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Abstract

We describe a simple method for cross-architecture knowl-
edge distillation, where the knowledge transfer is cast into
a redundant information suppression formulation. Exist-
ing methods introduce sophisticated modules, architecture-
tailored designs, and excessive parameters, which impair
their efficiency and applicability. We propose to extract the
architecture-agnostic knowledge in heterogeneous repre-
sentations by reducing the redundant architecture-exclusive
information. To this end, we present a simple redundancy
suppression distillation (RSD) loss, which comprises cross-
architecture invariance maximisation and feature decorre-
lation objectives. To prevent the student from entirely los-
ing its architecture-specific capabilities, we further design a
lightweight module that decouples the RSD objective from
the student’s internal representations. Our method is de-
void of the architecture-specific designs and complex op-
erations in the pioneering method of OFA. It outperforms
OFA on CIFAR-100 and ImageNet-1k benchmarks with only
a fraction of their parameter overhead, which highlights
its potential as a simple and strong baseline to the cross-
architecture distillation community. The code and mod-
els are released at https://github.com/VISION-
SJTU/RSD.

1. Introduction

Knowledge distillation (KD) aims to transfer the privileged
capability of a pre-trained teacher model to a usually less
capable student to improve its performance. Since its in-
troduction by Hinton et al. [25] in 2015, KD has wit-
nessed significant advancements in methodology and per-
formance over a decade. Existing KD methods extract and
transfer different kinds of knowledge, such as network out-
puts [25, 52, 66, 78], intermediate representations [6, 49, 53,
71], or higher-order correlations amongst them [21, 44, 45],
and have demonstrated widespread success across different
computer vision applications [10, 27, 62, 67–69, 73, 75, 80].
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Figure 1. A comparison of RSD and OFA. Compared to the pi-
oneering method of OFA, RSD is simpler in design, stronger in
performance, and lower in complexity.

Yet, previous works mostly considered distillation between
models of the same architectural type (e.g., CNNs [23]).

Recently, with the rise of novel vision architectures
such as ViTs [13, 37] and MLPs [56, 58], it becomes in-
creasingly relevant for the community to study knowledge
distillation across distinct architectures, a task known as
cross-architecture knowledge distillation (CAKD). Distill-
ing across heterogeneous architectures finds broad practical
relevance, particularly given that the best-performing mod-
els today are often not the most deployment-friendly ones.
Nonetheless, contrary to a thriving literature on generic KD,
cross-architecture KD remains a less explored setting, with
OFA [22] being a pioneering method.

Compared to generic distillation, CAKD is more compli-
cated, which is fundamentally due to the distinct properties
of representations from different architectures. First, het-
erogeneous features have different dimensionalities, which
requires additional operations to reconcile. They also
possess distinct, even conflicting patterns and character-
istics [18, 43, 48]. Forcing the student to blindly ab-
sorb heterogeneous information leads to degraded perfor-
mance [36, 43]. As a result, generic KD methods show lim-
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ited effectiveness or even collapse when directly applied to
CAKD, as shown in Tables 1 and 2.

As a seminal method, OFA has to make complex,
architecture-tailored designs to unify heterogeneous fea-
ture dimensionality, such as depth-wise separable convolu-
tion [9] for CNN features, and token operations and atten-
tion mechanisms [13] for ViT and MLP features. To cir-
cumvent the representation heterogeneity, OFA projects in-
termediate features into the logit space, which is considered
architecture-agnostic. However, useful fine-grained knowl-
edge is lost in this process. OFA attaches separate modules
to each of the network stages to retain more information,
which amounts to quadrupled parameter complexity. All
these designs render OFA complicated and inefficient. For
instance, when performing ConvNeXt-T-to-Swin-N distil-
lation, the projectors introduced by OFA are about 3 times
larger than the student itself in terms of the number of pa-
rameters (i.e., 28.2M v.s. 9.6M), shown in Figure 3, making
it costly and less practical in real-world scenarios.

In this paper, we present a new method for cross-
architecture distillation. Rather than projecting features
into the logit space, we learn to explicitly extract the
architecture-agnostic knowledge. We achieve this via the
proposed redundancy suppression distillation (RSD) objec-
tive, rooted in information maximisation [54, 55] and fea-
ture decorrelation [3, 11] principles. This allows the student
to grasp the underlying architecture-independent knowl-
edge, without being hampered by redundant, distracting
patterns specific to the teacher architecture. We also insert
a lightweight MLP module to decouple the student’s inter-
nal representations from the direct dictation of the RSD ob-
jective, which enables the student to preserve some benefi-
cial capabilities unique to its own architecture. A high-level
comparison of our method to OFA is made in Figure 1.

