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Abstract

Video grounding (VG) task focuses on locating specific
moments in a video based on a query, usually in text
form. However, traditional VG struggles with some sce-
narios like streaming video or queries using visual cues.
To fill this gap, we present a new task named Online
Video Grounding with Hybrid-modal Queries (OVG-HQ),
which enables online segment localization using text, im-
ages, video segments, and their combinations. This task
poses two new challenges: limited context in online set-
tings and modality imbalance during training, where domi-
nant modalities overshadow weaker ones. To address these,
we propose OVG-HQ-Unify, a unified framework featuring
a Parametric Memory Block (PMB) that retain previously
learned knowledge to enhance current decision and a cross-
modal distillation strategy that guides the learning of non-
dominant modalities. This design enables a single model to
effectively handle hybrid-modal queries. Due to the lack of
suitable datasets, we construct QVHighlights-Unify, an ex-
panded dataset with multi-modal queries. Besides, since of-
fline metrics overlook prediction timeliness, we adapt them
to the online setting, introducing oR@n, loU=m, and on-
line mean Average Precision (omAP) to evaluate both accu-
racy and efficiency. Experiments show that our OVG-HQ-
Unify outperforms existing models, offering a robust solu-
tion for online, hybrid-modal video grounding. Source code
and datasets are available at https://github.com/
maojiaqi2324/0VG—-HQ.

1. Introduction

Video grounding [11, 61, 70] is a crucial research task
that identifies the start and end times of target segments in
untrimmed videos based on a given query. However, the
current setting suffers from two critical limitations in real-
world applications. First, it considers an offline setting, im-
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Figure 1. Illustration of our proposed online video grounding with
hybrid-modal queries task, with two distinguishing characteristics:
online video input and various query configurations. Beyond text
query, it accepts visual queries (images, video segments) and their
combination with text. We also construct a new QVHighlights-
Unify dataset by augmenting QVHighlights dataset with images
and video segments and complementary image-text pairs.

posing strict requirements on complete video accessibility,
which is insufficient for immediate detection in streaming
media. For example, in surveillance, we need to continu-
ously analyze live feeds and instantly ground queries, such
as “group of people gathering near the front door”, so that
security teams can respond immediately, rather than waiting
to process a lengthy offline recording. Second, the current
video grounding task predominantly relies on natural lan-
guage queries, limiting its application to multi-modal sce-
narios. As an example, a text-only system might demand
a detailed description such as “a group of individuals con-
gregating near the front door, frequently looking around,
and making brief contact before dispersing in different di-
rections”. In contrast, with multi-modal queries, security
staff could directly upload a past surveillance clip illustrat-
ing similar suspicious behavior. With this consideration, we
introduce an extended task called Online Video Grounding
with Hybrid-modal Queries (OVG-HQ).

Unlike the conventional offline video grounding task that
only considers text queries as inputs, our OVG-HQ task ac-
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commodates multiple query modalities (e.g., text, image,
video) in online video streaming, as shown in Figure 1. This
setup requires the model to dynamically process and inte-
grate information from diverse sources, adapting to evolv-
ing queries throughout the video. OVG-HQ emphasizes on-
line inference and cross-modal interactions, challenging the
model to ground relevant moments accurately across vary-
ing contexts and query types.

The new task poses new challenges. First, the video con-
tent can vary significantly over time, with changing scenes,
lighting, and objects. Models must adapt to this variability
in a streaming video, accounting for concept drift without
losing prior learned knowledge. Second, as noted by [71],
modality imbalance poses a significant challenge in hybrid-
modal queries, as different modalities (such as text, image,
or video) contribute unevenly to the task. Stronger modal-
ities with more informative signals often dominate, over-
shadowing weaker ones. This imbalance causes the model
to rely heavily on stronger modalities, leading to underuti-
lization of the weaker ones, which reduces their contribu-
tion and ultimately impacts the model’s overall accuracy in
integrating diverse information. Consequently, it becomes
difficult to use a single unified model to handle all modal-
ities effectively. To tackle the challenging OVG-HQ task,
we propose a unified yet flexible model called OVG-HQ-
Unify, which supports hybrid-modal query inputs (i.e., both
uni- and multi-modal queries) and enables online localiza-
tion of moments. It mainly has two parts. First, since
each streaming video can be regarded as a sequence, to
retain previously learned knowledge, we embed a Para-
metric Memory Block (PMB) instantiated with Test-Time
Training layer (TTT) [42] that uses the network’s param-
eters as dynamic memory for sequence modeling. With a
self-supervised reconstruction loss, PMB encodes histori-
cal feature and prediction information, allowing the model
to “memorize” past context for better decisions rather than
directly saving historical data. In online video streams,
PMB’s ability to update parameters during inference en-
ables continuous improvement and adaptability to new sce-
narios. Second, to alleviate the impact of modality imbal-
ance, we design a hybrid distillation strategy that introduces
a teacher model to guide the learning of non-dominant
modalities, thus enhancing the model’s performance con-
sistency across different query modalities.

