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Abstract

GLOM, an innovative departure from standard deep learn-
ing architectures, has been proposed and gained special
concern recently due to its good interpretability in repre-
senting part-whole relationships in computer vision. How-
ever, GLOM faces challenges in achieving agreement and
is usually computationally demanding. First, current im-
plementations struggle to produce identical vectors that re-
liably converge to represent nodes in a parse tree. Sec-
ond, GLOM is computationally intensive due to the need
to maintain equal resolution across all levels. To ad-
dress these issues, inspired by contrastive learning, we
proposed a contrastive agreement enhancer (CAE), which
effectively promotes agreement between positive embed-
ding pairs while pushing apart negative pairs, thereby fa-
cilitating forming distinct “islands.” Furthermore, we in-
troduce a dissimilarity-focused head (H,) to reduce re-
dundancy in the top-level embeddings, where embedding
weights for downsampling are negatively correlated with
similarity within a sliding window. The results of compar-
ison experiments indicate that the proposed approach deli-
cately retains informative content and significantly reduces
the number of parameters. Additionally, the ablation ex-
periments and visualization results demonstrate that CAE
successfully promotes islands of agreement.

1. Introduction

As deep neural networks continue to achieve impressive
performance across various tasks, there is increasing fo-
cus on model interpretability, particularly in the domain of
computer vision [1]. GLOM was proposed to address this
need, offering a promising solution to the challenge of rep-
resenting part-whole hierarchies in neural networks [10]. It
integrates the strengths of transformers, neural fields, con-
trastive representation learning, distillation, and capsules,
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Figure 1. a): To tackle the challenge in current GLOM imple-
mentations, where vectors struggle to form islands representing
parts and wholes and fail to grow larger islands at higher levels,
we introduce a contrastive agreement enhancer. This approach ef-
fectively promotes agreement between positive embedding pairs
while pushing apart negative pairs, thereby forming distinct is-
lands. By adjusting the threshold for distinguishing positive and
negative pairs, we ensure increased smoothness at higher levels
that indicate the island grows larger. b) and c): Total variance of
normalized embeddings (17'V},) is used as a metric to quantitatively
measure smoothness (with lower 7'V, indicating greater smooth-
ness). Our method enhances smoothness at both the bottom and
top levels, with the top level achieving greater smoothness.

garnering significant attention upon its introduction. At its
core, GLOM uses “islands”—groups of similar feature vec-
tors dynamically identified as coherent units, such as parts
of an object—to form nodes in a parse tree. However, cur-
rent implementations [6, 8] of GLOM struggle to produce
similar vectors that reliably reach agreement to form these
islands. Moreover, GLOM models are computationally in-
tensive due to the need to maintain equal resolution across
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all levels. These limitations inspire the enhancements pro-
posed in this paper, which seek to address the vector agree-
ment problem and improve computational efficiency.

In the GLOM system, embeddings at each level are fea-
ture vectors that gradually converge to form distinct islands
of nearly identical vectors, representing parts like the head,
body, and tail, as shown in the right panel of Fig. la. To
achieve this, GLOM incorporates a regularizer [6] that min-
imizes the cosine distance between the bottom-up predic-
tions from lower-level embeddings and the top-down pre-
dictions from higher-level embeddings at adjacent levels.
However, a practical challenge arises due to the need to bal-
ance multiple regularizers between various levels, making
it difficult to properly manage their interactions. Another
option is a regularizer that encourages similarity between
embeddings of nearby locations, but this can lead to the
collapse of representations. Although contrastive learning,
which commonly uses negative samples to prevent collapse
[3], could be a solution, it introduces the challenge of pro-
ducing distinct islands and recognizing objects, as it relies
on finding suitable negative samples to differentiate these
islands. Additionally, as the islands grow larger at higher
levels to represent whole entities like birds, the embeddings
should become more similar, resulting in increased smooth-
ness across the feature map. We use total variance as a met-
ric to quantitatively measure this smoothness. As illustrated
by the blue line in Fig. 1b and Fig. lc, we observe that the
total variance [22] of GLOM’s normalized embeddings is
higher at higher levels than at lower levels, which contra-
dicts GLOM’s theoretical expectations.