The advantages of our method are manifold. First and
foremost, it only involves a simple loss function and a
lightweight MLP-based gadget. Since RSD is applied to
the penultimate-layer embeddings, our method is devoid of
the complex and tailored adaptation modules for unifying
heterogeneous features in OFA. The embeddings also offer
a richer amount of knowledge than the logit space of OFA.
RSD does not rely on memory banks [53], assistant net-
works [40], teacher weight reuse [5, 34], attention mech-
anisms [33, 36], adversarial training [36], or asymmetric
transformation [36, 74]. Besides, it does not require access
to the full-stage intermediate features [22, 49], and is shown
to also work reasonably well on model logits, adding to its
value in practical black-box distillation scenarios where se-
curity and privacy concerns are relevant.

In summary, this paper makes several significant contri-
butions to the knowledge distillation literature. We provide
a redundancy suppression perspective to cross-architecture
distillation, which motivates us to explicitly get rid of the

redundant, teacher-specific information during the distilla-
tion process. We describe a simple redundancy suppression
criterion based on information maximisation and feature
decorrelation objectives. We show that moderate preserva-
tion of the student’s inherent characteristics further benefits
cross-architecture distillation. We report substantial perfor-
mance improvements over OFA [22] using a fraction of its
parameter costs. RSD may potentially be a strong and effi-
cient baseline for the community and inspire future endeav-
ours to cross-architecture knowledge distillation.

2. Related Work
2.1. Vision architectures
Convolutional Neural Networks (CNNs) have been the
cornerstone behind modern computer vision. They rely
on convolution operations to capture local spatial patterns
within images and pooling to reduce dimensionality. The
shared weights of convolution equip CNNs with desirable
properties such as inductive biases and translational invari-
ance. CNNs are popularised by early pioneers such as
AlexNet [12] and VGGNet [51]. ResNet [23] introduces
residual connections to enable much deeper and more capa-
ble CNNs. Efficient CNNs [50, 77] are also engineered to
facilitate their real-world applications. Recent models such
as ConvNeXt [38] also incorporate design principles from
Vision Transformers for better efficiency and performance.

Vision Transformers (ViTs) are an adaptation of Trans-
formers [60] in natural language processing (NLP) to the
vision domain. ViTs [13] treat images as sequences of
patches and process them using self-attention mechanisms,
which allows them to flexibly capture long-range dependen-
cies and global context within the image. Following ViT’s
initial success, Swin Transformer [37] introduces hierar-
chical window-based attention for improved training speed
and performance, whereas DeiT [57] enables effective ViT
training on smaller datasets via distillation.

Multi-Layer Perceptrons (MLPs) recently emerged as a
competitive alternative to CNNs and ViTs in vision tasks.
They convert images into flattened vectors and process
them via fully-connected (FC) layers. MLP-Mixer [56] and
ResMLP [58] introduced novel mixing operations, such as
token-mixing and channel-mixing, to capture spatial depen-
dencies without convolutions or self-attention. The simplic-
ity, scalability, and efficiency of MLPs make them an ap-
pealing alternative to more complex models.

2.2. Knowledge distillation
Generic KD. First proposed in [25] as a model compres-
sion technique, knowledge distillation (KD) transfers the
privileged capability of a usually more capable pretrained

23257



Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

L𝑅𝑆𝐷

AAD

teacher logits

(not needed)

“British

Shorthair”

L𝑅𝑆𝐷
Arch-agnostic knowledge

transferred via RSD

AAD
Student-exclusive knowledge

preserved viaAAD

Teacher-exclusive

Arch-agnostic

Student-exclusive

Figure 2. A schematic diagram of RSD for cross-architecture knowledge distillation. RSD employs a redundancy suppression objective
(i.e., RSD loss) to extract and transfer architecture-agnostic knowledge that is common to both teacher and student architectures. It uses a
lightweight Architecture-Agnostic Knowledge Decoupler (AAD) module to align student representation dimension to the teacher’s, while
decoupling the RSD dictation to allow the preservation of useful student-exclusive knowledge within the student.

teacher model to a lightweight student model. KD methods
can be broadly categorised according to what sort of knowl-
edge is extracted and transferred to the student. A group of
methods [25, 32, 42, 52, 65, 66, 70, 74, 78, 79] match the
student’s prediction logits to the teacher’s, and are called
logits-based methods. By contrast, feature-based meth-
ods [4, 6, 20, 24, 33, 49, 53, 64, 71] let the student learn to
mimic the intermediate features of the teacher. An orthog-
onal concept to the above methods is relational KD, where
the student learns to replicate the higher-order correlations
constructed from the teacher’s features [21, 35, 44, 45, 59]
or logits [26, 76]. All these methods consider homogeneous
architecture distillation, such as CNN to CNN [6, 25, 33, 49,
52, 53, 65, 70, 74, 78, 79] or ViT to ViT [21, 66, 71].

