
Geometry Distributions

Biao Zhang

KAUST

biao.zhang@kaust.edu.sa

Jing Ren

ETH Zurich

jing.ren@inf.ethz.ch

Peter Wonka

KAUST

pwonka@gmail.com

X ∼ N

E1(X)

E2(X)

Figure 1. Our representation can handle 3D geometry with complex details, high genus, sharp features, and non-watertight surfaces: our

trained diffusion networks Ei can transform the samples X from a Gaussian distribution N to the geometry M ⊂ R
3. The colors indicate

the correspondence between the Gaussian noise and the surface points.

Abstract

Neural representations of 3D data have been widely

adopted across various applications, particularly in recent

work leveraging coordinate-based networks to model scalar

or vector fields. However, these approaches face inher-

ent challenges, such as handling thin structures and non-

watertight geometries, which limit their flexibility and ac-

curacy. In contrast, we propose a novel geometric data rep-

resentation that models geometry as distributions—a pow-

erful representation that makes no assumptions about sur-

face genus, connectivity, or boundary conditions. Our ap-

proach uses diffusion models with a novel network archi-

tecture to learn surface point distributions, capturing fine-

grained geometric details. We evaluate our representation

qualitatively and quantitatively across various object types,

demonstrating its effectiveness in achieving high geomet-

ric fidelity. Additionally, we explore applications using our

representation, such as textured mesh representation, neu-

ral surface compression, dynamic object modeling, and ren-

dering, highlighting its potential to advance 3D geometric

learning.

1. Introduction

Geometry representations are at the heart of most 3D vi-

sion problems. With the rapid advancement of deep learn-

ing, there is growing interest in developing neural network-

friendly geometric data representations. Recent advances in

this field, particularly those based on coordinate networks,

have shown promise in modeling 3D geometry for various

applications, as their functional nature integrates well with

neural networks. However, they also face challenges like

limited accuracy in capturing complex geometric structures

and difficulties in handling non-watertight objects.

To overcome these challenges, we propose a new geo-

metric data representation, possessing a simple and con-

sistent data structure capable of accommodating shapes

with varying genus, boundary conditions, and connec-

tivity—whether open, watertight, fully connected, or not

(see Fig. 2). A key insight is that any surface, regardless

of its topology or structural integrity, can be closely ap-

proximated by a sufficiently large number of points sam-

pled on the surface. Recent advancements in generative

models have shown that, in theory, they can sample an infi-

nite amount of data from a distribution. Building on these

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1495

SDF
14M parameters

GEOMDIST (ours)
5M parameters

target surface

Figure 2. Compared to signed distance functions (SDFs), our GE-

OMDIST can model open and non-watertight objects using sig-

nificantly fewer network parameters. See the Appendix for the

meshing algorithm used in this figure. The SDF is fit using Instant-

NGP [31], with isosurface extraction evaluated on a 512-resolution

grid. We observe that SDFs struggle to represent thin structures or

non-watertight geometry.

insights, we model 3D geometry as a distribution of sur-

face points, encoded into a diffusion model. Unlike triangle

mesh representations, which are specific discretizations of

the underlying surface, or point clouds, which represent a

particular sampling choice, our approach models the distri-

bution of all possible surface points, providing a more con-

tinuous and accurate encoding of the underlying geometry.

Diffusion models, widely recognized for their effective-

ness in 2D content generation, have emerged as a leading

approach among generative models. However, their ap-

plication to 3D geometry remains largely unexplored. We

found that 3D geometry context presents unique challenges:

direct adaptation often falls short in capturing geometric de-

tails and results in inaccurate geometry recovery.

In this work, we introduce GEOMETRY DISTRI-

BUTIONS (or GEOMDIST in short), a new representa-

tion for general geometric data. Our approach lever-

ages a diffusion model with a novel network architecture.

vector fields

GEOMDIST

By solving a forward ordinary

differential equation (ODE), we

map spatial points, sampled from

Gaussian noise space, to surface

points in shape space, enabling

an infinite set of points to rep-

resent the geometry. This al-

lows us to sample on the sur-

face uniformly comparing to ex-

isting vector fields-based formu-

lation (see the inset and Fig. 3).

Additionally, we derive the back-

ward ODE algorithm, allowing

for inverse mapping from the shape space back to noise

space. Our results demonstrate the accuracy and robustness

of GEOMDIST across a broad range of complex structures.

Furthermore, our approach enables the simultaneous encod-

ing of texture or motion information alongside geometry.

vector fields GEOMDIST (ours) target surface

CD = 4.886 CD = 3.218

Figure 3. Compared to vector fields-based method, our GE-

OMDIST produces more uniformly distributed samples with

higher fidelity. The chamfer distance (×103) between the sam-

ples and target surface is reported below.

To summarize, GEOMDIST facilitates a highly accurate

yet compact neural representation of 3D geometry, demon-

strating significant potential for future applications, includ-

ing textured mesh representation, neural surface compres-

sion, dynamic object neural modeling, and photo-realistic

rendering with Gaussian splatting.

