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Figure 1. From a single image with a tracked pose, GUAVA can reconstruct a 3D upper-body Gaussian avatar via feed-forward inference
within sub-second time, enabling real-time expressive animation and novel view synthesis at 512x512 resolution.

Abstract

Reconstructing a high-quality, animatable 3D human
avatar with expressive facial and hand motions from a sin-
gle image has gained significant attention due to its broad
application potential. 3D human avatar reconstruction typ-
ically requires multi-view or monocular videos and train-
ing on individual IDs, which is both complex and time-
consuming. Furthermore, limited by SMPLX’s expressive-
ness, these methods often focus on body motion but strug-
gle with facial expressions. To address these challenges,
we first introduce an expressive human model (EHM) to en-
hance facial expression capabilities and develop an accu-
rate tracking method. Based on this template model, we
propose GUAVA, the first framework for fast animatable
upper-body 3D Gaussian avatar reconstruction. We lever-
age inverse texture mapping and projection sampling tech-
niques to infer Ubody (upper-body) Gaussians from a single
image. The rendered images are refined through a neural re-
finer. Experimental results demonstrate that GUAVA signif-
icantly outperforms previous methods in rendering quality
and offers significant speed improvements, with reconstruc-
tion times in the sub-second range (~ 0.1s), and supports
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real-time animation and rendering. Code and video demos
are available at the Project page.

1. Introduction

Creating realistic and expressive upper-body human avatars
is essential for applications like films, games, virtual meet-
ings, and digital media. These avatars are expected to ex-
hibit high realism with expressiveness, such as detailed fa-
cial expressions and rich hand gestures. Efficiency, ease of
creation, and real-time rendering are also critical. However,
achieving these goals, especially from a single image, re-
mains a significant challenge in computer vision.

Recently, this area has gained growing attention, with
progress in both 2D and 3D-based methods. Several works
[13, 25, 50, 51, 60] directly predict the coefficients of the
human template model SMPLX [65] from images, enabling
rapid human mesh reconstruction. However, due to the tem-
plate model’s coarse textures, these methods struggle to ren-
der photorealistic images. With the breakthrough of NeRF
[59] in novel view synthesis, methods like [27, 39, 54, 68,
113] combine template models like FLAME [47] or SM-
PLX to reconstruct high-quality head or whole body avatars
from multi-view or monocular videos. While achieving re-
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alistic effects, these methods suffer from slow training and
rendering speeds. The rise of 3D Gaussian splatting (3DGS)
[41] has led to methods like [34, 48, 70, 81, 97], which
leverage 3DGS for real-time, high-quality avatars recon-
struction. However, these methods still exist several limita-
tions. e.g., ID-specific training: Each person requires indi-
vidual training; Training complexity: The process is time-
consuming and requires calibrated multi-view or monocu-
lar videos; Limited expressiveness: Head reconstruction
methods lack body motion representation, while full-body
methods neglect detailed facial expressions.

In the 2D domain, diffusion-based models [4, 8, 9, 43]
have demonstrated remarkable results in video generation.
Meanwhile, ControlNet [107] has expanded the controlla-
bility of generative models by adding extra conditions to
guide the generation process of stable diffusion model (SD)
[77]. Consequently, some researchers [33, 40, 91] adapt it
for human motion transfer. They use conditions like key-
points or SMPLX to transfer the target image’s human pose
to the source image’s ID, enabling the creation of human an-
imation videos. Despite these methods achieving good vi-
sual effects, they still face several limitations. e.g., ID con-
sistency: They struggle to maintain a consistent ID without
3D representations, especially with large pose changes; Ef-
ficiency: High computational costs and multiple denoising
steps result in slow inference, hindering real-time applica-
tions; Viewpoint control: 2D methods cannot easily adjust
the camera pose, limiting viewpoint control.

To address the above challenges, we propose GUAVA,
a framework for creating upper-body 3D Gaussian avatars
from single images, as shown in Fig. |. GUAVA enables fast
reconstruction of animatable, expressive avatars, support-
ing real-time pose, expression control, and rendering. Un-
like traditional 3D avatar reconstruction methods, GUAVA
completes the reconstruction in a single forward pass. Com-
pared to 2D-based methods, we use 3D Gaussians for con-
sistent avatar representation in canonical space, overcoming
issues of ID consistency and enabling real-time rendering.