Cross-architecture KD. While a few works [7, 31, 57]
made early attempts at unidirectional CNN-to-ViT distilla-
tion under basic settings, it is only until recently that the pi-
oneering work of OFA [22] proposed a universal paradigm
alongside rigorous evaluation settings for diverse cross-
architecture distillation between CNNs, ViTs, and MLPs.
OFA employs a set of projectors to transform intermedi-
ate features into the architecture-agnostic logit space, each
using a target-knowledge enhancement mechanism. How-
ever, OFA introduces significant training overheads due to
its complicated designs and mechanisms. In this work, we
present a much simpler orthogonal approach that is able to
outperform OFA with a fraction of its parameters.

2.3. Redundancy in representation learning
Previous research discovers that redundancy exists in the
representations learnt by deep learning models, which moti-
vates a group of works to mitigate the spatial [8, 30, 63] and
channel [47] redundancy in CNN features through network
or operator redesigns. Meanwhile, redundancy reduction
is the core principle in early unsupervised feature learning

theories [1, 3, 11], which have also helped alleviate infor-
mational collapse in recent self-supervised learning algo-
rithms [2, 17, 61, 72]. An orthogonal body of research is
along domain generalisation [16, 39, 41, 46]. These works
aim to learn domain-invariant representations for general-
isation to unseen domains, which may be viewed as sup-
pressing the redundant domain-specific information. Yet,
these works substantially differ from ours in context and
methodology. In this work, we make initial efforts to im-
prove cross-architecture distillation from a representation
redundancy perspective.

3. Method
3.1. Preliminaries
Generic KD. In knowledge distillation (KD), we are
given a pre-trained teacher model and a to-be-trained stu-
dent model. During distillation, the student is simultane-
ously supervised by the ground-truth labels and distillation
signals from the teacher. For logit KD, the student is trained
to mimic the output predictions given by the teacher, often
via the Kullback–Leibler divergence (KLD) loss, and the
optimisation objective is given by:

Llogit-kd = CE(zs, y) + λKLD(zs, zt), (1)

where zs and zt are the student and teacher logits, respec-
tively, y is the ground-truth label, and CE(·) is the cross-
entropy loss. Whereas for feature KD, the student learns
to match its intermediate features to the teacher’s from the
corresponding layers. The objective is therefore:

Lfeature-kd = CE(zs, y) + λMSE(ψ(fs), f t), (2)

where the mean-square error (MSE) loss is often used to
drive student features fs towards teacher features f t. A con-
volutional adaptor network ψ(·) is often used to match the
student feature dimension to the teacher’s [49].
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Algorithm 1 PyTorch-style pseudocode for RSD Loss
1: # feat t: teacher features, feat s: student features after AAD
2: # B: batch size, D: feature dimension
3: feat t = Normalize(feat t) # [B,D]
4: feat s = Normalize(feat s) # [B,D]
5: rcc = torch.mm(feat t.T, feat s) # [D,D]
6: idt = torch.eye(D) # [D,D]
7: loss rsd = torch.mse(rcc, idt) # [D,D]
8: loss rsd[(1 - idt).bool()] *= κ # [D,D]
9: return loss rsd.mean()

OFA. As the first universal method for cross-architecture
distillation between CNNs, ViTs, and MLPs, OFA [22]
projects intermediate features of the student into a common
logit space to be supervised by the teacher logits. Its train-
ing objective is given by:

Lofa = CE(zs, y) + λ1
∑
i∈S

OFA(ψofa,i(f
s
i ), z

t)

+ λ2OFA(zs, zt), (3)

where OFA(·) is a variant of the KLD loss, and S is the set
of stages whose features are used for projection (|S| = 4).
Each stage i requires a separate projection network ψofa,i.
Each ψofa is much bulkier than the original ψ in [49], in-
volving complex arch-specific operations such as depthwise
separable convolution [9] or ViT blocks [13]. All these de-
signs in OFA amount to its excessive complexity.

