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A person walks forward in a straight line
His legs moves in fast pace.

His hands swing back and forth

(a) Text-to-motion Retrieval (b) Text-to-motion Generation (c) Text-Motion Editing             (d) Motion Trajectory Control
Rank 1 Rank 2

A person takes a couple of steps, then pivots 
on left leg to turn around and walks back

A person takes a couple of steps, then pivots on 
right leg to turn around and walks back

Figure 1. We present KinMo, a method that achieves fine-grained motion understanding for (a) effective text-motion retrieval, and text-
aligned motion (b) generation, (c) editing, and (d) trajectory control on local kinematic body parts.

Abstract

Current human motion synthesis frameworks rely on global
action descriptions, creating a modality gap that limits both
motion understanding and generation capabilities. A single
coarse description, such as “run”, fails to capture details
such as variations in speed, limb positioning, and kinematic
dynamics, leading to ambiguities between text and motion
modalities. To address this challenge, we introduce KinMo,
a unified framework built on a hierarchical describable mo-
tion representation that extends beyond global actions by
incorporating kinematic group movements and their inter-
actions. We design an automated annotation pipeline to
generate high-quality, fine-grained descriptions for this de-
composition, resulting in the KinMo dataset and offering
a scalable and cost-efficient solution for dataset enrich-
ment. To leverage these structured descriptions, we pro-
pose Hierarchical Text-Motion Alignment that progressively
integrates additional motion details, thereby improving se-
mantic motion understanding. Furthermore, we introduce
a coarse-to-fine motion generation procedure to leverage
enhanced spatial understanding to improve motion synthe-
sis. Experimental results show that KinMo significantly im-
proves motion understanding, demonstrated by enhanced
text-motion retrieval performance and enabling more fine-
grained motion generation and editing capabilities. Project
Page: https://andypinxinliu.github.io/KinMo
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1. Introduction
Controlling human motion through natural language is a
rapidly expanding area within computer vision, enabling in-
teractive systems to generate or modify 3D human motions
based on textual input. This technology has a wide range
of applications, including robotics[16], digital avatar[13,
18, 45], and automatic animation [20, 44, 50, 62, 63],
where human-like motion is crucial for user interaction
and immersion. Despite efforts to generate general mo-
tion [9, 38, 42, 47, 52, 60], fine-grained control over in-
dividual body parts remains largely an unsolved challenge.
Current models are proficient in producing coherent whole-
body movements from global action descriptions but strug-
gle when tasked with controlling local body parts indepen-
dently. This limitation prevents them from achieving preci-
sion and adaptability for real-world applications.

Recent advances [14, 36] have introduced more refined
approaches by incorporating controllability into motion
generation. However, these models are limited to process-
ing simple instructions and lack the compatibility required
for scenarios where multiple body parts must coordinate to
perform complex actions. Similarly, generative models for
motion synthesis [9, 38] present innovative methods but do
not directly address the issue of controlling specific body
parts with specific textual descriptions.

This challenge stems from the inherent ambiguity of mo-
tion text descriptions in existing datasets. For example,
multiple phrases (such as pick up an object from the ground
and bend down to reach something) can describe the same
motion. In contrast, a single term (such as running) can en-
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compass a wide range of variations, depending on factors
such as speed, arm movement, or direction. This many-to-
many mapping problem [24] hinders existing models from
handling the multiplicity of natural language or motions,
often resulting in inconsistent or unnatural outcomes when
trying to generate or edit specific body parts.

To solve this problem, we introduce a novel motion rep-
resentation based on six fundamental kinematic compo-
nents: torso, head, left arm, right arm, left leg, and right
leg. Unlike existing methods that treat the body as a whole,
our approach explicitly models each component and its in-
teractions, enabling a more detailed representation of global
action through localized body movements. For instance, a
sneaking motion should involve coordinated torso and leg
movement, while the arms are used for balance. Based
on this, we propose a kinematic-aware formulation that
opens new possibilities for text-motion understanding, fine-
grained motion generation, and editing. Building on this
insight, we propose a kinematic-aware formulation, which
enables improved text-motion understanding, fine-grained
motion generation, and editing capabilities.