2. Related Works

2.1. Different representations for 3D geometry

Existing geometry representations—such as meshes, vox-

els, point clouds, and implicit functions—each offer dis-

tinct advantages but also have inherent limitations. Triangle

or polygonal meshes, which are commonly used in tradi-

tional geometry processing [4], are not ideal for geometric

learning due to their inconsistent data structures when deal-

ing with shapes that have a different number of vertices and

different connectivity [5, 13].

Voxels, with their inherent grid-based structure, are ideal

for learning-based tasks. However, they are memory-

intensive, especially when high resolution is needed for

capturing fine details [26, 42]. Point clouds, easily ob-

tained from sensors, are widely used in geometric learn-

ing tasks [2, 17, 44]. However, they are essentially sam-

ples of the geometry, leading to potential information loss

of the underlying geometry. Their expressiveness heavily

depends on sampling density and uniformity, and the lack

types structure infinity surface
non-

watertight

color/

textures

point clouds {pi ∈ R
3}i∈P ✗ ✗ ✓ ✓

meshes

(

{vi ∈ R
3}i∈V ,

{fj ∈ V3}j∈F

) ✗ ✓ ✓ ✓

voxels R
d×h×w×c ✗ ✓ ✓ ✓

SDFs {p|f(p) = 0} ✓ ✓ ✗ ✗

GEOMDIST {E(n)} ✓ ✓ ✓ ✓

Table 1. Different representations for 3D geometric data.

1496

of inherent point connectivity complicates defining surface

structures, boundaries, or geodesics along surfaces. Implicit

functions [30, 32] excel at generating smooth surfaces and

representing complex topologies. However, they struggle

with accurately modeling thin structures or non-watertight

geometries (see Fig. 2 for an illustration). Additionally, in-

tegrating colors or textures with implicit functions is not

straightforward.

Our goal is to design a new data representation for

various 3D geometric learning tasks, featuring a network-

friendly data structure that accommodates shapes with vary-

ing genus, boundary conditions, and connectivity, whether

open, watertight, fully connected, or not. See Tab. 1 for a

summary of different representations.

2.2. Diffusion models

Diffusion models are powerful generative models that trans-

form data into noise through a forward diffusion process

and learn to reverse this process to generate high-quality

samples. Beginning with Denoising Diffusion Probabilistic

Models [18], diffusion models have evolved into more ef-

ficient and flexible approaches [20, 25, 27, 40]. While our

work does not contribute directly to advancements in diffu-

sion models, we employ them as a foundation for modeling

complex geometry. Our approach primarily builds upon the

framework established in EDM [20].

Significant progress has been made in generating 3D ge-

ometry using diffusion models [7, 11, 19, 33, 35, 38, 45,

48, 53, 55, 57], with most approaches representing geome-

try via signed distance functions or occupancy fields. Fewer

methods, however, focus on point clouds [28, 52, 59] or

Gaussian point clouds [37, 51, 56]. We would also like to

emphasize two related works [6, 46]. While both works

are capable of encoding infinite-resolution point clouds us-

ing normalizing flow [36] and score-based generative mod-

els [41], they are only evaluated on toy datasets and do not

demonstrate high-quality geometric details as we do. These

models are trained on a dataset of 3D objects, treating each

object as a single training sample. In contrast, our approach

is fundamentally different, as we treat each spatial point as

an individual training sample.

2.3. Coordinate­based neural representations

Signed-distance functions (SDFs) are widely used to repre-

sent 3D geometry [10, 15, 29, 31, 39, 43]. Instead of ex-

plicitly storing vertices or points, a network is trained to

produce signed distances to the surface or signals indicat-

ing inside/outside for each spatial point, implicitly defin-

ing the shape’s geometry. Although relatively easy to learn

via neural networks, SDFs struggle to model non-watertight

meshes. Follow-up works are then introduced to model

open surfaces, where the outputs of the networks are un-

signed distances [8, 16, 47, 58] or vectors [12, 47, 50] point-

hashing grids MLP ours

Figure 4. Heatmap of the L2 distance from sampled points to the

target surface using different network architectures.

ing toward the surface. These works primarily use networks

to fit scalar fields or vector fields, representing 3D data

through networks that map coordinates to scalar or vector

values. Our approach, while distinct in methodology, shares

a conceptual connection with these works: it can be inter-

preted as a trajectory field.

2.4. Point­based graphics

Point-based computer graphics is an approach that repre-

sents 3D surfaces as sets of discrete points rather than tradi-

tional polygonal meshes. Unlike polygonal models that use

vertices and edges to define shapes, point-based methods

use individual points sampled across a surface to capture

details directly. The field can be dated back to 1980s [24].

Early works [34, 61] investigated how to render with points.

Until recently, works utilized point representations in dif-

ferentiable rendering [22, 49]. Different from our method,

these works focus on rendering with finite number of points.

3. Geometry Distributions

3.1. Problem formulation & motivations

Given a surfaceM⊂ R
3, our goal is to model it as a prob-

ability distribution ΦM, such that any sample x ∼ ΦM
drawn from this distribution is a surface point, i.e., x ∈M.