To address these two issues, we propose a contrastive
agreement enhancer (CAE), as shown in Fig. la that com-
putes the cosine similarity between two embeddings and de-
termines whether they belong to a positive or negative pair
based on a predefined threshold. This mechanism, inspired
by contrastive learning, promotes similarity between posi-
tive pairs while pushing apart negative pairs. CAE offers
several advantages: 1) it can be easily integrated into ev-
ery level of GLOM; 2) it is not a regularizer, eliminating
the need to balance multiple regularizers across levels; 3)
it effectively promotes embedding agreement to form dis-
tinct islands; and 4) by adjusting the threshold, it ensures
increased smoothness at higher levels.

Another focus of this paper is mitigating the computa-
tional challenges in GLOM, which arise from maintaining
equal resolution across all levels. Specifically, when imple-
menting training or downstream tasks, different heads are
customized and added to the top of GLOM. If these heads
receive the entire top-level embeddings as input, the com-
putational burden becomes significant because the top-level
resolution is as high as the bottom level. A straightforward
solution is to downsample the embeddings, based on the
premise that redundancy exists within it. Redundancy is in-

deed present at the top level, as the embeddings there have
reached agreement and become highly similar. To handle
this, we design a dissimilarity-focused head (H,), which
is integrated at the top of GLOM. H, similarly to com-
mon pooling methods, where a small rectangular window
slides across the input feature map. For each window po-
sition, H, calculates the similarity of each embedding with
the others within the window. The weights for each em-
bedding are then computed based on the negative correla-
tion of these similarities. The output of H, is the weighted
sum of the embeddings. The advantages of H; include sig-
nificantly reducing the parameters and computational load
of the heads. Moreover, compared to max pooling, Hy
preserves more informative content by focusing on embed-
dings with lower similarity, which tend to contain more use-
ful information—this is an improvement over max pooling,
which just discards all but the highest-value embedding.
Overall, the main contributions of this work can be sum-
marized as follows. 1) A new implementation of GLOM is
proposed that aligns more closely with GLOM’s theoreti-
cal framework for forming hierarchies of grouped embed-
dings to represent nodes in a parse tree. 2) A novel con-
trastive agreement enhancer is designed to promote agree-
ment between positive embedding pairs while pushing apart
negative pairs, thereby forming distinct “islands.” 3) A
dissimilarity-focused head is developed to reduce redun-
dancy in the top-level embeddings, preserving more infor-
mative content by concentrating on embeddings with lower
similarity, which tend to contain more useful information.
4) Quantitative and qualitative analyses show that CAE ef-
fectively promotes islands of agreement and H ; contributes
greatly to improving model efficiency across datasets.

2. Related work

Capsule networks and GLOM: GLOM provides a more
efficient approach to representing part-whole hierarchies
than capsule networks (CapsNets) for several reasons [10].
First, CapsNets often face inefficiencies in part represen-
tation due to the need to pre-allocate neurons for possible
parts at specific locations, leading to underutilized capsules
during inference [29, 30]. In contrast, GLOM leverages
all neurons to form clusters, facilitating knowledge shar-
ing across locations and improving part representation ef-
ficiency. Second, conventional CapsNets require presetting
the number of clusters to represent higher-level parts. For
instance, studies like [23] and [11] preset the number of
capsule types and slice the feature map along the channel
direction to form capsules. GLOM, however, allows em-
beddings to naturally form islands without the need for pre-
defined clusters. Lastly, GLOM eliminates dynamic rout-
ing by enabling each part’s location to independently con-
struct its own vector representation of the whole, avoiding
the need to route information to specific capsules. How-
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ever, GLOM is still in its early stages of development and
has its own limitations. For example, it primarily func-
tions as an imagery model, with few implementations avail-
able to thoroughly evaluate its performance [0, 8]. Current
implementations struggle to achieve proper agreement be-
tween embeddings, which hampers the formation of islands
in GLOM. Additionally, embeddings are set at the same
resolution across both low and high levels, leading to re-
dundancy in the model’s trainable parameters. This paper
focuses on addressing these shortcomings.