As there is no off-the-shelf dataset suitable for the OVG-
HQ task, we construct a new dataset called QVHighlights-
Unify, which expands the QVHighlights dataset [19] by
adding image and segment queries'. This expansion enables
the model to handle not only text queries but also visual

'We first expand the QVHighlights for its well-annotated moment re-
trieval data, enabling systematic evaluation of hybrid-modal queries. In the
future, we will collect more complex datasets (e.g., surveillance videos) to
further validate and enhance our model in more practical scenarios.

modality inputs, validating its adaptability and consistency
across various query types. Besides, as the offline met-
rics fail to capture the timeliness of predictions, we adapt
them to the online setting called oR@n, loU=m and online
mean Average Precision (omAP) to evaluate both accuracy
and efficiency. Experiments on QVHighlights-Unify, ANet-

Captions, TACoS, MAD datasets show that our OVG-HQ-

Unify framework achieves superior performance compared

to existing methods, particularly in handling hybrid-modal

queries. Our main contributions are as follows:

* We introduce a new task, Online Video Grounding with
Hybrid-modal Queries (OVG-HQ), enabling multi-modal
queries and requiring online segment localization in video
streams, which is suited for practical applications.

* We propose a unified framework, called OVG-HQ-Unify,
supporting hybrid-modal queries as inputs and enabling
online localization of video clips. In detail, we introduce
a Parameter Memory Block (PMB) to keep previously
learned knowledge and a cross-modal distillation strategy
to mitigate imbalances during multi-modal training.

* We construct a new dataset, QVHighlights-Unify, which
includes multiple query modalities. Experiments on 4
datasets show that our OVG-HQ-Unify framework out-
performs existing models, demonstrating its superiority
in the online setting across various query types.

2. Related Work

2.1. Video Grounding with Text Query

Offline Setting. Offline Video Grounding methods [7, 8,
11, 15, 16, 24, 28, 32-34, 45, 48, 54, 55, 61, 70] involve
identifying time intervals within a video that are semanti-
cally aligned with a given sentence. Proposal-based meth-
ods typically follow a two-stage pipeline: the first stage
generates proposals, and the second ranks these proposals
based on their relevance to the input query. Early techniques
generate proposals using sliding windows [11, 12, 66] or
predefined temporal anchors [3, 49, 57, 62, 68]. Later
methods [20, 23, 45, 47, 67] explore all possible pairs
of start and end points or use 2D temporal maps to pro-
cess multiple candidates at once. Proposal-free meth-
ods [13, 33, 58, 64] aim to predict the target moment di-
rectly without the need for explicit proposals. They learn
the interaction between video and sentence by applying
techniques like attention mechanisms [13, 33, 36, 58, 64]
and dense regression [5, 27, 60] from individual frames.
In addition, efforts have been made to integrate temporal
sentence grounding with other video understanding tasks
into unified frameworks [22, 53]. Recent query-based mod-
els [2, 16, 18, 19, 21, 25, 30, 31, 41, 52] have simplified the
process by removing the need for handcrafted components.
Training-free methods [29, 51] have been introduced to ad-
dress challenges in supervised learning, such as biases from
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annotations and limited generalization. They avoid relying
on annotated data and instead leverage pre-trained models
to assess the similarity between video segments and textual
queries. Some methods [29] use vision-language models,
while others [51] utilize large language models to compare
video frame captions with the query. However, all these
methods assume full access to the video in advance, which
is not feasible for streaming applications where predictions
must be made in streaming videos.

Online Setting. Recently, [10] proposed video ground-
ing in an online setting, which involves retrieving relevant
moments given a language query during video streaming.
However, this setting overlooks the inherent flexibility of
the query itself, as users may require inputs from multi-
ple modalities beyond text, such as image, video segments,
or any combination of these modalities. In this paper, we
propose a task that is more aligned with real-world applica-
tion scenarios, called Online Video Grounding with Hybrid-
modal Queries. This task enables online segment localiza-
tion in video streams using hybrid-modal queries, accom-
modating various input modalities to better meet user needs.

