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Figure 1. We propose LayerAvatar to efficiently generate diverse clothed avatars with components fully disentangled. The generated
avatars can be animated and synthesized in novel views. They can also be decomposed into body, hair, and clothes for component transfer.

Abstract

Clothed avatar generation has wide applications in vir-
tual and augmented reality, filmmaking, and more. While
existing methods have made progress in creating animat-
able digital avatars, generating avatars with disentangled
components (e.g., body, hair, and clothes) has long been a
challenge. In this paper, we propose LayerAvatar, a novel
feed-forward diffusion-based method capable of generat-
ing high-quality component-disentangled clothed avatars
in seconds. We propose a layered UV feature plane rep-
resentation, where components are distributed in different
layers of the Gaussian-based UV feature plane with cor-
responding semantic labels. This representation can be
effectively learned with current feed-forward generation
pipelines, facilitating component disentanglement and en-
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hancing details of generated avatars. Based on the well-
designed representation, we train a single-stage diffusion
model and introduce constrain terms to mitigate the severe
occlusion issue of the innermost human body layer. Ex-
tensive experiments demonstrate the superior performances
of our method in generating highly detailed and disentan-
gled clothed avatars. In addition, we explore its applica-
tions in component transfer. The project page is available
at https://olivia23333.github.io/LayerAvatar.

1. Introduction
The creation of digital avatars has various applications [2,
13] in virtual and augmented reality, filmmaking, and more.
Traditional graphics-based pipelines require extensive ef-
fort from 3D artists to construct a single digital avatar. To
reduce tedious manual labor and facilitate mass production,
learning-based methods aiming at generating digital avatars
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automatically have been widely explored recently.
Recent learning-based methods [3, 16, 77] mainly com-

bine 3D representations [28, 39, 55, 64] with generation
pipelines (e.g., 3D-aware GANs [4, 5, 43] and diffusion
models [47, 52]) to create digital avatars. However, most of
these methods often ignore the compositional nature of dig-
ital avatars and represent the human body, hair, and clothes
as a whole, which limits their capabilities in digital avatar
customization such as cloth transfer. Neural-ABC [7] and
SMPLicit [14] provide parametric model with disentangled
clothes and human body. However, modeling texture are
leaved an un-explored problem. HumanLiff [23] proposes
a layer-wise generation process that first generates clothed
avatars in minimal clothes, then generates digital avatars
wearing the next layer of clothing conditioned on the cur-
rent layer. Nevertheless, the human body and clothes are not
fully disentangled, which makes it difficult to extract the
components of each layer, thus reducing the editing abil-
ity. In addition, some methods [15, 18, 59, 63, 66] fol-
low the trend of DreamFusion [49] to achieve disentangled
clothed avatar generation by learning each component of
digital avatars separately through the prior knowledge of
2D diffusion models [52] in an optimization manner. These
methods can generate clothed avatars with each component
disentangled, however, they take hours to generate a single
digital avatar, and the optimization time will increase lin-
early according to the number of components.

In this paper, we propose LayerAvatar, a novel feed-
forward diffusion-based method that achieves (1) compo-
nent disentanglement, enabling seamless transfer of individ-
ual components such as clothes, hair, and shoes; (2) high-
quality results, with generated avatars exhibiting intricate
facial details, distinct fingers, and realistic cloth wrinkles;
and (3) efficiency, requiring only seconds to generate a sin-
gle avatar. We choose 3D Gaussians [28] as the underly-
ing representation due to its high-quality rendering results
for intricate details, and strong representation capability for
diverse cloth types. However, naively representing the dis-
entangled clothed avatar using 3D Gaussians is impractical
due to its unstructured nature that is incompatible with most
current feed-forward generation pipelines [5, 52]. There-
fore, we introduce a Gaussian-based UV feature plane, in
which 3D Gaussians are projected into a predefined 2D
UV space shared among subjects. The attributes of each
3D Gaussian are encoded as local geometry and texture la-
tent features, which can be obtained from the 2D feature
plane via bilinear interpolation. Furthermore, to achieve
full disentanglement of avatar components (hair, shoes, up-
per cloth) and higher generation quality, we represent avatar
components in separate layers of the UV feature plane
which provides neighboring components with distinctive
features from different layers to facilitate decomposition.

To generate the layered representation in a feed-forward

manner, we elaborately train a single-stage diffusion model
[6] from multi-view 2D images. To fully disentangle each
component and ensure plausible avatar generation results,
we employ supervision both in the individual components
and the entire compositional clothed avatar. Moreover, sev-
eral prior losses are utilized to constrain the smooth surface
and reasonable color of the severely occluded human body.

We evaluate LayerAvatar on multiple datasets [9, 20, 74],
demonstrating its superior performance in generating disen-
tangled avatars. We also explore its application in compo-
nent transfer. In summary, our main contributions are:
• We introduce LayerAvatar, a novel feed-forward clothed

avatar generation pipeline with each component disentan-
gled, enhancing the controllability of avatar generation.

• We propose a layered UV feature plane representation
that enhances generation quality and facilitates the dis-
entanglement of each component.

• Our method achieves outstanding generation results on
multiple datasets and support downstream applications
such as component transfer.