Routing and embedding updating: Routing algorithms
are a crucial aspect of CapsNets, intended to replace the
pooling algorithms typically used in CNNs by assessing the
agreement between capsules [23]. This agreement reflects
how much lower-level capsules support the existence of a
higher-level capsule, based on the similarity of their predic-
tions [11]. Many works about CapsNets focus on reducing
the high computation burden in the capsule routing algo-
rithm. For instance, [27] eliminates the iterations in routing
and uses capsule distribution variance to activate high-level
capsules. Additionally, [2, 4, 17, 19, 20] introduce efficient
attention mechanisms into routing, significantly reducing
computational overhead. In contrast, GLOM eliminates the
need for routing but depends on similar embeddings to it-
eratively update and form ’islands’ representing parts or
whole objects [10]. Both routing and embedding updates
aim to use similar capsules/embeddings to represent nodes
in a sparse tree, organizing objects into a part-whole hi-
erarchy. A key focus of this paper is the role of embed-
ding similarity, which informs the design of the proposed
CAE and H,, each serving different purposes. CAE im-
proves GLOM’s island formation by promoting agreement
between similar embeddings and disagreement between dis-
similar ones, while H; reduces computational overhead at
higher levels by selecting embeddings that are less similar
to others, suggesting they may contain more valuable infor-
mation.

3. Method

Our proposed model aims to efficiently implement the
GLOM architecture while more closely aligning with its
theoretical framework for creating hierarchical islands of
embeddings that represent nodes in a parse tree, with these
islands expanding at higher levels. Additionally, the model
is designed to be lightweight, facilitating broader potential
applications of the GLOM architecture.

Here, we start with the introduction of the mathemati-
cal notation needed to explain the details of the main com-
ponents of the architecture. Given an input image I, it is
spatially transformed into N = h X w patches. The n-th
patch corresponds to column C,,(h,w) at the spatial loca-
tion (h,w), where n € {1,..., N}. For each column, it
consist of K-level embeddings f(k};’tw), ke {l,...,K} at

time step ¢ € {1,...,T} with a size of d for each embed-
ding. The subscript (h,w) and superscript ¢ are omitted in
subsequent instances for readability. f* and f**! are con-
secutive and represent the part and whole respectively. They
are connected by a bottom-up encoder and a top-down de-
coder which are shared across the spatial dimension.

3.1. Patches embedding

The pipeline is demonstrated in Fig. 2. Firstly, input im-
age I, with the shape of H x W X ¢, is transformed into
patch embeddings. Following the recipe provided in [16],
a convolutional Tokenizer is used to extract feature maps
with the size of H' x W' x ¢/. Next, it is reshaped to the
size of (h x r) x (w x r) x ¢/, where r is the patch size,
H' = h x r,and W = w x r. Then, we reshape and per-
mute it with the size of h x w X d, where d = r X r x c’.
At last, the n d-dimensional features act as the embeddings
fU* at the bottom level in columns C,, at time step .

3.2. Embedding updating

Secondly, we introduce the propagation phase, which gov-
erns the interactions between levels and across locations.
As shown in Fig. 3, the embedding of a column at location
n and level k is updated by integrating multiple sources of
information: predictions from lower and higher levels at the
same location n using a bottom-up encoder and a top-down
decoder, predictions from embeddings at other locations
within the same level via self-attention and a contrastive
agreement enhancer, and the historical context (i.e., the em-
bedding from the previous iteration). Next, we elaborate
on the components of the model that drive this embedding
update process.

Bottom-up encoder Ny Taking a low-level embed-
ding f** as input, the bottom-up encoder Ny is used to
predict high-level embedding f*+1:t*1 with the same size
of d. It is constructed by two fully connected layers and
shared across n columns.

Top-down decoder Nrp: Given a high-level embed-
ding f*+1? as input, the top-down decoder N7 is applied
to predict the corresponding low-level embedding f**+1.
The intuition is that if the model understands the whole, it
can effectively predict its parts. Like the encoder, N7 p also
comprises two fully connected layers.