2.2. Video Grounding with Multi-modal Query

Video grounding tasks involve localizing specific events or
activities within videos based on a given query. Most meth-
ods [24, 33, 45, 55] use natural language as the query. [69]
was the first to utilize image queries to localize unseen ac-
tivities in videos. More recently, [14] proposed ground-
ing videos spatio-temporally using images or texts. [063]
attempts to localize events in videos using multimodal se-
mantic queries, but image-text pairs in this dataset are com-
plementary and cannot be used independently as queries,
neglecting that users may input different types of queries in
practical settings. In this paper, we unify multiple modal-
ities and various combinations of queries and additionally
introduce the concept of video segment queries, which en-
ables segment localization in video streams using queries
comprising any combination of modalities—including im-
ages, text, and video segments.

3. Proposed Method

3.1. Problem Definition

Offline Video Grounding with Text Query. This con-
ventional task requires a machine to process an untrimmed
video V = {xi}szl where xz; denotes the ¢-th frame, and
subsequently identify M relevant moments M = {M,,, =
(Sm, €m) }M_, that correspond to a text query Q. Each mo-
ment M,, is defined by its start and end frames s,, and
em. However, this offline setting has two primary limita-
tions in practical applications: 1) videos are often streamed,
rendering it impractical to wait until all frames have been
processed before predicting moments; 2) users may require

inputs from multiple modalities beyond text, such as images
or video segments.

Online Video Grounding with Hybrid-modal Queries
(OVG-HQ). In this paper, we propose to study a more prac-
tical setting, which aims to understand an input multi-modal
query Q@ C {q¢+,qi, qs }—where ¢+, ¢;, and g, represent text,
image, and video segment queries, respectively—and re-
trieve relevant moments from streaming video. In this set-
ting, at each timestamp ¢ (1 < ¢t < T'), the model only
has access to a sliding window of frames> Vick+1d =
{xi}ﬁzt_kﬂ, with k > 1. Using this partial video seg-
ment and multi-modal query Q, the model should identify
events (sometimes more than one) relevant to Q. Impor-
tantly, once predictions are made at any timestamp, they
cannot be modified or removed in future steps. Current
methods rely on Non-Maximum Suppression (NMS) and
future frame predictions to adjust past frames, which is im-
practical in streaming settings.

3.2. General Scheme

The challenge of online video grounding (OVG) lies in
how to efficiently model and utilize historical information
to enhance current predictions. To address this, we pro-
pose a simple yet effective sequence modeling module,
namely parametric memory block (Mpyp). Inspired by
TTT [42], our parameter-as-memory layer fpy in Mpyg
compresses sequential information (e.g., input frame se-
quences) into the neural network parameters. Based on
Mpyp, we design an OVG-HQ-Unify model capable of han-
dling various input configurations, including text, text + im-
age, and text + segment, as shown in Figure 2.

In the following, we first introduce the design of Mpy
in Sec. 3.3. We then illustrate how Mpyp is employed in
multi-modal fusion and prediction in Sec. 3.4 and 3.5, re-
spectively. Lastly, we describe the approach for training a
unified model with hybrid-modal queries in Sec. 3.6.

3.3. Parametric Memory Block

To enable memory retention in models, one common ap-
proach is to use a memory bank and integrate current inputs
with stored memory via self-attention [46]. However, this
introduces extra storage overhead and results in increased
computational costs as the amount of historical data grows.
In contrast, LSTMs store historical information in a fixed-
size hidden state, whose expressive capacity is limited [42].
Unlike the above approaches, we propose a learnable para-
metric memory block Mpyp instantiated with TTT [42] that
can compress the historical information within network pa-
rameters, which have much stronger expression power as

2 Accessing all past frames is ideal but impractical for long video
streams due to computational and memory constraints. A sliding window
offers a balanced trade-off between efficiency and accuracy.
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Figure 2. Overview of our OVG-HQ-Unify model. At time ¢, features extracted from video and query are processed via the memory-guided
multi-modal fusion module (Sec. 3.4), where query-aware features are extracted via a transformer decoder and enhanced by parametric
memory block Mpmp (Sec. 3.3). Then, the memory-guided moment prediction module (Sec . 3.5) decodes anchor features, which, along
with the current predictions are fed to Mpmp for moment prediction. In Mpwmg, the parameter-as-memory layer (femi) first memorizes
current input by updating its parameters via self-supervised reconstruction loss and then predicts based on the historical information.

neural networks have a larger capacity than the hidden states
of LSTM. It operates in two steps, as shown in Figure 2.
Step 1: Memorize Current Input. The core component
of Mpwmg is the parameter-as-memory layer fpmp(-; W™).
To compress the current input 7, into W™, we employ a
reconstruction loss as a form of self-supervision. This ap-
proach is akin to how language models utilize reconstruc-
tion or masked prediction loss to embed knowledge from
training data into the parameters of neural networks through
gradient descent. Formally, the reconstruction loss can be
defined as follows:

Lovw (re; W™) =|| fom(Wrerg; W™) — Wy |12, (1)

where Wy and Wy, are two learnable projection matrices.
We then update W™ by

W™ «— W™ — npmr - VLpwp (1 W™M), 2)

where npy = o (W, - ;) is an adpative learning rate fol-
lowing [42], W}, is a learnable vector and o is the sigmoid
function. At this point, W™ holds information from both
prior and current time step, enabling the network parame-
ters to retain the current representation effectively.