2. Related work
Diffusion in 3D Generation. Encouraged by the suc-
cess of diffusion model [52] in 2D image generation
area, researchers have attempted to extend it to 3D gen-
eration tasks. These works can be divided into two
categories, feed-forward and optimization-based methods.
Optimization-based methods [8, 32, 33, 49, 50, 61, 67],
represented by DreamFusion [49], utilize SDS loss to dis-
till prior knowledge of 2D diffusion model to supervise
3D scenes. These methods often suffer from oversatura-
tion and Janus problems. Thus, improved SDS loss [67]
and camera-conditional [35] or multi-view diffusion mod-
els [56] are introduced to mitigate these problems. More-
over, optimization-based methods usually take hours to gen-
erate a single object, which hinders its application in real
life. On the other hand, feed-forward methods [37, 69, 75,
78, 82] directly learn diffusion model for 3D representa-
tions, such as points [42, 76], voxels [51], meshes [37, 72],
and implicit neural representations [22, 41, 57]. These
methods can generate 3D objects in seconds. Several at-
tempts [12, 25, 79, 80] have been made to adapt them to the
field of digital human generation. Different from most pre-
vious works, we regard digital avatars as a composition of
multiple components instead of a unified whole and learn a
diffusion model on the proposed layered representation.
Clothed Avatar Generation. Inspired by general 3D ob-
ject generation, many methods [3, 12, 16, 21, 44, 81] in-
troduce 3D-aware GANs [5] and diffusion models [52] for
clothed avatar generation. These methods first learn clothed
avatars in canonical space and then animate them to posed
space using a deformation module. Following EG3D [5],
some methods [77, 81] apply triplane features to represent
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Figure 2. Method overview. LayerAvatar learns a feed-forward diffusion model to generate clothed avatars with each component disentan-
gled. The clothed avatars are represented as layered UV feature plane where components are represented separately. After decoding the
feature plane into attribute maps, we can extract 3D Gaussians from them through SMPL-X-based templates. Generated clothed avatars
are then transformed into targeted pose space for further supervision. Reconstruction loss and constraint loss are both utilized to facilitate
the disentanglement and handle the severe occlusion of human body layer.

clothed avatars for higher quality and utilize inverse skin-
ning for animation. AG3D [16] introduces forward skinning
technique [10, 11] to achieve robust animation including
loose clothing. On the other hand, Chupa [30] and Avatar-
Popup [31] apply diffusion models to learn front and back
view image pairs and then lift them to 3D space. Despite
their impressive success, most of these methods represent
clothed avatars as an entity and fail to disentangle the hu-
man body and clothes. Recently, some optimization-based
methods [15, 18] achieved success in generating cloth-
disentangled avatars, however, the generating process takes
hours to generate a single avatar.

Compositional Avatar Representation. Instead of repre-
senting avatars [40, 68, 73] as a single entity, some methods
represent clothed avatars as a combination of multiple sub-
modules. COAP [38], Spams [45] and DANBO [58] con-
sider human avatars as a composition of body parts, while
EVA3D [21] and ENARF-GAN [44] follow this trend and
utilize multiple neural networks to represent different body
parts of the digital avatar, achieving more efficient and de-
tailed generation results. Several methods [1, 23, 71] rep-
resent clothed avatars as separate layers to enable the ex-
pressiveness of various topologies. However, these meth-
ods ignore the disentanglement of human body and clothes,
which makes each submodule less physically meaningful.
Recently, some works [17, 34, 48, 70, 83] disentangle the
human body and clothes by representing each component

separately. During the rendering process, these compo-
nents are combined through various compositional render-
ing techniques. Most of these methods are designed to op-
timize a single digital avatar. In this paper, we propose a
novel layered UV feature plane representation that is com-
patible with feed-forward generation framework.

3. Method

We propose LayerAvatar, a feed-forward generative method
for disentangled clothed avatar generation. The overview
of our method is illustrated in Fig. 2. We provide a brief
introduction for prior knowledge in Sec. 3.1. To achieve
disentangled clothed avatar generation, we propose a novel
layered UV feature plane representation (Sec. 3.2), which
facilitates disentanglement and is compatible with current
feed-forward generative pipelines. The clothed avatars are
generated in canonical space and then deformed to targeted
pose space via deformation module (Sec. 3.3). The training
process is introduced in Sec. 3.4.

3.1. Preliminary

SMPL-X [46] is an expressive parametric human model
that can produce naked human meshes M(β, θ, ψ) given
shape parameter β, pose parameter θ, and expression pa-
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rameter ψ. The producing process can be formulated as:

T (β, θ, ψ) = Tc +Bs(β; s) +Be(ψ; e) +Bp(θ; p),

M(β, θ, ψ) = LBS(T (β, θ, ψ)), J(β), θ,W),
(1)

where a canonical human mesh T is first calculated as a
combination of the mean shape template Tc and vertex dis-
placements (Bs(β; s), Be(ψ; e), Bp(θ; p)) computed by the
blend shapes s, e, p and their corresponding pose, shape,
and expression parameters. The body template T is then
deformed to the given pose by linear blend skinning(LBS)
based on the skinning weights W and joint locations J(β).
3D Gaussians [28] is a primitive-based explicit represen-
tation that combines the strengths of both previous explicit
and implicit representations. It consists of a set of learn-
able 3D Gaussian primitive Gk where each contains five at-
tributes: position µ, scaling matrix S, rotation matrix R,
opacity α, and color c. In practice, we employ diagonal
vector s ∈ R3 and axis-angle r ∈ R3 to represent S and
R respectively. 3D Gaussians are represented as ellipses
in 3D space defined by their position µ and covariance ma-
trix Σ = RSSTRT . During the rendering process, these
3D Gaussians are projected to a 2D image plane where the
pixel color C can be calculated as follows:

C =

N∑
i=1

ciσi

i−1∏
j=1

(1− σj) , (2)

where ci is the color of the i-th 3D Gaussian on the ray, and
σi is the blending weight calculated with the opacity α.