Like other 3D-based body reconstruction methods, we
rely on the human template model SMPLX to construct the
upper-body avatar. This requires aligning each image with
the template model via tracking [50, 60]. However, cur-
rent SMPLX parameter estimation methods struggle with
accurately tracking hand movements and fine-grained facial
expressions. Besides, SMPLX has limited facial expres-
sion capability. Therefore, we introduce EHM (Expressive
Human Model), combining SMPLX and FLAME, and de-
velop an optimization-based tracking method for accurate
parameter estimation. Based on these tracked results, we
design a reconstruction model with two branches: one uses
the EHM’s vertices and their projection features to create
template Gaussians, while the other applies inverse texture
mapping to transfer screen-space features into UV space for

decoding UV Gaussians. This approach reduces the spar-

sity of template Gaussians and captures finer texture de-

tails. To further improve rendering quality, each Gaussian
is equipped with a latent feature to generate a coarse map,
which is then refined using a learning-based refiner.

We train GUAVA on monocular upper-body human
videos with diverse IDs to ensure good generalization for
unseen IDs during inference. Extensive experiments show
that GUAVA outperforms previous 2D- and 3D-based meth-
ods in visual effects. Additionally, our method reconstructs
the upper body in ~ 0.1s, and supports real-time animation
and rendering. Our main contributions are as follows:

* We propose GUAVA, the first framework for generaliz-
able upper-body 3D Gaussian avatar reconstruction from
a single image. Using projection sampling and inverse
texture mapping, GUAVA enables fast feed-forward in-
ference to reconstruct Ubody Gaussians from the image.

* We introduce an expressive human template model with a
corresponding upper-body tracking framework, providing
an accurate prior for reconstruction.

» Extensive experiments show that GUAVA outperforms
existing methods in rendering quality, and significantly
outperforms 2D diffusion-based methods in speed, offer-
ing fast reconstruction and real-time animation.

2. Related work

2.1. 3D based Avatar Reconstruction

Traditional human or head reconstruction primarily focuses
on mesh reconstruction. Researchers have constructed hu-
man template models like SMPL [56], the facial model
FLAME [47], and the hand model MANO [78] based on
thousands of 3D scans. These models are mesh-based and
represent shape and expression variations in a linear space,
with rotational movement modeled using joints and linear
blend skinning. SMPLX [65] extends SMPL by integrat-
ing FLAME and MANO, enhancing facial and hand ex-
pressiveness. Since SMPLX is trained on full-body scans
and may overlook facial details, its expressive capability
for face is still limited compared to FLAME. By combin-
ing deep learning, some methods [11, 16,22, 26, 29, 42,75,
80, 103, 109] predict the parameters of human, hand, and
face models to achieve fast image-to-mesh reconstruction.
With the development of Neural Radiance Fields (NeRF)
[59], studies have combined NeRF with template models for
more realistic 3D reconstructions of heads [1, 2, 73, 111]
or humans [46, 90, 95]. NeRFcae [27] extends NeRF to a
dynamic form by introducing expression and pose parame-
ters as conditioning inputs for driveable avatar reconstruc-
tion. Neural Body [69] proposes a new representation for
dynamic humans by encoding posed human meshes into la-
tent code volumes. Recently, 3DGS [41] has made break-
throughs in real-time rendering, leading to its rapid applica-
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tion in various fields [28, 37, 72, 88, 105], leveraging its effi-
cient rendering capabilities, including avatar reconstruction
[35,53,70,79, 104, 106]. GART [45] uses 3D Gaussians to
represent deformable subjects, employing learnable blend
skinning to model non-rigid deformations and generaliz-
ing to more complex deformations with novel latent bones.
GaussianAvatar [34] learns pose-dependent Gaussians us-
ing a 2D pose encoder to represent human avatar. ExAvatar
[61] combines mesh and Gaussian representations, treating
each Gaussian as a vertex in the mesh with pre-defined con-
nectivity, enhancing facial expression expressiveness.
However, these methods require training for each indi-
vidual ID and lack generalization. To address this, some
works have explored generalizable networks for single im-
age to avatar reconstruction [15, 19, 20]. GAGAvatar [14]
combines the FLAME and introduces a dual-lifting method
for inferring 3D Gaussians from a single image, enabling
feed-forward reconstruction of head avatars. Yet, single-
image 3D human reconstruction remains underexplored.
Methods like [10, 38, 63, 98] achieve avatar reconstruction
from a one-shot image but rely on generating a series of im-
ages through generative models, followed by optimization
for reconstruction, which is time-consuming. Other meth-
ods [36, 49, 112] focus on generalizable models for quick
novel view synthesis from sparse images. In this context,
we propose GUAVA, to the best of our knowledge, the first
method enables fast and generalizable upper-body avatar re-
construction from a single image, while also addressing the
lack of body expressiveness in generalizable head avatars.