Step 2: Produce Memory-Augmented Qutput. With the
updated memory capturing both current and historical infor-
mation, we can now augment r; with memory. The current
input 7 is first processed through a projection layer W,

then passed through the updated function fpyy (+; W™), fol-
lowed by layer normalization and another projection layer
Wo. Mathematically, the process can be defined as

7t = fom(re; W) = Wo - LN(fome (Wors W™)),  (3)

where LN denotes a LayerNorm layer. Then, this memory-
augmented 7 is forwarded to the consequent modules.
Update Rule of Parametric Memory Block. Let W?
be the parameters of Mpyp, by excluding those of
femL(; W™), we denote the remaining parameters as
Wr = WP\ W™, In other words, all these parameters
Waq, Wk, Wyand Wq belong to W7, as illustrated in the
upper-right section of Figure 2. First, fix the parameters
W, forward the current input 7; into fpyy and use Eqn. (1)
to update the fpyr parameters W, Second, with parame-
ters W™ fixed, use Eqn. (3) to produce memory-augmented
output. Third, update the parameters W by minimizing
the loss function derived from the video grounding task.

3.4. Memory-guided Multi-Modal Fusion

Query Feature Extraction. For text and image queries,
we use the text and image encoder of CLIP [35] to extract
features F'; and F;, respectively. For segment queries, we
use [35] to extract features F; at intervals of M seconds.

Video Feature Extraction. We process video sequences as
streaming data through a sliding window mechanism with
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size L, which dynamically emulates the model’s temporal
receptive field at each time instant ¢ by spanning frames
within the interval [t — L,t]. The window slides forward
with a step size of M seconds, where features of overlap-
ping segments are computed only once and cached for sub-
sequent reuse. Consequently, at each temporal position ¢,
we employ [35] to extract new features from the current
video frame. This operational paradigm ultimately yields
snippets-level features F,, € R¥ D for each sliding win-
dow, where K denotes the number of video frames ex-
tracted within the window.

Transformer-based Cross-modal Fusion. We trans-
form all unimodal features to a unified dimension D via
modality-specific linear layers and use a Transformer de-
coder with cross-attention to fuse video and query fea-
tures. Queries may include multiple modalities, so we
pad each modality with a specific token m,, where * €
{t,i,s}. For example, with text and image queries, the
decoder input is a combination of multi-modal features
Q = [m¢, Fy, m;, F;]. In the decoder, video snippets’ fea-
tures F, in each window serve as queries (J,, and query
features Q serve as keys K, and values V,. The rest of
the decoder follows the standard Transformer architecture,
resulting in query-aware video representations F ..
Memory-guided Fusion via fpyp. As the query-aware
video feature F,, mainly focuses on information within the
current window, to capture long-term video relationships,
we further introduce a memory-guided sequence modeling
module based on fpyy to incorporate historical context. As
shown in Figure 2, this module resembles a Transformer
encoder but replaces the self-attention layer with our fpyr
mechanism. At each time step ¢, the feature vector F, is
processed by our new module, and produces an output ac-
cording to the equation in Eqn. (3). This update merges
current and historical information, producing a memory-
guided feature f‘qv for subsequent moment prediction.

3.5. Memory-guided Moment Prediction

At time ¢, our model generates a series of proposals based
on predefined anchors, which end at ¢ with lengths L,, =
Lq/Q”’1 forn =1,..., N. For instance, the n-th anchor is
represented as A,, = (¢t — L, t). We use a Transformer de-
coder structure, following [17], to process the learnable an-
chor query A € RV*P and features F',;,, from the Memory-
guided Multi-Modal Fusion Module, producing anchor fea-
tures F, € RY*P (see Figure 2). Using F,, a classifica-
tion head predicts {s¢, s} for foreground and background
scores, while a regression head predicts {Al, Ao}, indicat-
ing the target moment length and offset. Thus, the n-th an-
chor boundary, A, = (Sn, €n), is adjusted by:

Sn = en — Ly exp(Aly,),

4
n=t+ L,Ao,. @)

Memory-guided Prediction Refinement. In the online
video grounding setting, predictions made at earlier time
steps cannot be adjusted later. Thus, we design the model to
refine current predictions using past results. As discussed in
Sec. 3.3, fpmL can retain historical data, inspiring our Pre-
diction Refinement Module (PRM), shown in Fig. 2. First,
we concatenate the classification outputs {sy, s,} and re-
gression outputs {Al, Ao}, passing them through a linear
layer to create the prediction feature F,. This is then com-
bined with anchor features F, to form F., which is pro-
cessed through Mpyy .

