

1) The first training stage focuses on the adapter and trans-
lator. Commonly, vision adapters are trained on captions in-
stead of instructions, but we found no significant difference
in experimental outcomes. Thus, to simplify training, we
merge the training of the vision adapter and translator into
a single stage using vision-language and text-only instruc-
tions. When forwarding the text-only instructions, gradients
backpropagated to the vision adapter are zero.
2) The second stage trains encoders with surrogates, aiming
to efficiently compress data into encoders while preparing
to transfer knowledge to the full-size decoder. To ensure
consistency, we use the same training data for the second
and third stages. It is recommended to use larger and more
diverse datasets for those two stages.

2.2.1. Results: Convergence and Training Cost
In Table 8, we compare performance of the typical baseline
method and our surrogate training approach across differ-
ent percentages of training data used for training decoders.
The baseline trains Llama-70B with the original CLIP en-
coder, while ours trains it with our surrogate-trained en-
coder (the third row in Table 7). First, the gray row rep-
resents the performance of zero-shot grafting the surrogate-
trained encoder to Llama-70B, which nearly matches the
baseline with 30% of the data. Second, after training on just
10% of data, our approach achieves nearly the same perfor-
mance as the baseline with 100% of the data, except for
MME. For other benchmarks, our 10% performance even
outperforms the final baseline result. With continued train-
ing, performance remains unchanged, suggesting saturation
after 20% of the data. In Figure 2, we plot the normalized
average score of each X% data utilization for our method
and baseline.
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We also visualize Table 9 in Figure 2 for a direct compari-
son of training hours for each training stage. First, our pre-
training time is longer than the baseline because we train
both the vision adapter and the translator with additional
text instructions. However, the key advantage of our surro-
gate training approach is seen in the decoder training, which
is the real bottleneck in common methods. With 20% of the
data used for our decoder training, we achieve a training
cost reduction of ∼45%. This reduction is the minimum, as
our performance in the 10% case already exceeds the final
result of the baseline, as shown in Table 8.

method # gpu pre. ft. enc. ft. dec. total hours
baseline 128 7.01 0.00 27.88 34.79

ours 128 9.36 4.25 5.56 19.17

Table 9. Training hours comparison between baseline and our
surrogate approach for training VLMs with Llama-70B, includ-
ing the time for pretraining (pre.), fine-tuning encoder (ft. enc.),
and fine-tuning decoder (ft. dec.). Checkpoint loading and saving
times are excluded. More details in Sec. A.8.

3. Related Work Overview
Understanding LLMs is a key topic in mechanistic inter-
pretability [39]. [1] uses linear classifiers (probes) to un-
derstand the dynamics of intermediate layers in neural net-
works. For LLMs, [36] directly employs the output em-
bedding matrix as a probe to classify layer-wise representa-
tions, illustrating how input tokens shift from current posi-
tions to next ones. Tuned Lens [3] extends this idea with a
trainable probe for broader applicability to modern LLMs.
[41] conceptualizes transformer layers as “painters” that
iteratively refine representations and suggests that middle
layers share the same representation. In contrast, we iden-
tify two distinct transition phases in LLMs.

The shared representation in middle layers suggests redun-
dancy. [41] further concludes that some middle layers can
be removed without a significant performance drop. Prun-
ning LLMs largely is based on such insight of redundancy.
Notably, both [12] and [34] found that deep layers are not
essential and can be removed. Interestingly, our surrogate
models also replace deep layers in the late phase. However,
our method differs in how we identify the transition point
and in our objective. Unlike prunning, which aims to re-
move layers while preserving performance, our focus is on
the efficiency of surrogate models for encoder transferabil-
ity. While our surrogate models consistently underperform
compared to their target LLMs, they serve a distinct purpose
in producing efficient encoders for VLMs.

Our surrogate-trained encoders can directly prompt target
LLMs to generate the expected responses without any fine-
tuning. This zero-shot grafting ability aligns with the con-
cept of steering LLMs, a lightweight alternative to fine-
tuning LLMs [14, 20]. Prior works show that language

models can be guided to perform specific tasks without ex-
tensive fine-tuning. Similarly, in our case, image features
from surrogate-trained encoders act as steering tokens, en-
abling target LLMs to interpret visual content and answer
various complicated questions.

This capability provides a warm start for further decoder
fine-tuning, helping to mitigate the expensive training cost
of VLMs [2, 6, 25, 46, 48, 49]. The costs surged as decoder
sizes scale from relatively small models (3B, 8B) to much
larger ones, such as 70B [24], 110B [22, 28]. Additionally,
increasing the number of image tokens for high-resolution
inputs further escalates the computational burden. LoRA
[16] could be applied for training VLMs. While LoRA im-
proves efficiency, it underperforms full fine-tuning, espe-
cially in giant LLMs, when applied with small rank (e.g.,
8) and alpha (e.g., 32) to query and key decoder layers – a
common practice in LLM training. Closing this gap needs
applying LoRA to entire transformer layers with large rank
and alpha (e.g., rank 128 with alpha 256 as in [24] for 13B
decoder training). Then LoRA takes about the same time as
full decoder fine-tuning. This limitation likely explains why
current VLMs still rely on full decoder fine-tuning. Criti-
cally, contrasting to our surrogate training approach, LoRA
does not accelerate convergence. See more in Sec. A.2.

Additionally, the idea of using small models to train en-
coders before applying them to larger decoders has been de-
picted in [18]. However, this work is not directly related to
ours, as it employs a progressive multi-stage training strat-
egy to just scale up model size and refine image processing
from coarse to fine. No further details are provided on this
method, leaving it unclear how it reduces costs. In con-
trast, our approach provides a well-defined framework for
constructing efficient surrogate models specifically tailored
for any target LLM. Plus, we plug the surrogate-trained en-
coders directly into their target LLMs, converting them into
VLMs without any fine-tuning to perform complex visual
understanding tasks. Further, with our surrogate-trained en-
coders, the decoder needs only a few full-scale fine-tuning
steps to achieve the desired performance.

4. Conclusion
In this work, we show that vision encoders trained with our
surrogate models can accelerate VLM training. We also
note that our surrogate models are not limited to vision en-
coders. The main limitation of our approach is the need for
a well-designed surrogate, which ideally should be small.
Although our layer-dropping strategy works in principle for
any LLM, resulting models are still half the size of their
target LLMs, for example, our surrogate-37B for Llama-
70B. This underscores the practical value of surrogate mod-
els and highlights the need for ways to create them more
efficiently and with better compression.
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