3.2. Redundancy Suppression Distillation
A redundancy suppression perspective to CAKD. In
cross-architecture knowledge distillation, the teacher and
student representations bear distinct, even conflicting char-
acteristics due to their heterogeneous nature, as have been
demonstrated in prior works [18, 19, 43, 48]. Meanwhile,
when fed with the same training data, the representations
produced by the teacher and the student, albeit very differ-
ent, also encode the same semantic information correspond-
ing to the very same input data. We expect such informa-
tion to be fundamentally architecture-independent but only
input-dependent (denoted by uncoloured circles, triangles,
and stars in Figure 2). Yet, this underlying architecture-
agnostic knowledge is blended with arch-specific patterns
(navy and pink colours) or knowledge (pentagons and di-
amonds) in respective representations. Prior research has
shown that blindly dictating these arch-specific patterns
over heterogeneous architectures leads to incompatibility
and degradation [15, 22, 36, 43]. Intuitively, we would like
the student to grasp the arch-independent knowledge, such
that it will not be distracted by any teacher-specific pat-
terns when generalising to different heterogeneous teach-
ers. Hence, give a pair of heterogeneous features, we may
extract the commonality between them by suppressing the
redundant architecture-specific or irrelevant information.

Extracting common knowledge between teacher and
student. We leverage the correlations between fea-
ture units of heterogeneous representations to learn the
architecture-agnostic representation, inspired by classic the-
ories on unsupervised feature extraction [1, 3, 11] and Infor-
mation Bottleneck (IB) principle [54, 55]. Specifically, we
construct matrix P ∈ RD×D of Pearson correlations be-
tween pairs of feature units of the teacher and student rep-
resentations, i.e., zt, zs ∈ RB×D:

Pij =

∑B
k=1(z

t
ki − z̄ti)(z

s
kj − z̄sj)√∑B

k=1(z
t
ki − z̄ti)

2
∑B

k=1(z
s
kj − z̄sj)

2

for i, j ∈ {1, . . . , D}, (4)

where B is the batch size and D is the embedding dimen-
sion. Essentially, P captures the similarity in batch-wise ac-
tivation patterns between pairs of feature dimensions of the
teacher and the student. Each diagonal element in P repre-
sents the correlation between the same feature dimension of
teacher and student embeddings. To extract the “commonal-
ity” between the pair of heterogeneous representations, we
learn zs that leads to maximised invariance between itself
and zt for the same feature unit [3, 11, 61, 72]. This trans-
lates to driving the diagonal elements of P to 1. Hence,
the optimisation target for our task can be built via a target
matrix T ∈ RD×D, whereby:

Tij = 1 if i = j. (5)

According to early unsupervised feature learning the-
ories, the minimisation of redundancy in features corre-
sponds to extracting statistically independent features [1, 3,
11]. This motivates us to further suppress the redundancy
in learnt representation zs by decorrelating its feature units.
For the cross-architecture distillation problem, we revamp
this approach and instead minimise the mutual information
between each student feature unit and every other teacher
feature unit. This makes the redundancy suppressed within
the heterogeneous representation space, which implicitly
facilitates the extraction of architecture-agnostic informa-
tion. Formally, this simply means forcing all off-diagonal
elements in P to zero by:

Tij = 0 if i ̸= j, (6)

which suggests T is an identity matrix, and we may use
any distance measure d(·) to compute a loss between P and
T. We empirically find that this decorrelation objective fur-
ther improves the performance of our method most of the
time. Note that in Equation 5 we have assumed identical
teacher and student embedding dimensionality D, which is
not necessarily the case. Our decoupler module will make
the alignment for arbitrary teacher and student embeddings,
which is described next.
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Teacher Student From Scratch Logits-based Feature-based

T. S. KD DKD DIST OFA FitNets CC RKD CRD RSD

CNN-based students

Swin-T ResNet18 89.26 74.01 78.74 80.26 77.75 80.54 78.87 74.19 74.11 77.63 83.92
ViT-S ResNet18 92.44 74.01 77.26 78.10 76.49 80.15 77.71 74.26 73.72 76.60 81.50

Mixer-B/16 ResNet18 87.62 74.01 77.79 78.67 76.36 79.39 77.15 74.26 73.75 76.42 81.85
Swin-T MobileNetV2 89.26 73.68 74.68 71.07 72.89 80.98 74.28 71.19 69.00 79.80 83.68
ViT-S MobileNetV2 92.44 73.68 72.77 69.80 72.54 78.45 73.54 70.67 68.46 78.14 81.68

Mixer-B/16 MobileNetV2 87.62 73.68 73.33 70.20 73.26 78.78 73.78 70.73 68.95 78.15 81.74

Transformer-based students

ConvNeXt-T DeiT-T 88.42 68.00 72.99 74.60 73.55 75.76 60.78 68.01 69.79 65.94 82.46
Mixer-B/16 DeiT-T 87.62 68.00 71.36 73.44 71.67 73.90 71.05 68.13 69.89 65.35 78.50