In this way, the distribution ΦM, which encodes the geom-

etry M, provides a flexible geometric representation-any

sampling, whether dense or sparse, closely approximates

the surface M at the target resolution. Inspired by the pi-

oneering work “Geometry Images”, which uses 2D images

to represent 3D meshes [14], we name our representation as

GEOMETRY DISTRIBUTIONS.

Numerous generative tasks have demonstrated the effec-

tiveness of using diffusion models to learn the mapping

from a Gaussian distribution to data distributions. While

previous work is concerned with novel shape synthesis, we

1497

Figure 5. Inference process for generating 1M points on a lamp mesh (top) and a jellyfish mesh (bottom) from uniform and Gaussian

distributions, respectively. Results are shown at timesteps t = 0, 40, 48, 56, 60, 64, with a close-up of the generated samples at t = 64
overlaid on the ground-truth mesh. A complete illustration is available in the accompanying video demo. Both meshes are taken from [60].

n = 215 n = 216 n = 217 n = 218 n = 219

Figure 6. Forward sampling at different resolutions on Wukong mesh. For each example, we show the initial Gaussian samples (bottom

left), the generated samples overlaid on the ground-truth mesh (right), and a zoomed-in view (top left).

are interested in shape representations. Different from ex-

isting work, we propose to adapt diffusion models to learn

a mapping from a Gaussian distribution to the target distri-

bution of surface points ΦM.

Existing networks designed for diffusion models are pri-

marily tailored for regular grids, which have a spatial struc-

ture and are high-dimensional. There is no straightforward

way to adapt existing designs to our setting, i.e., spatial

points without regular spatial structure. A naive idea is to

adapt coordinate-based networks (e.g., [31, 32]), but they

fail to capture detailed geometric features. For example,

Fig. 4 shows the limitations of using standard MLPs and

hashing grids to process sampled surface points. Our net-

work design is inspired by [21], where the inputs and out-

puts of all layers are standardized to have zero mean and

unit variance, resulting in improved performance. Another

key design choice is to resample the training data for each

epoch to simulate an infinite number of surface points, ap-

proximating the underlying geometry (see Sec. 3.3).

3.2. Inference process: forward & inverse sampling

The mapping between the Gaussian distribution and the

surface points distribution is learned via a diffusion model

Dθ(·, ·) parameterized by θ. In the literature of diffusion

models, Dθ(·, ·) is often called a denoiser. We first discuss

the inference process: θ is known after training, satisfying

the ordinary differential equation (ODE):

dx =
x−Dθ(x, t)

t
dt, (1)

where x is the 3D position of some sample.

Solving x(t) from Eq. (1) over t ∈ [0, T] gives the tra-

jectory of sample x. This trajectory connects the Gaussian

distribution and the Geometry distribution: x(0) ∼ ΦM
and x(T) ∼ N (0, T · 1) i.e., a Gaussian distribution with

variance T , satisfying

lim
T→∞

x(T)√
1 + T 2

∼ N (0,1). (2)

We refer to the sampling process from the Gaussian distri-

bution x(T) to Geometry distribution x(0) as the forward

sampling (denoted as E), and the reverse process, from Ge-

ometry distribution x(0) to Gaussian distribution x(T), as

the inverse sampling (denoted as D). The forward and in-

verse sampling follow the same trajectory but in opposite

1498

TRAINING LEVEL EMBED INPUT EMBED MIDDLE BLOCK FINAL BLOCK

Level

B × 1

Noise

B × 3

Mesh

B × 3
⊕⊗

INPUT EMBLEVEL EMB

MID BLOCK

...

MID BLOCK

FINAL BLOCK

B × 3

Level

MPFourier

MPLinear

MPSiLU

LevelEmb

To all blocks

Input

PointEmb

MPLinear

InputEmb

To block0

LevelEmb InputEmbi

Normalize

MPSiLU

MPLinear

⊗

MPSiLU

MPLinear

MPAdd

MPLinear

+1

InputEmbi+1

LevelEmb InputEmbd

Normalize

MPSiLU

MPLinear

⊗

MPSiLU

MPLinear

MPLinear

+1

Output

Figure 7. Network overview. Left: the training process. Right: detailed illustration of the modules. The magnitude-preserving (MP) layers

are adpated from [21].

directions. In practice we choose discrete timesteps (noise

levels) to sample on the trajectory [20], i.e., T = t0 > · · · >
ti > ti+1 > · · · > tN = 0, and denote xi := x(ti).

Forward sampling E . Starting from x0, a random Gaus-

sian noise, i.e., x0 = x(t0) = Tn where n ∼
N (0,1), we iteratively compute the following steps for

i = 0, 1, · · · , N − 1:

xi+1 = xi + (ti+1 − ti) ·
xi −Dθ(xi, ti)

ti
, (3)

which is an Euler solver for the Eq. (1). The endpoint of the

trajectory xN lie on the target surfaceM, i.e., xN ∼ ΦM.