3.2. Layered UV Feature Plane Representation
Previous methods mainly represent avatars as a single entity
or depend on optimization-based schemes. As a result, the
generated results often have difficulty with editing or are
slow to create, typically taking hours to generate a single
subject. To address these limitations, we propose a layered
UV feature plane representation that can separate compo-
nents of clothed avatars and is compatible with fast, feed-
forward generation pipelines. We employ 3D Gaussians as
the base representation for efficient rendering along with
easy animation and editing.

To enable disentanglement, we consider clothed avatars
as a composition of human body and exterior components.

Gavatar = {Gbody,Gtop,Gbottom,Ghair,Gshoes}. (3)

Each component is represented as a set of Gaussian prim-
itives Gi parameterized with five attributes: 3D position
µi ∈ R3, opacity αi ∈ R, rotation matrix Ri represented by
axis angle ri ∈ R3, scale matrix Si represented by diagonal
vector si ∈ R3 and rgb color ci ∈ R3. Inspired by exist-
ing works [24, 80] that initialize 3D Gaussians by attach-
ing them to SMPL parametric model for geometry and ani-
mation prior. We initialize the 3D Gaussians of each com-
ponent by attaching them to self-designed templates based

on SMPL-X. For each component, we design a template
that maximizes coverage of the region where the component
may exist. To enhance generation quality, all templates are
subdivided to support densified Gaussian primitives. Then,
we initialize the positions of 3D Gaussians as the center
points of faces on the densified template mesh. And the ini-
tial rotations of 3D Gaussians are set as the tangent frame of
the faces, which consists of the normal vector of that face,
the direction vector of one edge and their cross product.

For compatibility with feed-forward generation
pipelines, previous methods typically project 3D Gaussians
into 2D space (e.g., multi-view image space [60, 62], UV
space [80]). Unlike these methods, which represent the
entire subject as a single entity and then employ a post-
processing step for disentanglement, we directly model
components separately by mapping their templates into a
three-layer UV space, combined with semantic labels. The
first layer represents the innermost part of the human body,
the second layer represents the hair and shoes, and the
third layer represents top and bottom clothes. Following
[80], all Gaussian attributes are stored as local UV features
to enhance generation quality. The UV features plane is
first split into two parts in a channel-wise manner and
then decoded by two light-weight shared MLP decoders
Dg and Dt separately. Dg decodes the geometry-related
attributes: position offset ∆µ and opacity α of 3D Gaus-
sians and Dt predicts texture-related attributes, color c and
covariance-related rotation ∆r and scale ∆s. Given the
decoded attribute maps, we can extract the attributes for
each 3D Gaussian Gi via bilinear interpolation. The opacity
value αi and color value ci are obtained directly, and the
other values are obtained via following formula based on
their initial values:

µi = µ0
i +∆µi, si = s0i ·∆si, ri = r0i ·∆ri, (4)

where µ0
i , s0i , and r0i are initial position, scale, and rota-

tion values for 3D Gaussians, respectively. ∆µi, ∆si and
∆ri are predicted residuals extracted from attribute maps.
By collecting the attributes of 3D Gaussians with the same
semantic label, we can obtain a canonical space represen-
tation of each component, and their composition forms the
complete disentangled clothed digital avatar.

3.3. Deformation

Benefiting from the SMPL-X-based templates, our method
supports deformation in body shapes and novel poses in-
cluding gestures and facial expressions. To support training
with multiple subjects in various body shapes, we disentan-
gle the body shape factor by defining all the templates in
a canonical space with neutral body shapes. The neutral
body shape avatar and its corresponding components can be
transformed into targeted body shape space via the follow-
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ing warping process:

µ̄ = µ+Bs(β, s,µ), (5)

where µ̄ represents the position of 3D Gaussians in the tar-
geted β body shape space and Bs(β, s,µ) are correspond-
ing body shape related offsets extracted from the SMPL-X
based templates via barycentric interpolation. We further
add pose-dependent offsets Bp(θ, p,µ) and facial expres-
sion offsets Be(ψ, e,µ) in the same way to ensure accurate
animation results.

The animation of a generated avatar from the canonical
T-pose to an arbitrary target pose can be regarded as trans-
forming the 3D Gaussian attributes. During the animation
process, the opacity α and color c of 3D Gaussians remain
unchanged. Therefore, we only discuss the transformation
of position µ, rotation matrix R and scale matrix S in this
section. Using the LBS function, we can transform the po-
sition µ̄ of 3D Gaussians as:

µ′ =

nb∑
i=1

wiBiµ̄, (6)

where nb represents the number of joints and Bi is the trans-
formation matrix of the i-th joint. For 3D Gaussians on
the innermost human body layer, the corresponding blend
skinning weights w are obtained directly from SMPL-X-
based templates through barycentric interpolation, as these
regions usually undergo minimal topology changes. For 3D
Gaussians representing the exterior components, we follow
[16] to extract the skinning weights from a pre-computed
low-resolution volumetric field of fused skinning weights,
which is more stable for points that deviate significantly
from the original template. T =

∑nb

i=1 wiBi is the blended
transformation matrix, and the rotation matrix R is updated
via R′ = T1:3,1:3R, where T1:3,1:3 is the rotational part of
T. The scale matrix S is recalculated in the targeted pose
space to fit deformed topology.