Within fpy, two main operations occur: 1) The anchor
feature and current prediction F. are compressed into pa-
rameters to incorporate historical prediction information;
2) The updated fpyvr generates refined classification re-
sults {s%, s;, } and boundary offsets { Al", Ao} based on F..
Only anchors with sy > 6 (a predefined threshold) are se-
lected, and their boundaries are calculated using Eqn. (4).

3.6. Unified Multi-modal Training and Inference

We empirically found that directly training a model with
hybrid-modal data does not consistently yield strong per-
formance across query types. While models perform well
on text queries, performance significantly drops when text
is absent (see Fig. 3). To address this, we propose a training
strategy called hybrid distillation: 1) We train using three
query types (text, vision, and vision+text), alternating be-
tween them in batches. 2) We apply distillation by first
training an expert teacher model on text+segment-g queries,
which provide the best multi-modal information. This ex-
pert model then guides the unified student model through
distillation, applied to classification (c = {sy, s }), regres-
sion (r = {Al, Ao}), and anchor features (Ffm) with the
following loss function:

N
Z ‘CKL aw fl,i)+£2( i z)+£2( Cis z))

)
where Lk is KL Divergence and Lo is MSE loss, with N
as the number of anchors, and s and ¢ as the student and
teacher outputs, respectively. Additionally, standard video
grounding loss functions are applied to train the student
model. The classification head’s training loss is defined as:

cla - ZLFocal ru L ’ (6)

where we use the Focal loss [39] as Lgoca. The training loss
function for the regression head is defined as :

N
Lreg = Z (L1(Ao0;, AS;) + L1(AL, AL)), (7)
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where £ is the L1 loss. The overall loss is defined as:
L= £d + )\‘Ccls + ﬁreg; (8)

where ) is a hyperparameter, and we have found that A =
10 works well across all experiments.

Dynamic Inference Details. During inference, unlike prior
video grounding methods that keep the learned neural net-
work fixed, our model’s parameters (i.e., fpyr) are dynami-
cally updated based on the self-supervised loss in Eqn. (1),
allowing it to “memorize” and leverage historical informa-
tion to adapt more effectively to unseen data.

4. Benchmark Creation and Evaluation Metric

We establish a new QVHighlights-Unify by expanding the
QVHighlights dataset [ 19] with image and segment queries.

4.1. QVHighlights Dataset

It covers daily vlogs and news events for both moment re-
trieval and highlight detection. It contains more than 10,000
videos annotated with free-form queries. Each query is as-
sociated with one or multiple variable-length moments in its
corresponding video, and a comprehensive 5-point Likert-
scale saliency annotation for each clip in the moments.

4.2. Our QVHighlights-Unify Dataset

The QVHighlights dataset includes only text queries. We
expand it with the following three types of queries.

1) Image-R: retrieved images based on text query. To
simulate users searching online for visual clues, we first
use QVHighlights text queries to retrieve ten semantically
matching images. Then, we apply the InternVL vision-
language model [6] to compute similarity scores and select
the top-scoring image as the retrieved query. We did not
consider retrieving videos because, compared to images, it
is substantially more challenging to find a video that accu-
rately matches the text without including irrelevant content.
2) Text-C+Image-C: complementary text-image pairs.
As noted in [63], users may struggle to express unfamil-
iar or abstract concepts verbally or to find an image that
perfectly matches their interests. Providing a simple sketch
or sample image alongside a text query can help, as both
complement each other semantically to convey the user’s
intent. Following [63], we modify the text query and gener-
ate a complementary image (Image-C) based on the revised
text. We also create a corresponding textual description re-
flecting these modifications (for example, changing “Swim-
ming” to “Dancing” yields “The action is swimming, not
dancing.”). Please refer to [63] for more details.

3) Image/Segment-G: generated visual queries w.r.t. text
query. In practical applications, a visual query may not al-
ways be retrievable from the internet using its correspond-
ing text query. To address this, we leverage modern genera-
tive models to produce images and videos as visual queries.