Eq. (3) has built a mapping from the standard Gaussian dis-

tributionN (0,1) to Geometry distribution ΦM: if we sam-

ple an infinite number of samples from the standard Gaus-

sian distribution, the set of endpoints of their trajectories

following Eq. (3) would closely approximate the surface

M. See Fig. 5 and Fig. 6 for some examples. In prac-

tice, we employ a higher-order ODE solver to accelerate

the sampling process [20], but for simplicity and clarity, we

only show the equations for the simplest case.

Inverse sampling D. Starting from a random surface

point xN ∈ M, we reverse the trajectory, i.e., iteratively

Algorithm 1 Inverse Sampling

1: procedure INVERSE SAMPLING(x, ti∈{N,...,0})

2: xN = x

3: for i ∈ {N,N − 1, . . . , 1} do

4: di = (xi −Dθ(xi, ti)) /ti
5: xi−1 = xi + (ti−1 − ti) · di

6: end for

7: n = x0/
√

1 + t20
8: end procedure

compute for i = N,N − 1, · · · , 1:

xi−1 = xi + (ti−1 − ti) ·
xi −Dθ(xi, ti)

ti
. (4)

The endpoint x0, after normalization x0 ← x0/
√
1+T 2 lies

in the noise space according to Eq. (2). See Algorithm 1

for the full algorithm and Fig. 14 for one example of in-

verse sampling. In practice, the inversion process starts

from tN = 0, which causes the denominator in Eq. (4) to be

zero. To avoid numerical issues, we instead set tN = 10−8.

3.3. Training process & network design

Given the input geometryM, we first generate the training

set by sampling a set of surface points {x ∈ M}. Follow-

ing [20], we add noise to the data y = x+ σn where σ in-

dicates the noise level, and optimize the denoiser network:

argmin
θ

Ex∈MEn∼N (0,1)Eσ>0∥Dθ(x+σn, σ)−x∥, (5)

Our network is simple yet effective: the noise levels σ, stan-

dard Gaussian noise n, and input coordinates {x} are pro-

jected to high-dimensional space following [54]. See Fig. 7

for full details of our network design and Fig. 8 for an ex-

ample of the training process.

Recall that our goal is to have the learned geometry dis-

tribution to accurately approximate the target surface from

an infinite number of Gaussian samples. To simulate this,

we require a training dataset with an infinite number of

surface points. In practice, we resample a set of 225 sur-

face points for training before each epoch. Over 1000

epochs, the network encounters a sufficiently large num-

ber of ground-truth surface points. This approach is funda-

mentally different from typical deep learning applications,

where the training set is preprocessed and fixed prior to

training. In our setting, however, the training datasets—i.e.,

surface points—are intentionally varied across epochs.

1499

k = 0 k = 10 k = 20 k = 100 k = 200 k = 1000

0.003

0.004

0.005

0 1000

k = 0 k = 10 k = 20 k = 1000

epochs

Figure 8. Training process. We show the Chamfer distance

over epochs and highlight intermediate results (bottom). By the

10-th epoch, the network already captures the overall geometry,

with finer details further refined in later iterations, as seen in the

zoomed-in hand region (top).

4. Experiments

4.1. Implementation

The code is implemented with PyTorch. For most experi-

ments, we use 6 blocks and C = 512 for all linear layers,

resulting in 5.53 million parameters. One epoch (512 itera-

tions) of training takes approximately 2.5 minutes to com-

plete on 4 A100 GPUs. Training typically requires several

hours to achieve reasonably good results. Fig. 8 shows one

example of training quality over epochs.

To quantify the accuracy of our approach, we measure

the distance between samples from our Geometry distribu-

tion, Xgen, and the ground-truth surfaceM. Specifically, we

sample 1 million surface points from M, denoted as Xref,

as the reference set. We then compute the Chamfer distance

between the two sets, Xgen and Xref, as our metric.

In the following we will investigate multiple applica-

tions of our novel shape representations, ablate our design

choices and verify the correctness of the inversion.

4.2. Applications

We can generate a varying number of samples from the ge-

ometry distribution for surface remeshing at different reso-

lutions. In Fig. 9, we use the Ball Pivoting algorithm [3],

implemented in MeshLab [9], with default parameters, to

triangulate the samples at different resolutions. Note that

this example also illustrates the effectiveness of our method

in representing non-watertight surfaces, where most im-

plicit function-based methods would fail.

Geometry distributions can be further extended to in-

corporate additional information such as color or motion.

n = 1K n = 2K n = 20K n = 200K

reconstructed mesh in different resolution n ground-truth

i = 40 i = 45 i = 47 i = 50 i = 64

Figure 9. Application: remeshing. Top: starting from a Gaussian

distribution, we show the intermediate steps at different timesteps

t. Bottom: we use Ball Pivoting to reconstruct a mesh. The number

n indicates the number of points used in the reconstruction. Since

our method supports infinitely many points sampling, we show

results obtained using different number n. The more points we

have, the better we can approximate the original surface. The mesh

is taken from [23].

Fig. 10 shows an example of feeding the texture color in ad-

dition to the 3D position of each surface point during train-

ing (i.e., the x in Eq. (5) is 6-dim). Fig. 11 shows an al-

ternative approach: a separate color field network based on

hashing grids [31] is trained, allowing the querying of color

vectors for all spatial points. See more results of textured

geometry distributions in the supplementary materials.