ConvNeXt-T Swin-P 88.42 72.63 76.44 76.80 76.41 78.32 24.06 72.63 71.73 67.09 82.21
Mixer-B/16 Swin-P 87.62 72.63 75.93 76.39 75.85 78.93 75.20 73.32 70.82 67.03 81.28

MLP-based students

ConvNeXt-T ResMLP-S12 88.42 66.56 72.25 73.22 71.93 81.22 45.47 67.70 65.82 63.35 84.21
Swin-T ResMLP-S12 89.26 66.56 71.89 72.82 11.05 80.63 63.12 68.37 64.66 61.72 82.67

Average Gain - - - +3.17 +3.16 -2.31 +7.47 -5.20 -0.33 -1.40 -0.02 +10.69

Table 1. Cross-architecture distillation results on CIFAR-100. Best results are in bold and second best results underlined.

Retaining exclusive knowledge of the student. Ideally,
the architecture-agnostic representation learnt through the
described redundancy suppression objective would sup-
press any teacher-exclusive or student-exclusive knowl-
edge. Since different architectures have their unique [19,
48], sometimes opposite [43] characteristics and be-
haviours, we expect that by moderately preserving the stu-
dent’s unique representation patterns, it may be able to re-
tain some of its exclusive advantages. For instance, a CNN
student may exhibit prominent activations to local flurry
patterns [18] in a “British shorthair” cat image owing to the
locality properties of convolution operations. Such ability
is largely architecture-exclusive. It is not possessed by an
inductive-bias-deficient ViT teacher [14, 48], and is there-
fore absent in their common knowledge. In this case, it
would be beneficial to let the student retain this ability,
instead of being entirely overridden by the architecture-
agnostic knowledge.

To this end, we design a decoupler h(·) that buffers
the student’s internal representation from arch-agnostic in-
formation extraction. It prevents the student embeddings
from being entirely exposed to and dictated by the RSD
objective. Our architecture-agnostic knowledge decoupling
(AAD) module is simple: it consists of two FC layers,
he(·) and ha(·), joined by BatchNorm and GeLU activa-
tion. he(·) is an expander that transforms the student em-
bedding to a higher dimensional space. ha(·) is an adap-
tor that aligns the expanded embedding to the dimension
of the teacher embedding. Unlike OFA which uses differ-
ent projection modules for different architectures, AAD is a
one-size-fits-all module and is more parameter-efficient (see
Figure 3). After distillation, it is discarded and there is no

additional overhead introduced at inference.
To summarise, the role of our AAD module is twofold:

1) It aligns the student and teacher embedding dimension
to enable the calculation of the RSD loss. 2) It decouples
the student internal representation from the one used by the
RSD objective for extracting arch-invariant information in
order to preserve student-exclusive knowledge.

Full objective. Putting all designs together, we define the
redundancy suppression distillation (RSD) loss as:

LRSD = d(P(h(zs), zt),T) (7)

for which we use the MSE for d(·). The full optimisation
objective for our framework is simply a combination of the
CE loss and our RSD loss:

L = LCE + λLRSD (8)

where λ is a balancing weight. The RSD loss can be imple-
mented in about 8 lines in PyTorch. A pseudocode snippet
for it is provided in Algorithm 1.

Discussion. We discuss why we choose the penultimate-
layer embeddings for our RSD optimisation. The foremost
reason is that we would like to avoid the whole complex op-
erations involved when working with intermediate features,
which is precisely what makes OFA complicated. As dis-
cussed in Sections 1 and 3.1, OFA had to introduce tailored
operations to reconcile heterogeneous features into unified
dimensionality, such as depth-wise separable convolution
for CNN features, and attention blocks and token merg-
ing blocks (and other token operations) for ViT and MLP
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Teacher Student
From Scratch Logits-based Feature-based

T. S. KD DKD DIST OFA FitNets CC RKD CRD RSD

CNN-based students

DeiT-T ResNet18 72.19 69.75 70.22 69.39 70.64 71.34 70.44 69.77 69.47 69.25 71.70
Swin-T ResNet18 81.35 69.75 71.14 71.10 70.91 71.85 71.18 70.07 68.89 69.09 72.13

Mixer-B/16 ResNet18 76.58 69.75 70.89 69.89 70.66 71.38 70.78 70.05 69.46 68.40 71.41
DeiT-T MobileNetV2 72.19 68.87 70.87 70.14 71.08 71.39 70.95 70.69 69.72 69.60 72.18
Swin-T MobileNetV2 81.35 68.87 72.05 71.71 71.76 72.32 71.75 70.69 67.52 69.58 72.36