Following [63], we design four prompt templates reflect-
ing distinct image styles, randomly pair each text query in
the QVHighlights dataset with one template, and use Stable
Diffusion [38] for image generation. For videos, we employ
the text-to-video model CogVideoX-5B [56] to create a six-
second clip per text query as a generated segment query.
We then manually filter out visually unclear or semantically
mismatched samples, iteratively adjusting the textual input
until the output meets the desired criteria.

4.3. Evaluation Metrics for Online VG

In online settings, where early and continuous predictions
are essential, traditional metrics like mAP fail to account for
timeliness. This leads to high scores even when predictions
are delayed, making them unrealistic for real-time applica-
tions. To bridge this gap, we introduce two evaluation met-
rics (i.e., OR@n, IoU=m and omAP) that enalize delayed
responses by incorporating a decay factor 5 (0 < 8 < 1). If
a prediction is made on the ground truth’s end time, 5 = 1;
otherwise, /3 linearly decreases until it reaches zero once
the prediction time exceeds the ground truth by a thresh-
old ts € {1s,3s,5s}. Although other decay schemes exist
(e.g., [59]), we adopt linear decay for simplicity. Lastly, we
average over these ¢4 thresholds to obtain the final metrics.

1) oR@n, IoU=m (oR},). We extend the standard R@n,
IoU=m metric by introducing the decay factor /3. If at least
one of the top n retrieved moments have an IoU exceeding
m, we set r(n, m, q;) = 1; otherwise, r(n, m, g;) = 0. For
moments that match the ¢-th ground truth, we compute 3;
using the method above. Formally, we compute

N,
1 q

oR@n,loU@m = N Zﬁi -r(n,m,q;), 9
9 =1

where N, is the number of queries.
2) omAP,,,. We define omAP,,, as

N
1 ! :
OomAP,, = — ZoAPﬁ}), (10)
Ny i=1
H;
0AP{}) = Z(ﬁi,jRi,j = Bij-1Rij-1)BijPij, (11)
=2

where H; is the number of predictions that hit the ground
truth corresponding to the i-th query, P; ; and R; ; are the
precision-recall pairs obtained at different cutoff values dur-
ing Average Precision (AP) calculation, 3; ; is the sum of 3
values for the true positives used in the calculation of R; ;
and P; ;. We multiply R; ; and F; ; by f3; ; to measure time-
liness. Source code will be released.

5. Main Experiments

We compare our method with state-of-the-art methods on 4
datasets, including our QVHighlights-Unify dataset, ANet-
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Figure 3. Performance comparisons on our QVHighlights-Unify
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Captions [1], TACoS [37], and MAD [40] datasets. Due to
page limits, we put more details in the supplementary.

5.1. Results on the QVHighlights-Unify Dataset

The hybrid-modal query framework includes eight distinct
input configurations, incorporating both single-modal and
dual-modal queries. Figure 3 compares three models: 1) an
expert model trained for each query type (blue), 2) a unified
model directly trained for hybrid-modal queries (green),
and 3) a unified model trained with hybrid distillation (red).
Training an expert model for each query type. We
observe ) Segment queries outperform Image queries:
This difference (20.33% vs 16.14%) likely arises as video
grounding retrieves dynamic video segments, and Seg-
ment queries are better suited than Image queries to ac-
curately describe a user’s content of interest. 2) Multi-
modal queries outperform single-modal queries: For exam-
ple, the Segment-G + Text expert model achieves a perfor-
mance metric of 25.11%, substantially higher than either
the Segment-G (20.33%) or Text (23.26%). This result sug-
gests that multimodal queries provide richer and more com-
prehensive information about the desired moment.
Training a unified model to handle all query types. Our
key findings include 1) Challenges with training a hybrid-
modal unified model: When multiple query types are di-
rectly combined into a single unified model, performance
generally declines compared with the expert model. As
shown in Figure 3, visual queries (e.g., Segment-G 14.07%)
are considerably lower than the text query’s score (22.07%).
This suggests that during training, the model tends to prior-
itize the dominant modality, suppressing the optimization
of other modalities [71]. 2) Improvement with hybrid dis-
tillation: The model’s performance improved significantly,
especially in cases without text query. Specifically, when
only an Image-R query is used, the oR} 5 metric increases
by 8.98% (from 11.43% to 20.41%), demonstrating the ef-
fectiveness of our proposed approach.

Comparisons with other VG methods. Following the im-

Table 1. Comparisons with SOTA models on QVHighlights-Unify.