To achieve this, we reformulate existing motion repre-
sentations and enhance the widely used HumanML3D [8]
dataset by introducing a semi-supervised annotation sys-
tem that enriches motion data with body-part-specific de-
scriptions, forming our KinMo dataset. We investigate
the retrieval capability of these body-part-specific descrip-
tions, demonstrating that our proposed Hierarchical Text-
Motion Alignment effectively integrates these semantics to
further enhance text-motion understanding. In addition, we
demonstrate how this enhanced understanding benefits mo-
tion generation by extending the MoMask [9] model to sup-
port fine-grained body-part generation and editing, enabling
greater control and manipulation of motion sequences. Our
contributions can be summarized as follows:

1. We introduce KinMo, a novel framework that decom-
poses human motion through a three-level hierarchy:
global actions, local kinematic groups, and group in-
teractions. This hierarchical representation significantly
bridges the gap between text and motion. We further
develop a semi-supervised annotation pipeline for gen-
erating our dataset.

2. We propose a Hierarchical Text-Motion Alignment
method that leverages enriched textual descriptions by
progressively encoding them and integrating hierarchi-
cal semantics. This approach enhances retrieval capabil-
ities, showing notable improvements in semantic motion
understanding within spatial contexts.

3. We extend Motion Generation process into a coarse-
to-fine procedure, which enhances motion understanding
by transitioning from global actions to joint groups and
their interactions. This supports various generative and
editing applications with fine-grained control.

2. Related Work
Text-to-Motion Understanding. Similar to other modal-
ity alignments [21, 23, 54, 58], alignment/retrieval between
text and motion modalities is the key indicator of motion un-
derstanding. PoseScript [4] uses fine-grained text descrip-
tions to represent various human poses. MotionCLIP [51]
and TMR [35] enhance the alignment from single poses to
motion sequences. MotionLLM [2] creates a large corpus
of Motion-QA for text-motion understandings. However,
these methods only focus on global action descriptions, ig-
noring the extent of local kinematic movements, which are
essential for alignment and motion understanding.
Text-to-Motion Generation. Diffusion Models have been
the main trend for various modalities [5, 11, 12, 17, 26–
29, 31] and demonstrated notable success in motion genera-
tion [22, 52, 60]. T2M-GPT [59] and MotionGPT [40] rep-
resent motions as discrete tokens and leverage autoregres-
sive models to improve motion generation quality. Masking
Motion Models [9, 23, 38] further improve motion genera-
tion quality with a bidirectional masking mechanism.

Large Language Models (LLMs) have empowered var-
ious understanding and generation with fine-grained con-
trol [19, 48, 49]. LGTM [46] and FG-MDM [43] use LLMs
to generate additional texts to describe local motions to as-
sist the generation process. Although these methods par-
tially focus on fine-grained local motion control, they can-
not address the core ambiguity problem between the two
modalities. To address this problem, we take a step further
in reformulating a linguistically describable motion repre-
sentation from global actions to groups and interactions.
Trajectory Control and Editing. Diffusion-based mod-
els [1, 52, 60] can perform zero-shot editing by infilling
specific joints. TLControl [56], OmniControl [57], and
CoMo [14] can control arbitrary joints at any time by com-
bining spatial and temporal control together. However, none
of these methods adopt a fine-grained approach that allows
local editing while ensuring overall motion compatibility.

3. Kinematic-aware Human Motion
In this section, we first introduce the core principle of
KinMo, which bridges the gap between text and motion by
linearly transforming motions into linguistically describ-
able representations in 3D space (Sec. 3.1). We then
propose an LLM-based pipeline to annotate these repre-
sentations and present the Kinematic-aware Motion-Text
(KinMo) dataset (Sec. 3.2). Additionally, we propose an
alignment method to achieve spatial understanding given
the enriched textual descriptions (Sec. 3.3).

3.1. Describable Motion Representations
Existing Motion Representations. Current text-motion
alignment research [8, 9, 34, 35, 37, 38] represents motion
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Figure 2. KinMo Framework. Left: We extract pose descriptions of the keyframes and feed them into an LLM to produce group- and
interaction-level descriptions, which generate KinMo dataset together with original motion sequences and global action texts. Right: We
apply encoders with the same architecture (brown) to process the features of global action, group-level descriptions, and interaction-level
descriptions extracted from a pretrained model (blue: emb). The cross-attention layer (purple) is employed to combine embeddings of
different levels to enable hierarchical representation learning, with contrastive learning at each level for modality alignment.