3.4. Learning Disentangled Clothed Avatar
To mitigate the impact of occlusion, we adopt a single-stage
training scheme [6], which is more robust in occluded and
sparse view situations. Specifically, the layered UV fea-
ture plane fitting and diffusion training process is conducted
simultaneously, and the UV feature plane is jointly opti-
mized by the fitting and diffusion loss. Similar to the SDS
loss [49], the diffusion loss provides a diffusion prior for
the UV feature plane, thereby facilitating the completion of
unseen regions in the training images.
Layered UV Feature Plane Fitting. Given multi-view im-
ages, we optimize the layered UV feature plane and shared
decoders to reconstruct avatars with disentangled compo-
nents. The objective function can be divided into recon-
struction and constraint part. The reconstruction loss Lrecon

can be formulated as follows:

Lrecon = λcolor ·Lcolor+λmask ·Lmask+λper ·Lper+λseg ·Lseg.
(7)

To achieve the disentanglement between exterior compo-
nents and human body, we not only minimize the color loss
Lcolor and mask loss Lmask on the overall rendering result,
but also perform supervision on each component. Specif-
ically, we first render the 3D Gaussians corresponding to
each component separately to obtain multi-view images of
each component. Then, inspired by Clothedreamer [36], in-
stead of blending the rendering results of these components
via estimated depth order to obtain the rendering results of
clothed avatars, we directly render all the 3D Gaussians to
alleviate artifacts caused by the blending process. The sil-
houette masks of each component and the clothed avatar are
obtained similarly. The ground truth of silhouette masks is
estimated based on the semantic segmentation results pre-
dicted by Sapiens [29]. We apply Huber loss [26] for both
Lcolor and Lmask following SCARF [17], due to its robust-
ness to the estimated noisy segmentation results. To en-
hance the details of generated results, we also employ a per-
ceptual loss Lper [27] to minimize the difference between
extracted features of rendered outputs and targeted images.

Components in overlapping regions may learn inverted
color or opacity values due to incorrect depth ordering. To
address this, we render semantic segmentation maps of the
clothed avatar by assigning the segmentation label of each
Gaussian as its color. We then minimize the distance to the
predicted semantic segmentation map using the Huber loss,
Lseg, to encourage accurate depth ordering.

Due to the severe occlusion of the inner human body
layer, we apply constraints on the geometry and texture of
the human body to obtain reasonable results. Since the hu-
man body is always within the exterior layer, we employ the
following constraints:

Lmaskin = λmaskinReLU
(
Rb

m(Gbody)−Mfg
)
, (8)

where Rb
m(Gbody) represents the rendered silhouette of the

human body, andMfg is the estimated foreground silhouette
mask. When rendering Rb

m(Gbody), we detach the opac-
ity values and set them to 1, only optimizing offset and
covariance-related attributes, preventing the model from
minimizing the loss via decreasing opacity on the bound-
ary. Utilizing the prior that the occluded skin color should
be similar to the color of hands, we introduce the following
texture constraint:

Lskin = λskin
(
Moc ⊙

(
Rb

m(Gbody)−Cskin
))
, (9)

where Cskin is the average color of pixels in the hands re-
gion and Moc is the mask of the occluded region. Other
regularization terms are as follows:

Lreg = λoffsetLoffset + λsmoothLsmooth. (10)
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Loffset = ∥∆µ∥2 constrains the offset from being extremely
large. Lsmooth is the total variational (TV) loss, which is
used to minimize the average L2 distance between neigh-
boring pixels on attribute maps. This regularization term
encourages smooth transitions between the neighboring at-
tributes (e.g. offsets, rotation, and opacity), promoting the
generation of reasonable texture and geometry surface.
Disentangled Clothed Avatar Diffusion Model. To gener-
ate disentangled clothed avatars, we train a diffusion model
that maps Gaussian noise to the layered UV latent space.
Since diffusion models generally perform better on inputs
with low channel dimensions [53], we concatenate our lay-
ered UV feature plane across widths instead of stacking
them across channels. During training, we first obtain de-
structed UV feature plane xt by adding Gaussian noise
ϵ ∼ N (0, I) to the layered UV feature plane x0 according
to following noise schedule:

xt := α(t)x0 + σ(t)ϵ, (11)

where α(t) and σ(t) are predefined functions that control
the intensity of added noise, and t is the time step in the
range of [0, 1]. To stabilize and accelerate training, we use
v-prediction proposed in [54] to train the denoising UNet.
The objective function for the diffusion model is:

Ldiff = E
t,x0,ϵ

[
1

2
w(t) ∥ x̂0 − x0∥2

]
, (12)

where w(t) = (α(t)/σ(t))
2ω , the ω is set to 0.5 following

[6]. Ldiff is used to update not only the parameters of de-
noising UNet, but also the UV feature plane. It promotes
the UV feature plane to adapt to the learned latent space,
thereby providing priors for occluded regions.

4. Experiments
Baselines. To evaluate holistic generation quality, we com-
pare our method with the state-of-the-art methods of ani-
matable avatar generation (EVA3D [21], StructLDM [25],
and E3Gen [80]) on THuman2.0 [74] dataset. We
then evaluate the decomposition capability of our method
by comparing the layer-wise generation results with the
disentanglement-related method HumanLiff [23] on Tight-
cap [9] dataset. And we further evaluate the compo-
nent generation quality against optimization-based meth-
ods: LAGA [18], SO-SMPL [63], and TELA [15]. Our
method is trained on a composite dataset including Cus-
tomHuman [20], THuman2.0 [74], and THuman2.1 [74].
Metrics. For holistic generation quality evaluation, we uti-
lize FID [19] following previous works [5, 25, 80]. For
layer-wise generation results, we adopt FID for overall gen-
eration quality evaluation and L-PSNR [23] for disentangle-
ment capability evaluation, which calculates the PSNR be-
tween two layers with the adding component masked. Ad-
ditionally, we conduct a user study with 20 participants to