Furthermore, the sampled points can serve as inputs for

Gaussian splatting [22], as shown in Fig. 12. Specifically,

we sample 1 million points from the distribution to initial-

ize the Gaussian splatting, disabling point gradients and

point pruning in the original implementation during train-

ing. This optimization assigns colors, radius, and scaling to

the points, and can be used for novel view synthesis.

Finally, we show an extension to dynamic geometries

(4D objects), achieved by adding a temporal input to the

denoiser network Dθ, making the inputs 4D. The trained

network encodes the motions of the geometry distributions.

See one example in Fig. 13.

4.3. Ablation studies

Using distributions to model a surface shows advantages

over vector field-based methods [8, 47, 58] which usually

fail to produce uniform sampling: as shown in Fig. 3, even

at extremely high resolutions with 1 million samples, their

samples fail to adequately cover the target surface. More

results can be found in the supplementary materials.

As mentioned earlier, adapting well-established diffu-

sion models from tasks involving regular grid data to our

1500

i = 0 i = 40 i = 48 i = 56 i = 60 i = 64 zoom-in at i = 64 ground-truth

Figure 10. Application: textured geometry. The proposed representation can also be used for textured geometry. Left: 1 million points

with texture (6-dimensional vectors) at different timesteps t. Right: the ground-truth geometry and texture.

n = 250K n = 500K

n = 1, 000K n = 2, 000K

Figure 11. Application: combination with color field network.

We show results of different numbers of points.

Figure 12. Application: photo-realistic rendering with Gaus-

sian splatting. These views are not visible during training.

setting, which focuses on learning geometry distributions,

may seem straightforward but proves challenging. We com-

pare our network with two established architectures. The

first is hashing grids [31], originally designed for volume

rendering with 3-dimensional coordinate inputs. We adapt

it to accept 4-dimensional inputs (3 for coordinates and 1 for

noise level). The second is a simple MLP network based

on DeepSDF [32], where we concatenate point and noise

level embeddings as inputs. As shown in Tab. 2a, our pro-

posed network significantly outperforms these straightfor-

ward adaptions. While the Chamfer distance for the MLP-

baseline appears promising, the qualitative results in Fig. 4

reveal that this baseline fails to capture fine details.

Consistent with observations in other diffusion models,

we find that a larger training set, more sampling steps, and

Figure 13. Application: dynamic object modeling. We use a

single network to learn the motion of the geometry distribution.

Only 4 out of 250 frames are shown here.

network

arch

Chamfer ↓

(×103)

Hashing Grid 4.133

MLP 2.647

Proposed 2.140

(a) tested on Loong shape

dataset

size

Chamfer ↓
(×103)

105 4.696

106 3.004

107 2.936

108 2.917

≈ ∞ 2.916

(b) tested on jellyfish shape

sampling

steps

Chamfer ↓

(×103)

8 9.803

16 2.814

32 2.782

64 2.780

(c) tested on Archimedes shape

network

blocks

Chamfer ↓
(×103)

2 3.784

4 3.565

6 3.547

8 3.546

10 3.544

(d) tested on lamp shape

Table 2. Ablation studies on network architecture, dataset size,

sampling steps, and network blocks, tested on shapes from Fig. 1.

deeper networks lead to higher accuracy and improved gen-

eration quality. We provide ablation studies in Tab. 2 to

validate these findings. Moreover, although both types of

distributions work effectively, we observe that the Gaussian

distribution performs slightly better than the uniform distri-

bution in most cases, as shown in Tab. 3.

4.4. Inversion

As discussed in Sec. 3.2, our network learns the trajectory

connecting the Gaussian distribution and the Geometry dis-

1501

✲ ✲

Inverse Sampling D Sampling E

Figure 14. Inverse sampling D and sampling E for 1M points. Both inverse sampling and sampling are using N = 64 steps. Note that, the

image in the middle is the noise space, where it does not look like a Gaussian distribution. This implies that the mapping is not bijective.

Some points in the noise space will never be mapped to from the shape space.

object Wukong lamp lion Parthenon

Uniform 2.845 3.574 3.734 7.621

Gaussian 2.715 3.538 3.246 7.295

Table 3. Ablation study on using Uniform and Gaussian distribu-

tions as initial noise sources. We report Chamfer distance (×103)

on different shapes from Fig. 1.

Inversion Steps 4 8 16 32 64

MSE ↓ 6.88e−1 8.52e−2 6.14e−3 1.84e−4 1.76e−6

Table 4. Mean squared error of ∥x− E ◦ D(x)∥22 with different

inversion steps, evaluated on the mouse shape in Fig. 14.

tribution. The forward and inverse sampling follow this tra-

jectory in opposite directions. In other words, for a sur-

face point-i.e., a sample drawn from Geometry distribution

x ∼ ΦM-the composition of inverse and forward sampling

applied to this sample should also follow the Geometry dis-

tribution: E ◦ D(x) ∼ ΦM. To validate this, we sample 1

million surface points, denoted as {x}, and apply inverse

sampling, following Eq. (4), to obtain a set of Gaussian

noise samples {D(x)}. We then apply forward sampling

on {D(x)}, following Eq. (3), to obtain {E ◦ D(x)}. Fi-

nally, we evaluate the mean squared error (MSE) between

{x} and {E ◦ D(x)}, as they are in one-to-one correspon-

dence. In Fig. 14 we show intermediate results from the

inverse and forward sampling. We can see that indeed both

the initial samples (leftmost) and the results after composi-

tion (rightmost) align with the Geometry distribution. Tab. 4

reports the MSE for different choices of inversion steps.