2.2. 2D based Human Animation

Early motion transfer frameworks are primarily based on
Generative Adversarial Networks (GANs) [30], such as
those for facial expression transfer [32, 71, 83, 92] and
human motion transfer [21, 52, 82, 87, 94]. These meth-
ods typically achieve motion transfer by warping the source
image’s feature volume according to the target motion.
However, they often generate artifacts in unseen regions
and struggle with generalizing to out-of-distribution im-
ages. Recently, diffusion models [76, 77, 85, 86, 89] have
shown remarkable diversity, high generalization, and su-
perior quality in image generation. By learning from vast
image datasets, these models have developed strong pri-
ors, enabling them to generalize well to downstream tasks.
Some works have integrated pre-trained image generation
with temporal layers [31, 84, 93, 96] or transformer struc-
tures [3, 58, 100, 102] to achieve video generation. For
human motion transfer tasks, these video or image gen-
eration models can provide powerful priors. Inspired by
these advancements, several works have leveraged gener-
ative models to create controllable human animation videos
based on pose information extracted from OpenPose [6] or
DWPose [101]. For example, DreamPose [40], based on

Stable Diffusion [77], integrates CLIP [74] and VAE to en-
code images, using an adapter to generate animation videos
from pose sequences. MagicPose [7], also an SD-based
model, introduces a two-stage training strategy to better de-
couple human motions and appearance. For more accurate
pose control, Champ [115] integrates SMPL as a 3D guide,
using depth, normal, and semantic maps as motion con-
trol conditions. MimicMotion [110] employs an image-to-
video diffusion model as a prior, proposing a confidence-
aware pose guidance to enhance generation quality and
inter-frame smoothness, while utilizing a progressive fusion
strategy for longer videos generation. Although these 2D-
based methods ensure high-quality image synthesis, they
all struggle with maintaining ID consistency. In contrast,
our method uses 3D Gaussians as the 3D representation for
avatars, which ensures better identity consistency.

3. Method

In Sec. 3.1, we introduce the EHM template model, which
enhance SMPLX’s [65] facial expressiveness, along with an
upper-body tracking method. Sec. 3.2 explains how Ubody
Gaussians are predicted from the source image. In Sec. 3.3,
we deform the Ubody Gaussians into pose space using the
tracked parameters and render them. Lastly, Sec. 3.4 out-
lines the training strategy and loss functions. The overall
pipeline is illustrated in Fig. 2.

3.1. EHM and Tracking

3D body reconstruction often relies on models like SMPLX
as priors. Accurately estimating shape and pose parameters
to align each frame with SMPLX is essential. However, pre-
vious full-body pose estimation methods struggle with ro-
bustness and accuracy for wild images, making their results
unreliable. Additionally, while SMPLX struggles to capture
fine facial expressions [61], FLAME [47] excels at this but
isn’t compatible with SMPLX. This means parameters esti-
mation results based on FLAME cannot be applied to SM-
PLX. To solve this, we propose EHM (Expressive Human
Model), which replaces the SMPLX head part with FLAME
for more accurate facial expression representation. Further-
more, we design the tracking in two stages: first, pre-trained
models provide a coarse estimate, followed by refinement
primarily using 2D keypoint loss.

Specifically, we start by using existing models [25,
55, 67] to coarsely estimate the shape parameters /3, and
body pose parameters 6, of SMPLX, hand pose param-
eters 0, of MANO, and facial shape 3¢, expression vy,
and jaw pose 0,4, of FLAME. Then, we extract human
body keypoints K} and facial keypoints K¢ using keypoint
detection models [5, 17, 57, 101] for further fine-tuning.
We optimize facial parameters of FLAME primarily us-
ing keypoint loss: Bf, %7, 0ja = argmin Ly (Kf, Kf),
where K + are the keypoints from the FLAME. This yields
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Figure 2. Given the source and target images, we first obtain the shape, expression, and pose parameters of the EHM template model
through preprocessing tracking. The source image is then passed through an image encoder to extract an appearance feature map. Using
these features and the tracked EHM, one branch predicts the template Gaussians, and the other predicts the UV Gaussians. These are
concatenated to form the Ubody Gaussians in canonical space, which are then deformed into pose space using the tracked parameters from
the target image. Finally, a coarse feature map is rendered and refined by a neural refiner to produce the final image.