Setting (Text Query) Method ORE)Y‘G omAPy 5
. TaskWeave [54] 7.02 5.96
R2-Tuning [26]  9.30 8.17
. TwinNet [9] 20.78 19.73
Online VG Ours 2326 23.09

Table 2. Results on ANet-Captions, TACoS, and MAD datasets.

. ANet-Captions TACoS MAD
Setting Meod | Ri, Rl | Rb, Ri, |R3, Ri,
Online OadTR [44] | 2327 1097 | 21.12 1092 | 2.50 0.90

Action Detection LSTR[50] | 24.05 11.19 | 2602 1675 | 3.56 143
(Modified to VG)  GateHUB [4] | 2330 1131 | 27.10 1725 | 3.38 147
VSLNet [64] | 1289  5.05 | 2574 12.60 | - E
ODTAN[67] | 839 296 | 682 332
. SeqPAN [65] | 1257 479 | 2507 13.67
(Mogzi‘;fo\ﬁ“ne) SMIN [43] 747 264 | 600 292
TaskWeave [54] | 8.22 3.67 1493  6.78
TR-DETR [41] | 1037 431 | 1625 7.44

R2-Tuning [26] | 9.17 416 | 21.69 1124 - -
TwinNet [9] 2548 1256 | 29.74 19.07 | 471 2.00
Ours 26.57 1436 | 30.98 21.17 | 632 3.27

Online VG

Table 3. Computational overhead of PMB and dynamic updates.

Method Latency(ms) FPS FLOPs(M) MACs(M)
Overall Model 21.76 45.95 5932.42 2966.21
PMB 2.20 454.54 11.43 5.72
Dynamic Update 0.30 3333.30 1.17 0.59

plementation in [10], we adapt SoTA offline video ground-
ing (VG) algorithms for the online VG task. Additionally,
we re-implement TwinNet on our dataset. Notably, all com-
pared methods utilize CLIP features for both video and text
modalities. Given that previous approaches exclusively em-
ploy text queries during training, we conduct evaluations on
the QVHighlights-Unify benchmark with text query as in-
put. The detailed results are shown in Table 1. Our method
exhibits notable improvements across various metrics.

5.2. Results on Text Query-based VG Datasets

For a more comprehensive comparison, we evaluate our
method against baselines on existing text query-based
datasets. To ensure fairness, we employ the ANet-Captions
and TACoS datasets with C3D features, and the MAD
dataset with CLIP features. Following [10], we not only
compare variants of offline VG modified for online settings
but also evaluate several online action detection methods
(likewise modified for online VG). These baseline results
are directly provided by [10]. Since we do not have access
to the models and therefore cannot measure the online met-
rics, we compare the offline metrics to ensure fairness and
consistency. As shown in Table 2, our method substantially
outperforms TwinNet and other approaches. Specifically,
for R} ,, our method achieves an improvement of 1.80%
over TwinNet on ANet-Captions. These findings further
underscore the unique challenges presented by online VG
compared to offline VG, indicating the need for specialized
strategies to address these challenges.

5.3. Runtime Analysis of Our Method

As we focus on the online VG problem, runtime efficiency
is critical. To evaluate its performance, we test the model
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Table 4. Left: Effect of parametric memory layer. fpwmr is re-
placed by LSTM and self-attention (ATT), respectively. Right:
Ablation study on the inputs of prediction refinement module: w/o
Refine (no prediction refinement module), Pred (prediction only),
and Pred+AF (prediction with anchor features).

Query Variant OoR}5; omAPys | Variant OR§ 5 omAPg ;5
Ours-ATT 13.93 16.41 w/o Refine  17.64 17.43
Text Ours-LSTM  22.37 21.66 Pred 18.99 21.07
Ours 23.37 22.51 Pred+AF 23.37 22.51
Ours-ATT 10.71 133 w/o Refine  16.20 15.95
Image-R Ours-LSTM  18.96 18.92 Pred 16.66 18.68
Ours 20.41 19.92 Pred+AF 20.41 19.92
Ours-ATT 11.69 14.35 w/o Refine  16.89 17.00
Image-G Ours-LSTM  19.26 18.69 Pred 18.96 20.82
Ours 22.54 21.74 Pred+AF 22.54 21.74
Ours-ATT 13.55 15.89 w/o Refine  17.23 17.69
Image-R+Text Ours-LSTM ~ 22.39 21.41 Pred 18.78 20.96
Ours 23.38 22.89 Pred+AF 23.38 22.89
Ours-ATT 14.42 16.17 w/o Refine  18.90 18.61
Image-G+Text Ours-LSTM  21.97 21.46 Pred 20.05 21.89
Ours 22.24 22.29 Pred+AF 22.24 22.29
Ours-ATT 12.2 15.33 w/o Refine  16.53 17.02
Image-C+Text-C =~ Ours-LSTM  20.46 20.24 Pred 19.61 21.30
Ours 2291 22.55 Pred+AF 2291 22.55
Ours-ATT 11.85 142 w/o Refine  15.43 15.88
Segment-G Ours-LSTM 1741 16.93 Pred 17.30 19.28
Ours 20.13 19.96 Pred+AF 20.13 19.96
Ours-ATT 13.32 15.48 w/o Refine  17.69 18.12
Segment-G+Text  Ours-LSTM  21.95 21.14 Pred 19.76 21.39
Ours 22.40 22.27 Pred+AF 22.40 22.27