Self-attention A 4: In GLOM, the interaction between
columns is implemented by a simplified self-attention that
query, value, and key vector are all the same as input. The
aim of self-attention is to produce islands of identical em-
beddings at a level by making each embedding vector at
that level regress towards other similar vectors at nearby lo-
cations. Ag 4 is computed as:

QKT
Vd

Asa(Q, K, V) = softmax( WV, €))
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Figure 2. Our model is pre-trained using contrastive learning, followed by supervised training with frozen weights. The input images I are
augmented and transformed into patches. These patches are then processed to construct a part-whole hierarchy over 7' iterations, where
embeddings at different levels gradually converge as the levels ascend. Next, the top-level embeddings are fed into H,4, which performs
downsampling based on weights that are negatively correlated with similarity. In the subsequent step, the embeddings are sent to H; for
contrastive pre-training. Finally, the output embeddings are passed to H for supervised training with frozen weights.

where Q, K,V = f*t. It should be noted that Ag 4 alone
is insufficient for creating part-whole hierarchies, as it lacks
the flexibility to adjust the degree of agreement (e.g., it
struggles to encourage embeddings to achieve greater con-
sensus at higher levels). To address this, GLOM incor-
porates additional regularization. In contrast, our model
adopts a more effective strategy, drawing inspiration from
contrastive learning, to promote agreement among embed-
dings.

Contrastive agreement enhancer A¢c 4 p: the function
of our proposed CAE is two-fold: enhancing the agreement
between positive embedding pairs; and pushing apart the
negative embedding pairs. In contrastive learning, positive
sample pairs are generated by applying different augmen-
tations to the same image, while negative sample pairs are
derived from images belonging to different classes. Unlike
contrastive learning, in Ac 4 g, the classification of embed-
ding pairs as positive or negative is based on the similarity
between embeddings. To be specific, the similarity is de-
fined as:

S = fnleQ
Lt frzll”

where the size of similarity map S is N x N. For posi-
tive and negative embedding pairs, we could set different
thresholds. Here we take a simple case for example with
S = 0 as a threshold for both positive and negative embed-
ding pairs. S > 0 means that the angle between embed-
dings f,1 and f,2 lies within the range (0°,90°). In this
case, fn1 and f,o is a positive embedding pair and could
belong to the same island. Conversely, S < 0 indicates that
fn1 and f,2 may belong to different islands thereby being a
negative pair. This process can be described as:

S, =S8-I(S > 0) + (—o0) - I(S < 0), 3)
S, =S-1(S < 0), &)

nl,n2 € {1,...,N}, )

where S, and S, represent the similarity map for positive

and negative embedding pairs respectively. I is the indicator
function. In the model’s bottom level, the threshold is set to
0, while at the top level it is set to —0.2. Next, we compute
the embeddings at the time step ¢ + 1:

f;“ = softmax(S,)f", (5)
fet =8t 6)
Acap(ft) = fit = i+, (M

where f/t! are the positive embeddings and f!*! are the
negative embeddings. Compared with f!*1, the computa-
tion of fi*! evolves the softmax function since the main
purpose is to facilitate agreement between embeddings and
softmax is good at eliminating the effect of negative embed-
dings (S < 0). In addition, to push apart between positive
and negative embeddings, we minus f£+* by i+ to predict
the ft*1. An illustration for CAE is given in Fig. 1a.
Fusion: At each time step ¢, f*! is computed by the
fusion of predictions from Ngy, Ntp, Asa, and Acag:

fk’t _ wbuNBU(fk717t71) + wthTD(karl,tfl)_'_
wlafk’t71 + was-ASA(fk’til) + wacACAE(fk’til) (8)

where Wpy,, Wid, Wig, Was, Wae are trainable parameters.

3.3. Dissimilarity-focused head

With the aim to relieve the computation overhead in-
troduced by which the embeddings at the top level and
the lower level have the same resolution, we proposed a
dissimilarity-focused head H; which receives top-level em-
beddings as input to do downsampling as shown in Fig. 4,
and it greatly reduces the number of parameters.