Mixer-B/16 MobileNetV2 76.55 68.87 71.92 70.93 71.74 72.12 71.59 70.79 69.86 68.89 71.90

Transformer-based students

ResNet50 DeiT-T 80.33 72.17 75.10 75.60∗ 75.13∗ 76.55∗ 75.84 72.56 72.06 68.53 76.17∗

ConvNeXt-T DeiT-T 82.05 72.17 74.00 73.95 74.07 74.41 70.45 73.12 71.47 69.18 74.46
Mixer-B/16 DeiT-T 76.55 72.17 74.16 72.82 74.22 74.46 74.38 72.82 72.24 68.23 74.26
ResNet50 Swin-N 80.33 75.53 77.58 78.23∗ 77.95∗ 78.64∗ 78.33 76.05 75.90 73.90 78.78∗

ConvNeXt-T Swin-N 82.05 75.53 77.15 77.00 77.25 77.50 74.81 75.79 75.48 74.15 77.70
Mixer-B/16 Swin-N 76.55 75.53 76.26 75.03 76.54 76.63 76.17 75.81 75.52 73.38 76.55

MLP-based students

ResNet50 ResMLP-S12 80.33 76.65 77.41 78.23∗ 77.71∗ 78.53∗ 78.13 76.21 75.45 73.23 78.32∗

ConvNeXt-T ResMLP-S12 82.05 76.65 76.84 77.23 77.24 77.53 74.69 75.79 75.28 73.57 78.41
Swin-T ResMLP-S12 81.35 76.65 76.67 76.99 77.25 77.31 76.48 76.15 75.10 73.40 77.61

Average Gain - - - +1.55 +1.29 +1.68 +2.20 +1.14 +0.49 -0.37 -1.77 +2.34

Table 2. Cross-architecture distillation results on ImageNet-1k. Best results are in bold and second best results underlined. ∗ denotes
results achieved by combining with FitNets [49] following OFA [22].

features. By contrast, the penultimate-layer representations
are always 1-D and are neither feature-map-like nor token-
like, saving us from all the architecture-specific operations
and designs. In this sense, RSD is a more universal cross-
architectural distillation method than OFA. These embed-
dings are also smaller compared to intermediate features,
which are resource efficient. Obtained near the network
output, they are also less arch-specific than features from
earlier layers, which puts us in a better position to extract
more arch-invariant information.

4. Experiments
4.1. Experimental setup
Implementations. We conduct cross-architecture distil-
lation using different pairs of CNN, Transformer, and
MLP models. We use ResNet [23], MobileNet [50],
and ConvNeXt [38] for CNN models, ViT [13], Swin
Transformer [37], and DeiT [57] for Transformer, and
ResMLP [58] and MLP-Mixer [56] for MLP. Experiments
are conducted on the CIFAR-100 [29] and ImageNet-
1k [12] datasets, following the configurations of OFA [22].
More details are provided in the supplementary material.

Baselines. Under different setups, we compare our
method against established generic KD methods (i.e.,
KD [25], DKD [78], DIST [26], FitNets [49], CC [45],
RKD [44], and CRD [53]) and, notably, the cross-
architectural pioneer OFA [22].

4.2. CIFAR-100 results

Table 1 presents the evaluation results for a total of 12 cross-
architecture teacher-student pairs on CIFAR-100. It can be
seen that the proposed method consistently outperforms all
prior knowledge distillation methods, including OFA [22].
It is noteworthy that over several distillation pairs, the mar-
gin RSD leads OFA by is several times that of OFA over
prior arts. For example, RSD leads OFA by 3.38% for
Swin-T-to-ResNet18 distillation, where OFA is only 0.28%
higher than DKD [78]. For ViT-S-to-MobileNetV2 distil-
lation, where OFA brings a mere 0.31% improvement over
CRD [53], RSD achieves an impressive 3.23% advantage.
The highest performance gain is observed on ConvNeXt-T-
to-DeiT-T distillation, where RSD leads OFA by a surpris-
ing margin of 6.70% – nearly the gap between OFA and
an un-distilled student. These results highlight the effec-
tiveness of RSD, especially given that RSD is orthogonal to
OFA and uses only a fraction of its parameters.