® Frozen ® Tune: update parameter of fpyy, during inference

2337 233
22.54 24 291 22.40
5.781 20.41 5561|3941 4971 2013|4521
6911 630
18,
17.59 4.861 _— 167_482 Image-G— | @ 1;84 4.697 - mcln7t»_fg
Text +Tg t HText +Te§t-C g«FText
15.55 1563 ©1544

Image-R  Image-G Segment-G

Figure 4. Effectiveness of test-time model updates w.r.t. oR} 5.

on a single RTX 4090 GPU. All metrics, including latency,
FPS, FLOPs, and MACs, are computed on a per-frame ba-
sis. As shown in Table 3, the overall model achieves an
FPS of 45.95, satisfying real-time processing requirements.
Moreover, the FLOPs and latency of the PMB and Dynamic
Update components are significantly lower than those of the
entire model, indicating that both the proposed PMB and the
dynamic update process exhibit high efficiency.

6. Ablation Studies
6.1. Does fpyi. Help Online Video Grounding?

In our approach, both feature fusion and prediction refine-
ment are embedded within the proposed fpyr. We designed
two variants for comparison: 1) Ours-LSTM: where fpyr
is replaced with an LSTM, and 2) Ours-ATT: where fpymr
is replaced with a self-attention layer of equivalent param-
eter size. The remaining network structures are identical to
our method to ensure a fair comparison. As shown in Ta-
ble 4, both the LSTM and our fpyy, consistently outperform
the self-attention (ATT) layer, with fpy achieving 23.37%
compared to 13.93% for the ATT layer, highlighting the im-
portance of incorporating historical information in online

video grounding task. Furthermore, across different query
configurations, our method surpasses the LSTM in all cases,
notably improving the Text query from 22.37% to 23.37%
and the Segment-G query from 17.41% to 20.13%, further
highlighting that when modeling historical information, a
more expressive neural network—such as fpyp—is supe-
rior to a fixed-size hidden state, as it provides more effective
information for current predictions.

6.2. What Benefits Prediction Refinement?

In our prediction refinement module, the fpyp parameter
encapsulates both the current prediction and the current an-
chor feature (AF), compressing the information of the cur-
rent step. This approach models the historical context of
both the prediction and the anchor feature. We progres-
sively removed these two types of information and present
the results in Table 4. Removing the anchor feature in-
put leads to a significant decline (from 23.37% to 18.99%)
in the oR} ; metric when using a text query. Moreover,
when the entire Prediction Refinement Head is eliminated,
the performance deteriorates (1.35%) even further. These
results highlight the critical role of prediction information
memory and demonstrate that including anchor features
considerably improves model performance.

6.3. Does Updating fpy in Inference Time Help?

The key feature of our method is that, upon the arrival of
each new video, the parameters of our model (i.e., fpmr)
are reset and dynamically updated with each frame input,
based on the self-supervised loss defined in Eqn. (1). To in-
vestigate the impact of this strategy on online video ground-
ing performance, we compare two implementation variants:
1) Frozen: Parameters of fpyy are kept fixed during in-
ference. 2) Tune: the parameters of fpy are dynamically
updated during inference. As shown in Figure 4, the Tune
configuration consistently outperforms Frozen across eight
distinct query composition settings. These results indicate
that updating fpy during the testing phase enables better
adaptation to unseen data.

7. Conclusion

We have introduced Online Video Grounding with Hybrid-
modal Queries (OVG-HQ), extending traditional video
grounding task to support text, images, video snippets, and
their combinations in streaming scenarios. To enable this,
we have developed QVHighlight-Unify and introduced two
new metrics to jointly evaluate accuracy and timeliness. To
benchmark OVG-HQ, we have proposed OVG-HQ-Unify,
a unified model featuring a Parametric Memory Block for
retaining past context and a hybrid-distillation strategy for
training. We hope this work inspires further research in on-
line video grounding, bridging the gap between academic
benchmarks and real-world applications.
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