H, is inspired by the idea that embeddings at the top
level should exhibit agreement, which can result in redun-
dancy between them. To quantify this redundancy, we apply
indirect thinking and consider similarity as a suitable met-
ric, since the more similar the embeddings are, the more
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Figure 3. Architecture of model. The column at location n is
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Figure 4. An illustration for the dissimilarity-focused head which
is designed to reduce redundancy in the top-level embeddings,
where embedding weights for downsampling are negatively cor-
related with similarity within a sliding window.

redundant they become. To be specific, given the top em-
beddings fX € RM*wXd we first transform them into
p X p patches each with the shape of A/ x w’ x d where
h' = 1w = % For each patch, similarity map S’ with the
shape of (b’ xw’) x (b’ xw") is computed using Eq. 2. Next,
we compute the weights W for each embedding within the
patch:

h' xw’

Wi= > e Saije{l,.. nxul
j=1

W ’ ’
W — Rh Xw
maa:(WiYW €®>0 ©)

where 1 — Sz’»7 ; means that embeddings with higher simi-

larity with others should be assigned with lower weight to
downsample. Besides, the weights are summed to measure
the overall weight for embedding f;. Finally, the downsam-
pled output is computed by the weighted sum within each
patch.

h' xw’
Hy(f)= > Wifi, (10)
i=1

where Hy(f5) € Rpxpxd,
3.4. Training

The training of our model follows the setup in [8], con-
sisting of two steps: 1) a pre-training phase using a super-
vised contrastive loss function, and 2) a classification train-
ing phase using cross-entropy loss.

For pre-training, various data augmentation is adopted
to each image I within a batch B, producing pairs of im-
age I, and I,a,b € {1,---2B}. Then, the image pairs
are fed to our model to produce representation C,, , and
Cnp € R%, n € {1,---,N} at the top level K. In the
following, we reshape them to the shape of NV x d and send
them to a contrastive head H; which is constructed with two
fully connected layers. The output is denoted as O, and O,.
Finally, a supervised contrastive loss is adopted to pre-train
the model:

esim(Oa,Oh)

L, = —log : ’
212231 H[#a]eszm(Oa,Oi)

1)

where [[;4) is an indicator function that values O if ¢ and
a belong to the same image class, and 0 otherwise. sim is
a cosine similarity function that measures the similarity of
normalized input.

After the model is pre-trained with contrastive loss, we
freeze the network weights. Besides, we add a classification
head H» on the top of contrastive head H;. The Hs is a
linear layer that projects the representation to the final out
with the dimension of C'. C is the number of classes. The
cross-entropy loss is given as:

C
1
Ly=-5 ;pilogqi, (12)

where p; is the true probability distribution for class 7 and
q; 1s the predicted probability for class 3.

4. Experiment

Our experiments encompass quantitative and qualitative
analyses. Quantitatively, we evaluate the formation of is-
lands of agreement using the total variance of normalized
embeddings and compare model performance across multi-
ple datasets. An ablation study further examines the contri-
butions of the proposed CAE and H,. For the qualitative
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Figure 5. The comparison of our model with that of the Agglomerator in terms of 7'V}, at both the bottom and top levels across five datasets.
It is evident that the total variance of our model is considerably lower than that of the Agglomerator, indicating that the contrastive attention
mechanism effectively improves agreement in representing parts, which is essential for the theory of GLOM. Furthermore, the 7'V, of our
model is greater at the bottom level than at the top level, suggesting that agreement tends to increase as the levels rise.

analysis, we visualize the vector representations of emerg-
ing islands across levels. To illustrate CAE’s enhancement
of agreement intuitively, we depict representations with ar-
rows spanning various locations and levels. Experiments
are conducted on the CIFAR-10, CIFAR-100 [13], MNIST
[14], FashionMNIST [26], and SmalINORB datasets [15].
The details of the training settings are provided in the sup-
plementary material. The source code is publicly available
at: https://github.com/zengru00lusst/GLOM

4.1. Agreement Evaluation

To verify the effectiveness of the proposed CAE, total vari-
ance [22] of the normalized embeddings (17'V,,), as shown
in Eq. 13, is employed as a metric to quantitatively measure
the smoothness of embeddings at specific levels within the
models. The embeddings are normalized, as a trivial solu-
tion may occur where total variance is minimized by mak-
ing every f; ; infinitesimal. Lower T'V;, indicates greater
smoothness, meaning that more embeddings are similar and
achieve a higher level of agreement.