In Fig. 15, we apply inverse sampling to the original surface

vertices with the ground-truth triangulation and texture co-

ordinates, to demonstrate that our inversion is semantically

meaningful. In the supplementary materials we show ad-

ditional interesting results: we composite inverse sampling

and forward sampling from different surfaces, yet still ob-

tain expected results. This further demonstrates the validity

of our method.

i = 0 i = 8 i = 15 i = 20 i = 64

Figure 15. We use the inversion D(·) to map the spot mesh back

to the noise space. Only the original mesh vertices are mapped;

textures shown here are for correspondence purposes only.

5. Conclusion

We have introduced a novel geometric data representation

that addresses key limitations of traditional methods, such

as watertightness and manifold constraints. Our approach

models 3D surfaces as geometry distributions encoded in a

diffusion model, allowing flexible and precise sampling on

complex geometries. This work advances neural 3D repre-

sentation techniques and establishes a foundation for further

exploration and development in geometry modeling, pro-

cessing, and analysis.

As a first attempt in this field, there are many exciting

avenues for future research. We just highlight selected ex-

amples but hope that our initial presentation motivates oth-

ers to explore this shape representation. First, the training

of diffusion models builds a trajectory between the Gaus-

sian distribution and the geometry distribution, which can

be interpreted as a mapping between two distributions. We

propose to investigate how to incorporate regularizers into

this mapping during training, such as area/volume preserva-

tion or semantic meaningfulness. Second, we are also inter-

ested in exploring how to define neural geometry operators

on geometry distributions, similar to the well-investigated

geometry processing operators on triangle meshes [1, 4].

Third, we have shown some preliminary meshing results

in Fig. 9. However, meshing is generally a challenging

problem requiring precise algorithms to convert spatial data

into graphs (vertices and faces). An interesting avenue of

research is to investigate joint sampling and meshing algo-

rithms for the proposed representation.

1502

Acknowledgements

This work was supported by funding from King Abdullah

University of Science and Technology (KAUST) — Center

of Excellence for Generative AI, under award number 5940.

References

[1] Noam Aigerman, Kunal Gupta, Vladimir G Kim, Siddhartha

Chaudhuri, Jun Saito, and Thibault Groueix. Neural jaco-

bian fields: Learning intrinsic mappings of arbitrary meshes.

arXiv preprint arXiv:2205.02904, 2022. 8

[2] Saifullahi Aminu Bello, Shangshu Yu, Cheng Wang, Jib-

ril Muhmmad Adam, and Jonathan Li. Deep learning on 3d

point clouds. Remote Sensing, 12(11):1729, 2020. 2

[3] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier,

Cláudio Silva, and Gabriel Taubin. The ball-pivoting algo-

rithm for surface reconstruction. IEEE transactions on visu-

alization and computer graphics, 5(4):349–359, 1999. 6

[4] Mario Botsch. Polygon mesh processing. AK Peters, 2010.

2, 8

[5] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur

Szlam, and Pierre Vandergheynst. Geometric deep learning:

Going beyond euclidean data. IEEE Signal Processing Mag-

azine, 34(4):18–42, 2017. 2

[6] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun

Hao, Serge Belongie, Noah Snavely, and Bharath Hariharan.

Learning gradient fields for shape generation. In Computer

Vision–ECCV 2020: 16th European Conference, Glasgow,

UK, August 23–28, 2020, Proceedings, Part III 16, pages

364–381. Springer, 2020. 3

[7] Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and

Hao Zhang. Neural dual contouring. ACM Transactions on

Graphics (TOG), 41(4):1–13, 2022. 3

[8] Julian Chibane, Gerard Pons-Moll, et al. Neural unsigned

distance fields for implicit function learning. Advances in

Neural Information Processing Systems, 33:21638–21652,

2020. 3, 6

[9] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Mat-

teo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia.

MeshLab: an Open-Source Mesh Processing Tool. In Euro-

graphics Italian Chapter Conference. The Eurographics As-

sociation, 2008. 6

[10] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson.