compare the generation quality and disentanglement quality
of our methods with optimization-based methods.
Dataset. For THuman2.0 [74], we sample 500 scans and
render each from 54 camera views to obtain multi-view im-
ages. Then, we employ Sapiens [29] to estimate segmen-
tation masks for these images, from which per-component
silhouette masks can be extracted. This approach enables
our method to learn directly from multi-view images with-
out requiring separate meshes of each component, thereby
simplifying the data collection process. Tightcap [9] con-
tains 3D scans with separate meshes for cloth and shoe,
which facilitates direct rendering of multi-view images and
silhouette masks for each component. For a fair compari-
son, we use the preprocessed version provided by Human-
Liff [23], which selects 107 samples from Tightcap. Each
sample is rendered from 158 camera views, providing im-
ages and silhouette masks for both the entire avatar and each
component. We also construct a composite dataset consist-
ing of 1954 selected scans from THuman2.0 [74], THu-
man2.1 [74], and CustomHuman [20] datasets. Each scan
is processed in the same way as the THuman2.0 data. Ad-
ditionally, all SMPL-X parametric models are standardized
to neutral gender with refinement in body shape parameters
to ensure the body layer fits underneath the cloth surface.

4.1. Evaluation of Generation Quality and Disen-
tanglement Capability

Disentanglement and Animation Capacities. The dis-
entanglement and animation results are shown in Fig. 1.
Our method successfully generates clothed avatars with full
disentanglement of components such as hair, shoes, and
clothes from the human body. Moreover, our method recon-
structs the inner body layer with reasonable geometry and
texture under severe occlusion. Benefiting from the SMPL-
X-based templates within our layered Gaussian-based UV
feature plane representation, each component can be easily
deformed into novel poses.
Comparisons. For holistic generation quality, we compare
our method against representative feed-forward diffusion
and 3D-aware GAN pipelines. The quantitative compari-
son results are shown in Tab. 1a. Our method outperforms
all baselines on THuman2.0 [74] dataset, achieving the best
FID score. The visual comparisons shown in Fig. 3 fur-
ther enhance the superiority of our method. EVA3D [21]
struggles with generating digital avatars with plausible tex-
ture and geometry. Compared to StructLDM [25] and
E3Gen [80], our method exhibits finer details, such as dis-
tinctive fingers, realistic cloth wrinkles, and intricate faces.

To evaluate disentanglement capability, we compare
layer-wise generation results and disentangled avatar gen-
eration results of our method with state-of-the-art meth-
ods. For layer-wise generation, our method surpasses other
methods in both FID and L-PSNR, as shown in Tab. 1b,
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Methods FID↓

EVA3D [21] 124.54†
StructLDM [25] 25.22†
E3Gen [80] 15.78⋆
Ours 12.50

(a) Holistic Generation Quality.

Methods FID↓ L-PSNR↑

EVA3D [21] 61.58* <20*
Rodin [65] 56.57* 18.12*
HumanLiff [23] 54.39* 28.57*
Ours 17.37 >40

(b) Layer-wise Generation Quality.

Methods Disentanglement↑ Quality↑ Time↓

SO-SMPL [63] 13.02 3.57/8.57 5h
LAGA [18] 9.77 5.00/1.43 1.5h
TELA [15] 19.07 14.29/8.57 6h
Ours 58.14 77.14/81.43 2s

(c) Component Quality and Disentanglement Evaluation.

Table 1. Quantitative comparison. Our method outperforms other methods in both holistic and layer-wise generation quality, as well as
disentanglement capability. Due to the minor difference between the two masked layers, the L-PSNR value of our method is so large that
we use > 40 to express it. For component comparison, we show the quality preference in component quality preference/overall quality
preference format. ∗, † and ⋆ denote results adopted from HumanLiff [23], StructLDM [25] and E3Gen [80] respectively.

Figure 3. Qualitative comparison. The left part demonstrates our generation results on THuman2.0 dataset [74]. The middle part illustrates
layer-wise generated results on Tightcap dataset [9]. Our method can generate more reasonable human bodies under severe occluded
scenarios. The right part exhibits our component generation results compared with optimization-based methods.

which indicates that our method achieves higher holistic
generation results and can generate disentangled avatars
without facing the identity shifting problem. The elim-
ination of identity shifting demonstrates that our method
achieves full disentanglement of components, since entan-
gled components will result in shifting problems. As shown
in Fig. 3, Rodin [65] struggles to maintain identity con-
sistency during the generation process. Although Human-
Liff [23] achieves correct layer-wise generation, it produces
less smooth body geometry and exhibits subtle identity
shifting, shown by the enlarged face region. Our method
can generate each layer without shifting problems, demon-
strating more complete disentanglement.

For disentangled avatar generation, we compare our
method with state-of-the-art optimization-based methods.
As shown in Tab. 1c, our method generates clothed avatars
in significantly less time and achieves a higher user pref-
erence. Qualitative comparisons are illustrated in Fig. 3.
SO-SMPL [63] generates unrealistic, cartoonish colors and
exhibits unnatural sawtooth on the border of generated com-

Methods FID↓ KID ↓
Two-stage 19.06 15.40
Pipeline (SLMO) 30.83 30.18
Pipeline (SLMN) 28.95 29.21
Full pipeline 12.50 9.39

Table 2. Ablation study on THuman2.0 Dataset. The full pipeline
outperforms baselines on both FID and KID by a large margin.

ponents (highlighted by orange circles). LAGA [18] and
TELA [15] struggle with blurry fingers, oversaturated col-
ors, and incomplete disentanglement from the body layer.
In contrast, our method generates fully disentangled avatars
with distinctive fingers and realistic color.

4.2. Ablation Study
Layered vs. Single-Layer Representation.

To demonstrate the effectiveness of our layered UV fea-
ture plane, we design two baselines that use single-layer
UV feature plane to generate disentangled clothed avatars.
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Figure 4. Ablation study on THuman2.0 Dataset. Comparing ran-
domly generated avatars and decomposition results, our method
generates avatars with higher quality and better disentanglement.