4.3. ImageNet-1k results

We evaluate our method on the large-scale ImageNet-1k
dataset, using 15 heterogenous teacher-student pairs. As
shown in Table 2, RSD achieves state-of-the-art perfor-
mance on a majority of the teacher-student pairs. Notably,
RSD yields particularly large gains on certain pairs. For in-
stance, when distilling from ConvNeXt-T to ResMLP-S12,
RSD is 0.88% higher than OFA, given that OFA only leads
the earliest generic distillation method KD [25] by 0.69%.
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Design Swin-T→
ResNet18

ConvNeXt-T→
ResMLP-S12

Baseline 74.01 76.65
+ RSD-corr 80.65 83.40

+ RSD-decorr 83.92 84.21

Table 3. Effect of RSD.

Design
CIFAR-100 ImageNet-1k

ViT-S→
ResMLP-S12

ConvNeXt-T→
Mixer-B/16

RSD 82.94 80.73
w/o AAD 82.26 79.93

Table 4. Effect of AAD.

Logit loss Swin-T→
ResNet18

Mixer-B/16→
DeiT-T

ConvNeXt-T→
ResMLP-S12

w/ KD [25] 78.74 71.36 72.25
w/ DKD [78] 80.26 73.44 73.22
w/ OFA [22] 80.60 70.69 78.87

w/ RSD 83.23 77.22 81.15

Table 5. RSD as a strong logit distiller.
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Figure 3. A comparison of the computational overheads.

For ConvNeXt-T-to-Swin-N distillation, RSD has a 0.20%
advantage over OFA, when OFA is only 0.25% higher than
DIST [26], by using only 9% as many extra parameters as
OFA. RSD achieves an average gain of 2.34% across the 15
heterogeneous model pairs, highest amongst all methods.

4.4. Further analysis
Effect of proposed designs. We conduct ablation experi-
ments to gauge the individual effectiveness of the proposed
components in Tables 3 and 4. It is noteworthy when there
is a dimensionality mismatch between the teacher and stu-
dent embeddings, it is impossible to ablate the AAD block
to assess the sole effect of the RSD objective. To enable
such analysis, we set up teacher-student pairs with iden-
tical penultimate embedding dimension, such that the un-
adapted student representation may get directly exposed to
the architecture-agnostic knowledge. The ablation results
demonstrate the effectiveness of the core designs of re-
dundancy suppression distillation and architecture-agnostic
knowledge decoupling.

RSD as a strong logit distiller. While we have chosen to
employ RSD between the informative feature embeddings
from the teacher and the student, we further discovered that
RSD is also a strong logit distiller. We conducted exper-
iments to directly apply the proposed RSD loss over the
logits. For head-to-head comparisons, we also apply the
logit distillation losses from KD, DKD, and OFA indepen-
dently. For OFA, we adopt the set of losses computed from

Logit loss
CIFAR-100 ImageNet-1k

Swin-T→
ResNet18

ConvNeXt-T→
ResMLP-S12

Deit-T→
ResNet18

OFA 80.54 81.22 70.64†

OFA+RSD 83.35 84.46 71.21

Table 6. Integrating the RSD objective into OFA.

Stage Swin-T→
ResNet18

Mixer-B/16→
DeiT-T

∅ 83.92 76.45
{4} 84.39 76.83
{3,4} 84.81 76.37
{2,3,4} 84.63 77.17
{1,2,3,4} 85.45 76.90

Table 7. Integrating OFA into RSD at different network stages.

projected logits to ablate any impact of the logit KD loss
of [25]. From Table 5, RSD’s logit variant itself (without
AAD or any projectors) is a strong logit distillation objec-
tive. It outperforms individual existing logit distillation ob-
jectives with considerable margins, particularly OFA. This
also reveals that OFA’s performance heavily relies on the
logit KD loss (i.e., 3rd term in Equation 3). By contrast,
RSD is free from such constraint and does not rely on an
additional logit matching loss. Noticeably, this one single
RSD loss still surpasses the full formulations of OFA in Ta-
ble 1 that encompass costly and tailored projector branches,
adaptive target knowledge enhancer, and the KD loss.

Compatibility with OFA. We investigate whether our
spirit of redundancy suppression is complementary to the
method of OFA. To make RSD integrated with OFA, we
simply replace all OFA losses in it with our RSD loss. This
involves using the proposed RSD loss to replace OFA’s KD
loss at logit level and the OFA losses at each network stage.
Effectively, RSD now reduces the redundancy between full-
stage intermediate features of the teacher and the student,
using OFA’s projected logits as a proxy. The results are pro-
vided in Table 6, where † denotes the result reproduced by
ourselves for a fair analysis. We find that the RSD objective
can be seamlessly integrated with OFA and leads to substan-
tial performance gains. In addition, we perform another set
of experiments to extrapolate RSD to OFA’s multi-stage fea-
tures. In Table 7, we start with our RSD baseline where no
intermediate features are utilised, denoted by ∅ (i.e., only