11
TV, = Nd ZZ(fi/,j - Hj)27
3 1

=1 j=
1 N
/
/’(‘] - N Zfz)]?
=1
/ fi,j

=2 13)

The results presented in Fig. 5 compare the T'V,, of our
model with that of the Agglomerator at both the bottom and

top levels across five datasets. It can be observed that the
TV,, of our model is significantly lower than that of the Ag-
glomerator, indicating that the CAE effectively enhances
agreement in representing parts, which is crucial for the
theory of GLOM. Additionally, the T'V,, of our model is
higher at the bottom level compared to the top level, sug-
gesting that agreement increases as the levels ascend. This
is consistent with GLOM’s framework, where embeddings
at lower levels gradually cluster locally to represent parts,
while embeddings at higher levels cluster globally to repre-
sent the whole. In contrast, the Agglomerator fails to main-
tain this characteristic.

4.2. Classification Results

To demonstrate the efficiency of the proposed model, we
report the classification results for each dataset in terms of
error percentage and the number of trainable parameters, as
shown in Tab. 1. While Capsule Networks (CapsNets), such
as [11, 18,19, 21, 23, 28], perform well on simpler datasets
like smalINORB, MNIST, and FashionMNIST, they strug-
gle to scale to more complex datasets with a higher num-
ber of classes, such as CIFAR-100, due to inefficiencies in
object representation [10]. Convolutional models, such as
[9, 24], maintain strong performance across various datasets
but fall short in interpretability. Transformer-based and
MLP-based methods achieve state-of-the-art performance
on more complex datasets, but they lack testing on smaller
datasets. As shown in Tab. 1, our model achieves compa-
rable classification error percentages to CapsNets and Ag-
glomerator [8] on simpler datasets, but with significantly
fewer parameters, especially compared to Agglomerator.
Moreover, our model requires less training time and has a
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Errors % No. params Training
Method Ref  Backbone  —¢ Gap B MNIST FMNIST .10 C-100 (Millions)  Arch.
E-CapsNet [19] 2.54 0.26 - - - 0.2 GPU
CapsNet [23] Caps 2.70 0.25 6.38 10.6  82.00 6.8 GPU
Matrix-CapsNet ~ [11] 1.40 0.44 6.14 11.9 - 0.3 GPU
Capsule VB [21] 1.60 0.30 5.20 11.2 - 0.2 GPU
Res-CapsNet [18] 0.55 0.55 - 7.62 - 16.4 GPU
TAR-CapsNet [28] 1.36 0.77 - - - 0.18 GPU
ResNet-110 [9] Conv - 2.10 5.10 6.41*% 27.76* 1.7 GPU
VGG [24] - 0.32 6.50 7.74%  28.05* 20 GPU
ViT-L/16 [7] Transf - - - 0.85*  6.75* 632 TPU
ConvMLP-L [16] Conv/MLP - - - 1.40*% 11.40% 43 TPU
MLP-Mixer-L/16  [25] MLP - - - 1.66* - 207 TPU
Agglomerator [8] Conv/MLP- 0.01 0.30 7.43 11.15 4097 72 GPU
Ours - /Caps 0.01 0.30 5.10 1090 41.31 2 GPU

Table 1. Classification results on SmalINORB (S-NORB), MNIST, FashionMNIST (F-MNIST), CIFAR-10 (C-10), and CIFAR-100 (C-
100) datasets, demonstrating the efficiency of the proposed model. Results marked with * indicate networks pre-trained on ImageNet.

Errors No. Param.

Ha CAE (%)  (Millions)
Baseline x X 9.1 72
Modell  x Vv 9.0 72
Model2 / X 11.6 2
Model3 +/ vV 10.9 2

Table 2. Ablation for dissimilarity-focused head (H4) and con-
trastive agreement enhancer (CAE) on CIFAR10.

Errors No. Param.

(%) TV, (Millions)
Average pooling 11.1  0.372 2
Max pooling 11.1 0473 2
Hy 10.9 0.544 2

Table 3. Comparison of dissimilarity-focused head (Hg), average
pooling and maxpooling on CIFAR10.

much smaller architecture compared to most transformer-
based and MLP-based methods.