One baseline representation is SLMO (single-layer-multi-
output), which utilizes a single pair of geometry and texture
decoders (Dg and Dt) to predict attributes for all compo-
nents. Another one is SLMN (single-layer multi-network),
which employs different decoders to predict the attributes of
Gaussian primitives for each component. Since they only
contain a single-layer UV feature plane, attributes of dif-
ferent components will share one feature if they are initial-
ized in the same location. As shown in Fig. 4, Fig.5 and
Tab. 2, single-layer UV representations generate clothed
avatars with lower quality both quantitatively and qualita-
tively. This is because our layered UV feature plane repre-
sentation provides each component with an optimized UV
distribution and independent feature space. Without the
layered UV plane, which provides distinctive features for
components in overlapping and neighboring regions, single-
layer representations struggle to disentangle components,
leading to blurred boundaries between components.
Single Stage vs. Two Stage. We also compare the single-
stage training scheme with the commonly used two-stage
training scheme, shown in Tab. 2 and Fig. 4. The single-
stage training can generate avatars with finer details, such
as intricate faces.

4.3. Applications
Component Transfer. We further explore applications
such as component transfer. Thanks to the component dis-
entanglement and shared structure provided by our method,
we can directly transfer clothes and other components be-

E3
G
en

O
ur
s

Figure 5. Zoom in comparison between E3Gen and LayerAvatar.
Compared to single-layer representation, layered representation
exhibits detailed faces and clear boundaries between components.

Figure 6. Component transfer. Given the generated avatars in the
first column, we can transfer the upper-clothes, pants, hair, and
shoes of the avatars in the second to fifth column to them. The
results are shown in the rightmost column.

tween generated samples. The component transfer results
are shown in Fig. 6. Our method can accurately transfer
components across various body shapes while maintaining
high-quality details of the transferred items.

5. Conclusion

In this paper, we propose LayerAvatar, a novel feed-
forward diffusion-based method for generating component-
disentangled clothed avatars. Our method proposes a lay-
ered UV feature plane representation, which organizes 3D
Gaussians into different layers, each corresponding to spe-
cific components of clothed avatars (e.g., body, hair, cloth-
ing). Leveraging this representation, we train a single-stage
diffusion model to generate each feature plane, enabling the
generation of fully disentangled clothed avatars. To ensure
complete component disentanglement, we incorporate con-
straint terms into the model. Extensive experiments validate
the superiority of LayerAvatar in generating fully disen-
tangled clothed avatars and its effectiveness in component
transfer tasks. Additional limitations and implementation
details are discussed in the supplementary material.
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ard Pons-Moll, and Francesc Moreno-Noguer. Smplicit:
Topology-aware generative model for clothed people. In
CVPR, 2021. 2

[15] Junting Dong, Qi Fang, Zehuan Huang, Xudong Xu,
Jingbo Wang, Sida Peng, and Bo Dai. Tela: Text to
layer-wise 3d clothed human generation. arXiv preprint
arXiv:2404.16748, 2024. 2, 3, 6, 7

[16] Zijian Dong, Xu Chen, Jinlong Yang, Michael J Black, Ot-
mar Hilliges, and Andreas Geiger. AG3D: Learning to Gen-
erate 3D Avatars from 2D Image Collections. In Interna-
tional Conference on Computer Vision (ICCV), 2023. 2, 3,
5

[17] Yao Feng, Jinlong Yang, Marc Pollefeys, Michael J. Black,
and Timo Bolkart. Capturing and animation of body and
clothing from monocular video. In SIGGRAPH Asia 2022
Conference Papers, 2022. 3, 5

[18] Jia Gong, Shenyu Ji, Lin Geng Foo, Kang Chen, Hossein
Rahmani, and Jun Liu. Laga: Layered 3d avatar genera-
tion and customization via gaussian splatting. arXiv preprint
arXiv:2405.12663, 2024. 2, 3, 6, 7

[19] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 6

[20] Hsuan-I Ho, Lixin Xue, Jie Song, and Otmar Hilliges. Learn-
ing locally editable virtual humans. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21024–21035, 2023. 2, 6

[21] Fangzhou Hong, Zhaoxi Chen, Yushi LAN, Liang Pan, and
Ziwei Liu. EVA3d: Compositional 3d human generation
from 2d image collections. In International Conference on
Learning Representations, 2023. 2, 3, 6, 7

[22] Fangzhou Hong, Jiaxiang Tang, Ziang Cao, Min Shi, Tong
Wu, Zhaoxi Chen, Shuai Yang, Tengfei Wang, Liang Pan,
Dahua Lin, et al. 3dtopia: Large text-to-3d genera-
tion model with hybrid diffusion priors. arXiv preprint
arXiv:2403.02234, 2024. 2

[23] Shoukang Hu, Fangzhou Hong, Tao Hu, Liang Pan, Haiyi
Mei, Weiye Xiao, Lei Yang, and Ziwei Liu. Humanliff:
Layer-wise 3d human generation with diffusion model. arXiv
preprint, 2023. 2, 3, 6, 7

[24] Shoukang Hu, Tao Hu, and Ziwei Liu. Gauhuman: Articu-
lated gaussian splatting from monocular human videos. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 20418–20431, 2024. 4

[25] Tao Hu, Fangzhou Hong, and Ziwei Liu. Structldm: Struc-
tured latent diffusion for 3d human generation, 2024. 2, 6,
7

[26] Peter J Huber. Robust estimation of a location parameter. In
Breakthroughs in statistics: Methodology and distribution,
pages 492–518. Springer, 1992. 5