23262



T.: ResNet34
S.: ResNet18

T.: ResNet50
S.: MobileNetV1

KD [25] 70.66 68.58
OFD [24] 70.81 71.25
CRD [53] 71.17 71.37
RKD [44] 71.34 71.32

CAT-KD [20] 71.26 72.24
SimKD [5] 71.59 72.25

ReviewKD [6] 71.61 72.56
DKD [78] 71.70 72.05
SDD [65] 71.14 72.24
DIST [26] 72.07 73.24
OFA [22] 72.10 -

RSD 72.18 73.08

Table 8. Same-architecture distillation results on ImageNet-
1K. The best result is in bold and second best underlined.

penultimate-layer embeddings are used). We then gradu-
ally incorporate intermediate features from various network
stages, and apply our RSD objective over OFA-projected
pseudo logits. As can be seen, RSD is compatible and gen-
erally benefited by additional intermediate features.

Computational cost. We compare the computational
costs of our method to OFA in terms of the number of ex-
tra parameters introduced and peak GPU memory usage on
ImageNet-1k. The measurements are visualised in Figure 3
for multiple teacher-student pairs. Where OFA introduces
an amount of extra network parameters on par with or more
than that of the student itself, our method saves up to 10×
in parameter count to achieve better performance. In terms
of peak GPU memory usage, RSD is also better off on av-
erage. RSD’s overhead benefit persists on the CIFAR-100
dataset, yet with even larger performance gains.

Same-Architecture Evaluation. Following OFA, we
also perform evaluation under the same-architecture distil-
lation set-up. We additionally compare with established
generic KD methods OFD [24], ReviewKD [6], CAT-
KD [20], SimKD [5], and the recent SDD [65]. As shown
in Table 8, our method delivers competitive or even bet-
ter results compared to OFA and leading same-architecture
distillation methods, including SDD, DKD, and DIST. We
notice that the advantage of RSD is more prominent on
cross-architecture distillation. This observation reinforces
our initial motivation, where our designs are rooted in theo-
ries for learning architecture-invariant knowledge from het-
erogeneous representations. Overall, the same-architecture
distillation results highlight the significance of our findings
to a broader knowledge distillation community.

Visualisation of cross-architectural feature similarity.
We employ centered kernel alignment (CKA) [28] to assess
the effectiveness of the proposed method. CKA is a sim-
ilarity metric that can accommodate inputs of different di-
mensions. It enables analysis of cross-architectural feature

T. v.s. T. T. v.s. S. (w/o KD) T. v.s. S. (OFA) T. v.s. S. (RSD)

Figure 4. Cross-architectural feature similarities measured by
CKA. Brighter colours indicate higher similarity and vice versa.
Top: ConvNeXt-T teacher and ResMLP-S12 student. Bottom:
ViT-S teacher and MobileNetV2 student.

similarity between different layers and stages in heteroge-
neous network pairs. Figure 4 visualises the CKA scores
between layers of different teacher-student pairs. We ob-
serve that under the first set-up, RSD significantly increases
the representation similarity between heterogeneous archi-
tectures at various stages. Whereas under the second set-up,
some shallow feature dissimilarities in OFA are slightly al-
leviated, while some others are enlarged. This is justified
because unlike OFA, our method does not directly access or
process those intermediate features. Overall, RSD notably
increases feature similarity at middle and deep layers.

Limitations & future work. Despite its simple formu-
lation, RSD’s performance can sometimes be sensitive to
hyperparameters λ and κ. Compared to CIFAR-100, its ad-
vantages are less prominent on larger-scale datasets such as
ImageNet-1k, which is in part due to the unused 2-D fea-
tures. RSD in its current design, albeit efficient and uni-
versal, only utilises the 1-D embeddings. While this offers
benefits in efficiency and design, it fails to harness the rich
spatial context associated with the 2-D feature maps, and is
therefore unable to be directly extended to tasks that heav-
ily demand spatial information such as object detection. We
leave the extension to such tasks for future investigation.

5. Conclusion
We introduced RSD, a simple approach for cross-
architecture knowledge distillation based on redundant
knowledge suppression. RSD employs invariance maximi-
sation and feature decorrelation objectives to extract arch-
agnostic knowledge common to heterogeneous architec-
tures. It also allows student-exclusive patterns to be re-
tained rather than entirely overridden by RSD through a
lightweight decoupling module. RSD achieves superior
performance over the recent cross-architectural baseline of
OFA with a fraction of its parameter overhead, while avoid-
ing architecture-tailored operations in OFA.
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