On the effectiveness of weight-encoded neural implicit 3d

shapes. arXiv preprint arXiv:2009.09808, 2020. 3

[11] Yuan Dong, Qi Zuo, Xiaodong Gu, Weihao Yuan, Zhengyi

Zhao, Zilong Dong, Liefeng Bo, and Qixing Huang. Gpld3d:

Latent diffusion of 3d shape generative models by enforc-

ing geometric and physical priors. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 56–66, 2024. 3

[12] Venkataram Edavamadathil Sivaram, Tzu-Mao Li, and Ravi

Ramamoorthi. Neural geometry fields for meshes. In ACM

SIGGRAPH 2024 Conference Papers, pages 1–11, 2024. 3

[13] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Hein-

rich Müller. Splinecnn: Fast geometric deep learning with

continuous b-spline kernels. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

869–877, 2018. 2

[14] Xianfeng Gu, Steven J Gortler, and Hugues Hoppe. Geome-

try images. In Proceedings of the 29th annual conference on

Computer graphics and interactive techniques, pages 355–

361, 2002. 3

[15] Yanran Guan, Andrei Chubarau, Ruby Rao, and Derek

Nowrouzezahrai. Learning neural implicit representations

with surface signal parameterizations. Computers & Graph-

ics, 114:257–264, 2023. 3

[16] Benoit Guillard, Federico Stella, and Pascal Fua. Meshudf:

Fast and differentiable meshing of unsigned distance field

networks. In European Conference on Computer Vision,

pages 576–592. Springer, 2022. 3

[17] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,

and Mohammed Bennamoun. Deep learning for 3d point

clouds: A survey. IEEE transactions on pattern analysis and

machine intelligence, 43(12):4338–4364, 2020. 2

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-

fusion probabilistic models. Advances in neural information

processing systems, 33:6840–6851, 2020. 3

[19] Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. Neural

wavelet-domain diffusion for 3d shape generation. In SIG-

GRAPH Asia 2022 Conference Papers, pages 1–9, 2022. 3

[20] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.

Elucidating the design space of diffusion-based generative

models. Advances in neural information processing systems,

35:26565–26577, 2022. 3, 5

[21] Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten,

Timo Aila, and Samuli Laine. Analyzing and improving the

training dynamics of diffusion models. In Proc. CVPR, 2024.

4, 5

[22] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,

and George Drettakis. 3d gaussian splatting for real-time

radiance field rendering. ACM Trans. Graph., 42(4):139–1,

2023. 3, 6

[23] Maria Korosteleva and Sung-Hee Lee. Generating datasets

of 3d garments with sewing patterns. arXiv preprint

arXiv:2109.05633, 2021. 6

[24] Marc Levoy and Turner Whitted. The use of points as a dis-

play primitive. 1985. 3

[25] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximil-

ian Nickel, and Matt Le. Flow matching for generative mod-

eling. arXiv preprint arXiv:2210.02747, 2022. 3

[26] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and

Christian Theobalt. Neural sparse voxel fields. Advances

in Neural Information Processing Systems, 33:15651–15663,

2020. 2

[27] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow

straight and fast: Learning to generate and transfer data with

rectified flow. arXiv preprint arXiv:2209.03003, 2022. 3

[28] Shitong Luo and Wei Hu. Diffusion probabilistic models for

3d point cloud generation. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition,

pages 2837–2845, 2021. 3

1503

[29] Julien NP Martel, David B Lindell, Connor Z Lin, Eric R

Chan, Marco Monteiro, and Gordon Wetzstein. Acorn:

Adaptive coordinate networks for neural scene representa-

tion. arXiv preprint arXiv:2105.02788, 2021. 3

[30] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3d reconstruction in function space. In Proceedings

of the IEEE/CVF conference on computer vision and pattern

recognition, pages 4460–4470, 2019. 3

[31] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a mul-

tiresolution hash encoding. ACM transactions on graphics

(TOG), 41(4):1–15, 2022. 2, 3, 4, 6, 7

[32] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. Deepsdf: Learning con-

tinuous signed distance functions for shape representation.

In Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pages 165–174, 2019. 3, 4,

7

[33] Dmitry Petrov, Pradyumn Goyal, Vikas Thamizharasan,

Vladimir Kim, Matheus Gadelha, Melinos Averkiou, Sid-

dhartha Chaudhuri, and Evangelos Kalogerakis. Gem3d:

Generative medial abstractions for 3d shape synthesis. In

ACM SIGGRAPH 2024 Conference Papers, pages 1–11,

2024. 3

[34] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and

Markus Gross. Surfels: Surface elements as rendering primi-

tives. In Proceedings of the 27th annual conference on Com-

puter graphics and interactive techniques, pages 335–342,

2000. 3

[35] Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth,

Sanja Fidler, and Francis Williams. Xcube: Large-scale 3d

generative modeling using sparse voxel hierarchies. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 4209–4219, 2024. 3

[36] Danilo Rezende and Shakir Mohamed. Variational inference

with normalizing flows. In International conference on ma-

chine learning, pages 1530–1538. PMLR, 2015. 3

[37] Barbara Roessle, Norman Müller, Lorenzo Porzi,

Samuel Rota Bulò, Peter Kontschieder, Angela Dai,

and Matthias Nießner. L3dg: Latent 3d gaussian diffusion.

arXiv preprint arXiv:2410.13530, 2024. 3

[38] J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner,

Jiajun Wu, and Gordon Wetzstein. 3d neural field generation

using triplane diffusion. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 20875–20886, 2023. 3

[39] Vincent Sitzmann, Julien Martel, Alexander Bergman, David

Lindell, and Gordon Wetzstein. Implicit neural representa-

tions with periodic activation functions. Advances in neural

information processing systems, 33:7462–7473, 2020. 3

[40] Jiaming Song, Chenlin Meng, and Stefano Ermon.