11335



[27] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016. 5

[28] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 2, 4

[29] Rawal Khirodkar, Timur Bagautdinov, Julieta Martinez, Su
Zhaoen, Austin James, Peter Selednik, Stuart Anderson, and
Shunsuke Saito. Sapiens: Foundation for human vision mod-
els. arXiv preprint arXiv:2408.12569, 2024. 5, 6

[30] Byungjun Kim, Patrick Kwon, Kwangho Lee, Myunggi Lee,
Sookwan Han, Daesik Kim, and Hanbyul Joo. Chupa:
Carving 3d clothed humans from skinned shape priors us-
ing 2d diffusion probabilistic models. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 15965–15976, 2023. 3

[31] Nikos Kolotouros, Thiemo Alldieck, Enric Corona, Ed-
uard Gabriel Bazavan, and Cristian Sminchisescu. Instant
3d human avatar generation using image diffusion models.
arXiv preprint arXiv:2406.07516, 2024. 3

[32] Yixun Liang, Xin Yang, Jiantao Lin, Haodong Li, Xiao-
gang Xu, and Yingcong Chen. Luciddreamer: Towards high-
fidelity text-to-3d generation via interval score matching. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6517–6526, 2024. 2

[33] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler,
Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution
text-to-3d content creation. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2023. 2

[34] Siyou Lin, Zhe Li, Zhaoqi Su, Zerong Zheng, Hongwen
Zhang, and Yebin Liu. Layga: Layered gaussian avatars for
animatable clothing transfer. In ACM SIGGRAPH 2024 Con-
ference Papers, pages 1–11, 2024. 3

[35] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-
3: Zero-shot one image to 3d object. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 9298–9309, 2023. 2

[36] Yufei Liu, Junshu Tang, Chu Zheng, Shijie Zhang, Jinkun
Hao, Junwei Zhu, and Dongjin Huang. Clothedreamer: Text-
guided garment generation with 3d gaussians. arXiv preprint
arXiv:2406.16815, 2024. 5

[37] Zhen Liu, Yao Feng, Michael J. Black, Derek
Nowrouzezahrai, Liam Paull, and Weiyang Liu. Meshd-
iffusion: Score-based generative 3d mesh modeling. In
International Conference on Learning Representations,
2023. 2

[38] Marko Mihajlovic, Shunsuke Saito, Aayush Bansal, Michael
Zollhoefer, and Siyu Tang. Coap: Compositional articulated
occupancy of people. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13201–13210, 2022. 3

[39] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
2

[40] Gyeongsik Moon, Takaaki Shiratori, and Shunsuke Saito.
Expressive whole-body 3d gaussian avatar. arXiv preprint
arXiv:2407.21686, 2024. 3

[41] Norman Müller, Yawar Siddiqui, Lorenzo Porzi,
Samuel Rota Bulo, Peter Kontschieder, and Matthias
Nießner. Diffrf: Rendering-guided 3d radiance field
diffusion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
4328–4338, 2023. 2

[42] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela
Mishkin, and Mark Chen. Point-e: A system for generat-
ing 3d point clouds from complex prompts. arXiv preprint
arXiv:2212.08751, 2022. 2

[43] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2021. 2

[44] Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya
Harada. Unsupervised learning of efficient geometry-aware
neural articulated representations. In European Conference
on Computer Vision, 2022. 2, 3

[45] Pablo Palafox, Nikolaos Sarafianos, Tony Tung, and Angela
Dai. Spams: Structured implicit parametric models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12851–12860, 2022. 3

[46] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2019.
3

[47] William Peebles and Saining Xie. Scalable diffusion models
with transformers. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 4195–4205,
2023. 2

[48] Bo Peng, Yunfan Tao, Haoyu Zhan, Yudong Guo, and Juy-
ong Zhang. Pica: Physics-integrated clothed avatar. arXiv
preprint arXiv:2407.05324, 2024. 3

[49] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv
preprint arXiv:2209.14988, 2022. 2, 5

[50] Lingteng Qiu, Guanying Chen, Xiaodong Gu, Qi Zuo, Mu-
tian Xu, Yushuang Wu, Weihao Yuan, Zilong Dong, Liefeng
Bo, and Xiaoguang Han. Richdreamer: A generalizable
normal-depth diffusion model for detail richness in text-to-
3d. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9914–9925,
2024. 2

[51] Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth,
Sanja Fidler, and Francis Williams. Xcube: Large-scale 3d
generative modeling using sparse voxel hierarchies. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024. 2

11336



[52] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models, 2021. 2

[53] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 6

[54] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In International Confer-
ence on Learning Representations, 2022. 6

[55] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid represen-
tation for high-resolution 3d shape synthesis. In Advances in
Neural Information Processing Systems (NeurIPS), 2021. 2

[56] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li,
and Xiao Yang. Mvdream: Multi-view diffusion for 3d gen-
eration. arXiv preprint arXiv:2308.16512, 2023. 2

[57] J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner,
Jiajun Wu, and Gordon Wetzstein. 3d neural field generation
using triplane diffusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 20875–20886, 2023. 2

[58] Shih-Yang Su, Timur Bagautdinov, and Helge Rhodin.
Danbo: Disentangled articulated neural body representations
via graph neural networks. In European Conference on Com-
puter Vision, 2022. 3

[59] Xiaokun Sun, Zhenyu Zhang, Ying Tai, Qian Wang, Hao
Tang, Zili Yi, and Jian Yang. Barbie: Text to barbie-style
3d avatars. arXiv preprint arXiv:2408.09126, 2024. 2

[60] Stanislaw Szymanowicz, Christian Rupprecht, and Andrea
Vedaldi. Splatter image: Ultra-fast single-view 3d recon-
struction. In The IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2024. 4