a head model with expression in the neutral pose, de-
noted as My (B, vy, 0 qw). Next, we replace the head of
the SMPLX in the T-pose M, (5y) with the head model
My (B, %f,8jaw). The modified model then undergoes
pose deformation through linear blend skinning (LBS).
Additionally, we introduce ID-specific joint offset param-
eters AJ for better joint alignment. Thus, the EHM model
is formulated as:

Mo =LBS (U(My(B), My (Br, b0

(1)
+8), 00,0, To(B) + AT ),

where U represents replacing the SMPLX head with the
FLAME, aligned by a displacement vector €, which rep-
resents the displacement between the eye joints of both
models, and J,(fp) denotes the joints’ position. We
then fine-tune the parameters mainly using keypoint loss:
By Bfs b, On, AT = argminﬁl(Kb,Kb), where K, are
the keypoints from the EHM. Notably, our tracking method
is designed to optimize multiple frames in parallel to meet
the speed requirement.

3.2. Reconstruction Modeling

Unlike person-specific reconstruction methods, our model
is designed for single-image feedforward inference, en-
abling fast upper-body avatar reconstruction. We represent
the avatar in a canonical space using Gaussians [41], where
each Gaussian includes position, rotation, scale, opacity,
and a latent appearance feature: G = {u,r,s,«,c}. The
avatar consists of two parts: template Gaussians based on
EHM, which are fewer in number and handle coarse texture

and geometry modeling, and UV Gaussians rigged on the
triangulated mesh to capture finer details.

Template Gaussians. Specifically, we first extract features
from the image using pre-trained DINOV2 [62] and obtain a
global ID embedding f;4. Convolutional upsampling is then
applied to generate an appearance feature map Fj match-
ing the source image’s resolution. Since the person in the
source image is posed, we use the tracked EHM in the pose
space, project each vertex onto the screen space, and em-
ploy linear interpolation S to sample the projection features:

fi=8(F.,P(v',RTy)), )

where v? represents the i-th vertex and RT; is the view-
ing matrix of the source image. Additionally, for each ver-
tex, we adopt an optimizable base feature fj, to learn unique
semantic information. Combining these three features, a
Template decoder Dy, consisting of MLPs, is used to pre-
dict the template Gaussian attributes: {r?, st a?,c'}
Dr(f} @ fi @ fia), where @ denotes concatenation. For
', we directly take the vertex position v*.

UV Gaussians. Using only the EHM’s vertices to repre-
sent the avatar can not fully capture high-frequency details
due to the limited number of vertices, and struggles to rep-
resent regions beyond the template model. To address these
issues, we propose introducing additional Gaussians to cap-
ture fine details. Specifically, we use the UV texture map
to construct UV Gaussians, where we predict a Gaussian
for each valid pixel in the texture map. Unlike template
Gaussians, which are directly represented in world coordi-
nates, as in [70], we rig each UV Gaussian to the corre-
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sponding mesh triangle. Each UV Gaussian is defined as
Guv = {Ap,m, s,a,¢,k,t}, where Ay represents the lo-
cal position of the Gaussian in the triangle, k is the triangle
index, and t refers to interpolated position on the triangle
using the pixel’s barycentric coordinates. During rendering,
these properties are transformed into world coordinates:

v =Ryr, y =ocRAu+t, s =os, 3)