Denoising diffusion implicit models. arXiv preprint

arXiv:2010.02502, 2020. 3

[41] Yang Song and Stefano Ermon. Generative modeling by esti-

mating gradients of the data distribution. Advances in neural

information processing systems, 32, 2019. 3

[42] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel

grid optimization: Super-fast convergence for radiance fields

reconstruction. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages 5459–

5469, 2022. 2

[43] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten

Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson,

Morgan McGuire, and Sanja Fidler. Neural geometric level

of detail: Real-time rendering with implicit 3d shapes. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 11358–11367, 2021. 3

[44] Aoran Xiao, Jiaxing Huang, Dayan Guan, Xiaoqin Zhang,

Shijian Lu, and Ling Shao. Unsupervised point cloud rep-

resentation learning with deep neural networks: A survey.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 45(9):11321–11339, 2023. 2

[45] Bojun Xiong, Si-Tong Wei, Xin-Yang Zheng, Yan-Pei Cao,

Zhouhui Lian, and Peng-Shuai Wang. Octfusion: Octree-

based diffusion models for 3d shape generation. arXiv

preprint arXiv:2408.14732, 2024. 3

[46] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge

Belongie, and Bharath Hariharan. Pointflow: 3d point cloud

generation with continuous normalizing flows. In Proceed-

ings of the IEEE/CVF international conference on computer

vision, pages 4541–4550, 2019. 3

[47] Xianghui Yang, Guosheng Lin, Zhenghao Chen, and Luping

Zhou. Neural vector fields: Implicit representation by ex-

plicit learning. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 16727–

16738, 2023. 3, 6

[48] Lior Yariv, Omri Puny, Oran Gafni, and Yaron Lipman.

Mosaic-sdf for 3d generative models. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 4630–4639, 2024. 3

[49] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli,

and Olga Sorkine-Hornung. Differentiable surface splatting

for point-based geometry processing. ACM Transactions on

Graphics (TOG), 38(6):1–14, 2019. 3

[50] Wang Yifan, Lukas Rahmann, and Olga Sorkine-Hornung.

Geometry-consistent neural shape representation with im-

plicit displacement fields. arXiv preprint arXiv:2106.05187,

2021. 3

[51] LAN Yushi, Shangchen Zhou, Zhaoyang Lyu, Fangzhou

Hong, Shuai Yang, Bo Dai, Xingang Pan, and Chen Change

Loy. Gaussiananything: Interactive point cloud flow match-

ing for 3d generation. In The Thirteenth International Con-

ference on Learning Representations. 3

[52] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Goj-

cic, Or Litany, Sanja Fidler, and Karsten Kreis. Lion: La-

tent point diffusion models for 3d shape generation. arXiv

preprint arXiv:2210.06978, 2022. 3

[53] Biao Zhang and Peter Wonka. Functional diffusion. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 4723–4732, 2024. 3

[54] Biao Zhang, Matthias Nießner, and Peter Wonka. 3dilg: Ir-

regular latent grids for 3d generative modeling. Advances

in Neural Information Processing Systems, 35:21871–21885,

2022. 5

1504

[55] Biao Zhang, Jiapeng Tang, Matthias Nießner, and Peter

Wonka. 3DShape2VecSet: A 3d shape representation for

neural fields and generative diffusion models. ACM Trans.

Graph., 42(4), 2023. 3

[56] Bowen Zhang, Yiji Cheng, Jiaolong Yang, Chunyu Wang,

Feng Zhao, Yansong Tang, Dong Chen, and Baining Guo.

Gaussiancube: Structuring gaussian splatting using opti-

mal transport for 3d generative modeling. arXiv preprint

arXiv:2403.19655, 2024. 3

[57] Xin-Yang Zheng, Hao Pan, Peng-Shuai Wang, Xin Tong,

Yang Liu, and Heung-Yeung Shum. Locally attentional sdf

diffusion for controllable 3d shape generation. ACM Trans-

actions on Graphics (ToG), 42(4):1–13, 2023. 3

[58] Junsheng Zhou, Baorui Ma, Shujuan Li, Yu-Shen Liu, Yi

Fang, and Zhizhong Han. Cap-udf: Learning unsigned dis-

tance functions progressively from raw point clouds with

consistency-aware field optimization. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2024. 3, 6

[59] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation

and completion through point-voxel diffusion. In Proceed-

ings of the IEEE/CVF international conference on computer

vision, pages 5826–5835, 2021. 3

[60] Qingnan Zhou and Alec Jacobson. Thingi10k: A

dataset of 10,000 3d-printing models. arXiv preprint

arXiv:1605.04797, 2016. 4

[61] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and

Markus Gross. Surface splatting. In Proceedings of the

28th annual conference on Computer graphics and interac-

tive techniques, pages 371–378, 2001. 3

1505