4.3. Quantitative Ablation

To study the contribution of the different components of
our model to its performance, we conduct an ablation ex-
periment where we incrementally added the dissimilarity-
focused head (H;) and contrastive agreement enhancer
(CAE) to the baseline model. The baseline model is de-
fined by removing both H; and CAE from our full model.
We then compare the classification results and the number
of parameters on CIFAR10 to demonstrate the contribution
of H,; and CAE to model performance.

The results in Tab. 2 indicate that H; can significantly re-
duce the number of trainable parameters in the model while
only causing a slight increase in errors, which suggests the
presence of redundancy at the top level. Additionally, when
H,; is employed, CAM can enhance model performance,
as much of the redundancy has been eliminated, allowing
CAM to provide valuable supplementary information.

To evaluate the impact of Hy on classification accuracy
and T'V,,, we compare our model against two alternative
downsampling strategies: max pooling and average pool-
ing, by substituting H,; with these methods. Results in
Tab. 3 show that the model with H; achieves a lower er-
ror rate and higher T'V;, than these alternatives under iden-
tical downsampling conditions. The higher T'V,, with Hy
stems from its emphasis on embeddings with lower simi-
larity, which carry more informative features and enhance
classification accuracy.

4.4. Qualitative Ablation

We also conduct two qualitative ablation study to demon-
strate the effect of the contrastive agreement enhancer.

The emerging island of agreement. To illustrate the
emergence of islands across different levels, the embed-
dings from various k levels of CIFAR-10 are visualized
in Fig. 6. When examining the embeddings at the high-
est level (k = 5), those generated by the model with CAE
reveal finer details and a more distinct separation between
objects and the background. Furthermore, a comparison of
embeddings across different levels demonstrates that as the
levels increase, the embeddings progressively reach agree-
ment, effectively capturing part-whole hierarchies.

The representation visualization using arrows. To
provide an intuitive illustration of the enhancement in
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Figure 6. The emerging island of agreement at various k levels from CIFAR-10. At the top level (k=5), the representations generated by
the model with CAE display enhanced detail, highlighting a more distinct separation between objects and the background.

FSn = | 2 2
TN s
. FUNA

Y -
- =

A
I
N

Image

With CAE

Without CAE

Figure 7. The representation visualization using arrows for model with and without CAE. The direction and length of each arrow represent
the gradient direction and magnitude of an embedding at a specific location, computed via the Sobel operator.

agreement introduced by CAE, we visualize the represen-
tations using arrows across various locations and levels.
The direction and length of each arrow indicate the gradi-
ent direction and magnitude of an embedding at a specific
location, computed via the Sobel operator. MNIST is se-
lected for visualization due to its simplicity, minimizing po-
tential interference from complex image backgrounds. As
depicted in Fig. 7, the arrows in the model incorporating
CAE demonstrate greater consistency, whereas those in the
model without CAE appear more disordered and inconsis-
tent.

5. Conclusion

In this paper, we have proposed a new implementation of
GLOM that aligns more closely with its theoretical frame-
work for forming hierarchies of grouped embeddings to rep-

resent nodes in a parse tree. To foster the formation of dis-
tinct islands, we have designed a novel contrastive agree-
ment enhancer that encourages agreement between positive
embedding pairs while separating negative pairs. To re-
duce the computational burden of GLOM, we developed
a dissimilarity-focused head that preserves more informa-
tive content by prioritizing embeddings with lower simi-
larity, which often contain richer information. Both quan-
titative and qualitative analyses demonstrate that the con-
trastive agreement enhancer effectively promotes islands of
agreement, while the dissimilarity-focused head enhances
model efficiency across various datasets. This work signif-
icantly improves the practicality of GLOM, and we hope it
inspires other researchers to further explore this direction to
advance its development.