where o and R; represent the average edge length and ori-
entation of the triangle in world coordinates. Rigging the
Gaussians in the local coordinates of the triangle, they can
flexibly model parts that the EHM template model cannot
represent. Additionally, the increased number of Gaussians
enhances the model’s ability to capture finer details.
Inverse texture mapping. To effectively predict Gaus-
sian attributes in the UV space based on the source im-
age, we design an inverse texture mapping process. This
explicitly maps the appearance feature map from screen
space to the UV texture space, resulting in a UV feature
map F,,. Utilizing the tracked EHM mesh, we first map
each pixel of the UV map to the mesh by interpolating
the triangle’s vertex positions with pixel’s barycentric co-
ordinates. Next, each mapped position ¢ is projected into
screen space using camera parameters, followed by linear
sampling on the appearance feature map. These sampled
features are then placed back into the UV space. Finally,
we use a mesh rasterizer to retrieve the visible pixel region
and filter out the invisible ones from the UV features. Af-
ter obtaining the UV feature map, we input it into the UV
decoder to predict the corresponding Gaussian attributes:
{Ap,r,s,a,¢} = Dyy(Fuy). The UV decoder consists
of StyleUNet and convolutional networks. First, StyleUNet
paints the invisible regions, then the convolutional networks
predict each Gaussian attribute.

3.3. Animation and Rendering

Animation. After reconstructing the upper body avatar
in the canonical space, we can animate the reconstructed
avatar with the new tracking parameters to present new ex-
pressions and motions. The template Gaussians inherit their
positions from the EHM vertices, so we use the deformed
EHM vertex positions (Eq. (1)) as the template Gaussian
positions in the pose space. Other Gaussian attributes re-
main the same, except for the rotation, which undergoes a
consistency rotation: 7’ = Rysr, where Ry, represents the
weighted blend skinning rotation matrix. For the UV Gaus-
sians, each Gaussian remains fixed in the local coordinate
system relative to its rigged parent triangle, but moves in
world coordinates as the triangle deforms. During anima-
tion, after obtaining the deformed EHM mesh, we compute
the orientation R; and average edge length o for each trian-
gle. Then, we use Eq. (3) to transform the UV Gaussians
into world coordinates.

Rendering. Although we increase the number of Gaussians
by adding UV Gaussians, the number of valid Gaussians af-
ter reconstruction may be less than 150000. For complex
upper body models, the sparsity of Gaussians may limit the
expressiveness. To address this and enhance rendering qual-
ity, following [48, 99], we assign each Gaussian with a la-
tent feature c. During rendering, we first obtain a coarse
feature map I through splatting where the first three di-
mensions represent the coarse RGB image I.. Then, the
image features are passed through a StyleUNet-based re-
finer [14], which decodes them into a refined image I,. of
the same resolution. Compared to direct RGB rendering,
this method strengthens the implicit representation of the
Gaussian and improves detail capture.

3.4. Training Strategy and Losses

Similar to the training strategy of [15, 23], we randomly
select two images from each image sequence: one as the
source image to reconstruct the avatar and the other as the
target image to drive the avatar. The loss between the driven
result and the target image is then used to train the model.
For image loss, we use £ and perceptual loss LPIPS L;;;
[108]. To enhance the model’s focus on local details, espe-
cially the face and hands, we also crop these regions from
the image and include them in the loss calculation:

Limagc :Ec(-[ta IT) + ﬁc(Ita IC) + >‘f : ‘CC(Iiface’
Lface) + A - )CC(‘Z'thand’_I"ri’wmai)7 where 4)
EC([t,Ir) = >\1 . El(lta [r) + Alpips ‘ Elpips(1t7j7’)~

Following [70], we introduce a regularization loss to en-
sure that the Gaussians rigged on the mesh stay close to the
thier parent triangles: L,,s = ||max(Ap, €pos)||2, Where
€pos allowed offset threshold relative to the parent trian-
gle’s scale. We also regularize the scaling of UV Gaus-
sians: Lgcq = ||max(s, €scq)||2, Where €., represents the
allowed scaling threshold. The total loss function is shown
as Eq. (5), where A denotes the weight coefficient.

L= »Cimage + )\p ' »Cpos + A »Csca' (5)

4. Experiment

4.1. Experimental Setup

Implementation details. Our model is built with PyTorch
[64] and trained using the Adam optimizer [44]. We train
the model on NVIDIA RTX A6000 GPUs for 200,000 it-
erations, consuming about 156 GPU hours, with a total
batch size of 12. For data processing, we use PIXIE [25],
TEASER [55], and HaMeR [66] to perform rough estima-
tions of SMPLX, FLAME, and MANO parameters, respec-
tively. Body masks are extracted using [12], and the back-
ground is set to black. Moreover, we extract human and
facial keypoints using [5, 17, 57, 101].
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Figure 3. Qualitative comparison results on self-reenactment. Compared to others, our method better preserves ID consistency during
animation while capturing more detailed facial expressions and hand gestures.