[61] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang
Zeng. Dreamgaussian: Generative gaussian splatting for effi-
cient 3d content creation. arXiv preprint arXiv:2309.16653,
2023. 2

[62] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang,
Gang Zeng, and Ziwei Liu. Lgm: Large multi-view gaussian
model for high-resolution 3d content creation. arXiv preprint
arXiv:2402.05054, 2024. 4

[63] Jionghao Wang, Yuan Liu, Zhiyang Dou, Zhengming Yu,
Yongqing Liang, Xin Li, Wenping Wang, Rong Xie, and Li
Song. Disentangled clothed avatar generation from text de-
scriptions, 2023. 2, 6, 7

[64] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
NeurIPS, 2021. 2

[65] Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin
Bao, Tadas Baltrusaitis, Jingjing Shen, Dong Chen, Fang
Wen, Qifeng Chen, et al. Rodin: A generative model for
sculpting 3d digital avatars using diffusion. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4563–4573, 2023. 7

[66] Yi Wang, Jian Ma, Ruizhi Shao, Qiao Feng, Yu-Kun Lai,
and Kun Li. Humancoser: Layered 3d human genera-
tion via semantic-aware diffusion model. arXiv preprint
arXiv:2408.11357, 2024. 2

[67] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and
diverse text-to-3d generation with variational score distilla-
tion. Advances in Neural Information Processing Systems,
36, 2024. 2

[68] Chung-Yi Weng, Brian Curless, Pratul P Srinivasan,
Jonathan T Barron, and Ira Kemelmacher-Shlizerman. Hu-
mannerf: Free-viewpoint rendering of moving people from
monocular video. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern Recognition, pages
16210–16220, 2022. 3

[69] Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi
Xu, Philip Torr, Xun Cao, and Yao Yao. Direct3d: Scalable
image-to-3d generation via 3d latent diffusion transformer.
arXiv preprint arXiv:2405.14832, 2024. 2

[70] Donglai Xiang, Timur Bagautdinov, Tuur Stuyck, Fabian
Prada, Javier Romero, Weipeng Xu, Shunsuke Saito, Jing-
fan Guo, Breannan Smith, Takaaki Shiratori, et al. Dressing
avatars: Deep photorealistic appearance for physically sim-
ulated clothing. ACM Transactions on Graphics (TOG), 41
(6):1–15, 2022. 3

[71] Yinghao Xu, Wang Yifan, Alexander W Bergman, Menglei
Chai, Bolei Zhou, and Gordon Wetzstein. Efficient 3d articu-
lated human generation with layered surface volumes. arXiv
preprint arXiv:2307.05462, 2023. 3

[72] Xingguang Yan, Han-Hung Lee, Ziyu Wan, and Angel X.
Chang. An object is worth 64x64 pixels: Generating 3d ob-
ject via image diffusion, 2024. 2

[73] Yichao Yan, Zanwei Zhou, Zi Wang, Jingnan Gao, and Xi-
aokang Yang. Dialoguenerf: Towards realistic avatar face-
to-face conversation video generation. Visual Intelligence, 2
(1):24, 2024. 3

[74] Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qiong-
hai Dai, and Yebin Liu. Function4d: Real-time human vol-
umetric capture from very sparse consumer rgbd sensors. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR2021), 2021. 2, 6, 7

[75] Zhengming Yu, Zhiyang Dou, Xiaoxiao Long, Cheng Lin,
Zekun Li, Yuan Liu, Norman Müller, Taku Komura, Marc
Habermann, Christian Theobalt, et al. Surf-d: High-quality
surface generation for arbitrary topologies using diffusion
models. arXiv preprint arXiv:2311.17050, 2023. 2

[76] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic,
Or Litany, Sanja Fidler, and Karsten Kreis. Lion: Latent
point diffusion models for 3d shape generation. In Advances
in Neural Information Processing Systems (NeurIPS), 2022.
2

[77] Jianfeng Zhang, Zihang Jiang, Dingdong Yang, Hongyi Xu,
Yichun Shi, Guoxian Song, Zhongcong Xu, Xinchao Wang,
and Jiashi Feng. Avatargen: A 3d generative model for ani-
matable human avatars. In Arxiv, 2022. 2

[78] Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu,
Anqi Pang, Haoran Jiang, Wei Yang, Lan Xu, and Jingyi Yu.

11337



Clay: A controllable large-scale generative model for creat-
ing high-quality 3d assets. ACM Transactions on Graphics
(TOG), 43(4):1–20, 2024. 2

[79] Muxin Zhang, Qiao Feng, Zhuo Su, Chao Wen, Zhou Xue,
and Kun Li. Joint2human: High-quality 3d human genera-
tion via compact spherical embedding of 3d joints. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2024. 2

[80] Weitian Zhang, Yichao Yan, Yunhui Liu, Xingdong Sheng,
and Xiaokang Yang. e3gen: Efficient, expressive and ed-
itable avatars generation. arXiv preprint arXiv:2405.19203,
2024. 2, 4, 6, 7

[81] Xuanmeng Zhang, Jianfeng Zhang, Chacko Rohan, Hongyi
Xu, Guoxian Song, Yi Yang, and Jiashi Feng. Getavatar:
Generative textured meshes for animatable human avatars.
In ICCV, 2023. 2

[82] Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang,
Pei Cheng, BIN FU, Tao Chen, Gang YU, and Shenghua
Gao. Michelangelo: Conditional 3d shape generation based
on shape-image-text aligned latent representation. In Thirty-
seventh Conference on Neural Information Processing Sys-
tems, 2023. 2

[83] Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito,
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