24358



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

Yoshua Bengio, Yann Lecun, and Geoffrey Hinton. Deep
learning for ai. Communications of the ACM, 64(7):58—-65,
2021. Publisher Copyright: © 2021 Owner/Author. 1

Ran Chen, Hao Shen, Zhong-Qiu Zhao, Yi Yang, and Zhao
Zhang. Global routing between capsules. Pattern Recogni-
tion, 148:110142, 2024. 3

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597-1607. PMLR, 2020. 2
Jaewoong Choi, Hyun Seo, Suii Im, and Myungjoo Kang.
Attention routing between capsules. In Proceedings of
the IEEE/CVF international conference on computer vision
workshops, pages 0-0, 2019. 3

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
113-123,2019. 1

Laura Culp, Sara Sabour, and Geoffrey E Hinton. Testing
glom’s ability to infer wholes from ambiguous parts. arXiv
preprint arXiv:2211.16564,2022. 1,2, 3

Alexey Dosovitskiy. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 7

Nicola Garau, Niccolé Bisagno, Zeno Sambugaro, and
Nicola Conci. Interpretable part-whole hierarchies and
conceptual-semantic relationships in neural networks. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 13689-13698, 2022. 1,
3,5,6,7

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 6, 7

Geoffrey Hinton. How to represent part-whole hierarchies
in a neural network. Neural Computation, 35(3):413-452,
2023.1,2,3,6

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix
capsules with em routing. In International conference on
learning representations, 2018. 2, 3, 6,7

Harold Hotelling. Analysis of a complex of statistical vari-
ables into principal components. Journal of educational psy-
chology, 24(6):417, 1933. 1

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haftner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
6

Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning
methods for generic object recognition with invariance to
pose and lighting. In Proceedings of the 2004 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., pages 11-104. IEEE, 2004.
6

24359

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

Jiachen Li, Ali Hassani, Steven Walton, and Humphrey Shi.
Convmlp: Hierarchical convolutional mlps for vision. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6307-6316, 2023. 3,
-

Yi Liu, Dingwen Zhang, Qiang Zhang, and Jungong Han.
Part-object relational visual saliency. [EEE Transactions
on Pattern Analysis and Machine Intelligence, 44(7):3688—
3704, 2022. 3

Yi Liu, De Cheng, Dingwen Zhang, Shoukun Xu, and Jun-
gong Han. Capsule networks with residual pose routing.
IEEE Transactions on Neural Networks and Learning Sys-
tems, pages 1-14, 2024. 6, 7

Vittorio Mazzia, Francesco Salvetti, and Marcello Chi-
aberge.  Efficient-capsnet: Capsule network with self-
attention routing. Scientific reports, 11(1):14634, 2021. 3, 6,
-

Rita Pucci, Christian Micheloni, and Niki Martinel. Self-
attention agreement among capsules. In Proceedings of the
ieee/cvf international conference on computer vision, pages
272-280, 2021. 3

Fabio De Sousa Ribeiro, Georgios Leontidis, and Stefanos
Kollias. Capsule routing via variational bayes. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pages
3749-3756, 2020. 6,7

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear
total variation based noise removal algorithms. Physica D:
nonlinear phenomena, 60(1-4):259-268, 1992. 2, 6

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dy-
namic routing between capsules. Advances in neural infor-
mation processing systems, 30, 2017. 2,3, 6,7

Karen Simonyan. Very deep convolutional networks
for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 6,7

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al.
Mlp-mixer: An all-mlp architecture for vision. Advances
in neural information processing systems, 34:24261-24272,
2021. 7

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,2017.
6

Ru Zeng and Yan Song. A fast routing capsule network with
improved dense blocks. IEEE Transactions on Industrial In-
Sformatics, 18(7):4383-4392, 2021. 3

Ru Zeng, Yuzhang Qin, and Yan Song. A non-iterative cap-
sule network with interdependent agreement routing. Expert
Systems with Applications, 238:122284, 2024. 6, 7

Ru Zeng, Yan Song, and Yuzhang Qin. Spatial attention-
based capsule networks with guaranteed group equivariance.
IEEE Transactions on Automation Science and Engineering,
2024. 2

Ru Zeng, Yan Song, and Yanjiu Zhong. An interpretable
unsupervised capsule network via comprehensive contrastive
learning and two-stage training. Pattern Recognition, 158:
111059, 2025. 2



	Introduction
	Related work
	Method
	Patches embedding
	Embedding updating
	Dissimilarity-focused head
	Training

	Experiment
	Agreement Evaluation
	Classification Results
	Quantitative Ablation
	Qualitative Ablation

	Conclusion
	Datasets
	Training settings
	Additional Results