Dataset. We collect a dataset consisting of videos from
YouTube, OSX [51], and HowToSign [24], with a focus on
human upper body videos. During preprocessing, 5 to 75
frames are sampled at equal intervals from each video de-
pending on the video length. The final training set contains
over 26,000 video clips and 620,511 frames. The frames
with low hand keypoints confidence due to occlusion are
discarded. For the test set, 58 randomly selected IDs are
used, with one video per ID, each averaging 15 seconds,
totaling 28,287 frames.

Metrics. Self-reenactment. We use the first frame of each
video as the source image and generate animations based
on the motion from the entire video. We evaluate image
quality between animated results and original video using
PSNR, L1, SSIM, and LPIPS. Cross-reenactment. When
driving the current ID with motion from another video, no
ground truth exists. We use ArcFace [18] to measure the
Identity Preservation Score (IPS) which computes the co-
sine similarity of identity features.

Baseline. 2D-based methods. We compare GUAVA with
several SOTA methods: MagicPose [7], Champ [115], and
MimicMotion [110], which enable controllable human an-
imation video synthesis from a single image. 3D-based
methods. We also compare GUAVA with SOTA 3D-based
methods like GART [45], GaussianAvatar [34], and ExA-

PSNRT £yl  SSIM? LPIPS| | FPSt

GUAVA (Ours)  25.87  0.0162 0.9000 0.0813 | 52.21
MimicMotion 2446  0.0200 0.8768 0.0879 | 0.21
Champ 22.01 0.0258 0.8643 0.1000 | 0.53
MagicPose 21.25 0.0333 0.8661 0.0913 | 0.12

Table 1. Quantitative results on the self-reenactment against 2D-
based methods. FPS denotes the animation and rendering speed.

PSNRT £,  SSIMt LPIPS| ‘ Recon. input  Recon. time

GUAVA (Ours) 25.70  0.0168 0.8976 0.0836 first frame ~ 98 ms
ExAvatar 24.09 0.0207 0.8783  0.1064 half video ~24h
GaussianAvatar ~ 23.62  0.0199 0.8780  0.1085 half video ~13h
GART 2446 0.0195 0.8805 0.1016 half video ~ 7 min

Table 2. Quantitative results on the self-reenactment against 3D-
based methods. Recon. denotes reconstruction.

vatar [61]. These methods reconstruct 3D human avatars
from monocular videos. For comparison, we use the first
half of each video for their training and the remaining half
for self-reenactment evaluation, while GUAVA uses the first
frame as the source image.

4.2. Evaluation

Quantitative results. Self-reenactment. For 2D-based
methods, we evaluate all video frames, while for 3D-based
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Figure 4. Qualitative results on cross-reenactment against 2D-based methods. Our method demonstrates superior performance in preserving
ID consistency across various poses, as well as more accurately capturing the facial expressions and hand gestures of the target motion.

GUAVA (Ours)
IPST 0.5554

MimicMotion

0.1310

Champ MagicPose
0.3677 0.3277

Table 3. ID Preservation Score on cross-reenactment against 2D-
based methods. Our method maintains consistent identity.

methods, we assess the latter half. As shown in Tab. 1
and Tab. 2, our method outperforms all others across all
metrics, demonstrating high-quality avatar reconstruction
with accurate motion and photorealistic rendering. Cross-
reenactment. We use 10 source images from the test set and
ViCo-X [114], driven by 8 videos (5079 frames). Tab. 3
shows that our method significantly outperforms others in
IPS, proving its superior ability to preserve identity con-
sistency with the source ID under different poses. Ef-
ficiency. We evaluate all methods on an NVIDIA RTX
3090 GPU, with results shown in Tab. 1 and Tab. 2. Our
method achieves around 50 FPS in animation and render-
ing, while other 2D-based methods take several seconds per
frame. 3D-based methods also support real-time rendering
but require minutes to hours for reconstruction, whereas our

method completes it from a tracked image in just 0.1s.

Qualitative results. 2D-based methods. The visual com-
parison results for self-reenactment and cross-reenactment
are shown in Fig. 3 and Fig. 4. Leveraging strong diffusion
model priors, 2D-based methods can generate high-quality
images. However, the animations from Champ struggle
to accurately recover gestures and facial expressions, with
blurred hands. MagicPose faces similar issues, with notice-
able color distortions. MicmicMotion exhibits better ges-
ture and facial expression performance but fails to main-
tain identity consistency. In contrast, our approach not only
maintains identity consistency with the source image but
also restores complex gestures, head poses, and detailed fa-
cial expressions like blinking and talking. 3D-based meth-
ods. The qualitative results under the self-reenactment set-
ting are shown in Fig. 5. GaussianAvatar and GART strug-
gle with fine finger and facial expression driving. ExAvatar
performs better in these areas, but these methods lack gen-
eralization, producing incomplete results for unseen regions
and large artifacts in extreme poses. In contrast, our method
generates reasonable results for unseen areas, shows better
robustness in extreme poses, and provides more accurate
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PSNRt £;|  SSIM{ LPIPS|

Full (Ours) 25.87 0.0162 0.9000 0.0813
w/o refiner 2493  0.0188 0.8851 0.1060
w/o inverse 25.65 0.0168 0.8977 0.0864
w/o UV Gaussians  25.82  0.0164 0.8971 0.0877
w/o EHM 25.60 0.0168 0.8950 0.0846

Table 4. Ablation results under the self-reenactment setting.

Target image ExAvatar GausmanAvatar GART

¢ddédeé
@i@ i\ui
Addd

GUAVA (Ours)

Figure 5. Visual results on self-reenactment against 3D-based

methods. Our method reasonably generates unseen regions while
capturing more detailed facial expressions and hand gestures.

Target image Full (Ours) w/o refiner w/o inverse w/o UV Gaussians
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Figure 6. Qualitative results of ablation. Our full method more
accurately captures texture details from the source image.

Source image Target image Full (Ours) w/o EHM
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Figure 7. Ablation results of EHM. Using EHM, our method more
finely recovers facial expressions and shapes.

and detailed hand and facial expressions.

4.3. Ablation Studies

To validate each component’s effectiveness, we perform ab-
lation studies under the self-reenactment setting. The quan-
titative results are summarized in Tab. 4.

w/o refiner. Without the refiner, sparse Gaussians strug-
gle to capture high-frequency texture details accurately. As
shown in Fig. 6, this leads to elliptical artifacts when dealing
with intricate patterns. The significant drop in the LPIPS
metric further confirms this limitation.

w/o inverse. This setting removes inverse UV mapping dur-
ing UV Gaussians synthesis, directly feeding the screen-
space appearance feature map into the UV decoder. While
the StyleUnet in the UV decoder can implicitly learn some
mappings, inaccuracies occur. As shown in Fig. 6, it strug-
gles to capture structured textures precisely, resulting in
blurred outputs and lower performance across all metrics.
w/o UV Gaussians. Relying solely on a limited number
of template Gaussians, the model maintains a comparable
PSNR but lacks expressiveness, leading to blurry outputs,
as reflected in the lower LPIPS score. Fig. 6 further il-
lustrates this issue, where the model struggles to reproduce
high-frequency clothing textures.

w/o EHM. Using the original SMPLX for tracking and re-
construction weakens the model’s ability to capture fine fa-
cial details. As shown in Fig. 7, it sometimes struggles to
track facial expressions or head shapes precisely, causing
reconstruction and driving errors. The overall performance
also drops across all metrics.

5. Discussion

Conclusion. We propose GUAVA, a fast framework for
expressive 3D upper-body Gaussian avatar reconstruction
from a single image, enabling real-time animation and ren-
dering. To enhance facial expression, shape, and pose track-
ing, we introduce EHM with an accurate tracking method.
We further propose inverse texture mapping and projection
sampling to reconstruct Ubody Gaussians, composed of UV
Gaussians and template Gaussians, where UV Gaussians
enhance texture details. Extensive experiments show that
GUAVA provides accurate animation, high-quality render-
ing, and superior efficiency.

Limitation. Although GUAVA achieves high-quality ren-
dering, its geometric accuracy is limited by training data
diversity. Details like clothing wrinkles, loose garments,
and hair are difficult to reconstruct. Additionally, limited
by the mesh prior, GUAVA struggles to capture regions far
from the mesh, making large hairstyles like afros difficult
to reconstruct. The lack of clothing deformation modeling
limits realistic pose-driven garment changes. Finally, since
the dataset focuses on frontal views, GUAVA cannot gener-
ate a full 360-degree avatar. These limitations suggest areas
for future research and improvements.
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