as the time evolution of each body joint j ∈ J of the
human body, characterized by its position pj(t), axis-
angle rotation relative to its parent in the kinematic tree
rj(t), and relative angular velocity vj(t) with respect to
the center joint.1 However, this representation is hard
to describe in natural language. Besides, global action
descriptions struggle to represent local movements. To
solve this problem, we create an intermediate repre-
sentation of a motion that is explicitly describable in
natural language. Specifically, we reformulate motion
representations by organizing joints into a set of kine-
matic groups following kinematic tree, defined as G =
{Torso, Neck, Left Arm, Right Arm, Left Leg, Right Leg},
where each group g ∈ G consists of joints Jg ⊆ J .
Kinematic-Group Representations. For each group g at
time t, we define the Group Position Pg(t) as the average
position pj(t) of the joints within that group:

Pg(t) =
1

|Jg|
∑
j∈Jg

pj(t). (1)

We then define the Limb Angles Θg(t) as the collection of
joint rotations rj(t) within the group, and the Group Veloc-
ity Vg(t) as the average velocity vj(t) of the joints:

Θg(t) = {rj(t) | j ∈ Jg}, Vg(t) =
1

|Jg|
∑
j∈Jg

vj(t).

(2)
Group-Interaction Representations. Human motion also
involves the relationships between each pair of groups
(g, h) ∈ G×G.∆Pg,h(t)

∆Θg,h(t)
∆Vg,h(t)

 =

 Ph(t)−Pg(t)
Θh∩g(t)

Vh(t)−Vg(t);vh∩g(t)

 , (3)

1W.l.o.g. we omit some boundary conditions, e.g., foot contact and cen-
ter joint selection, as they do not affect the core conclusions. The supple-
mentary document (Appendix G) shows a detailed computation of existing
motion representations.

where ∆Pg,h(t) denotes the difference in position,
∆Θg,h(t) represents the angles at the connecting joint (if
exists), and ∆Vg,h(t) is the relative angular velocity and
the angular velocity at the connecting joint (if exists) be-
tween two groups.

The proposed formulation of motion representations is
a linear transformation of the existing formulation used in
current text-motion alignment methods [9, 34, 35, 37, 38]
and can be transformed back to existing representations,
as detailed in Appendix G. Additionally, our formulation
is inherently compatible with natural language descrip-
tions, capturing both the movements of individual kinematic
groups and their interactions. With this formulation, the
key task is to annotate our proposed linguistically describ-
able motion representations to collect textual descriptions
of kinematic groups and group interactions.

3.2. KinMo Dataset
Kinematic-aware Joint-Motion Text Annotation. Good
annotations of the proposed motion representations must
capture both spatial and temporal details of each kinematic
group and their interactions. We employ a two-step LLM-
based strategy to ensure high-quality automatic annotation,
as shown in Fig. 2. Using this strategy, we enhance the Hu-
manML3D dataset [8] with fine-grained annotations.

Spatial-Temporal Motion Processing. A motion consists
of a sequence of pose frames over time. Existing human
motion understanding models [2, 8, 40] struggle to capture
subtle local movements due to the complex interplay of spa-
tial and temporal dynamics. To address this, we propose a
two-stage disentanglement approach, first resolving spatial
dynamics and then temporal dynamics.

To extract detailed spatial information, we adopt Pos-
eScript [4] to generate annotations for each pose frame, cap-
turing precise angular rotations of joints for any given hu-
man pose. To obtain fine-grained temporal information, we
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propose a keyframe selection pipeline. We use sBERT [39]
to extract embeddings for the per-frame pose descriptions.
We assess the similarity of poses across the time frames by
calculating the cosine similarity between text embeddings.
If the cosine similarity falls below a user-defined threshold,
we label that frame as a keyframe. The pose differences
within each kinematic group over a specified time window
are used to approximate local temporal motions during that
period.
Semi-supervised Annotation. We then design an auto-
matic annotator using GPT-4o-mini [32] to generate tex-
tual descriptions of kinematic groups and their interactions
based on keyframe pose annotations. To refine the prompt,
two human evaluators iteratively assess and improve the an-
notation process. We begin by randomly sampling 20 pre-
processed motion sequences and using GPT-4o-mini to in-
fer textual descriptions based on keyframe pose annotations.
The two evaluators independently review the generated de-
scriptions, documenting errors made by the LLM. These in-
sights are then fed back into the model to refine the prompt
design. This iterative process continues until the evaluators
reach a consensus, achieving a kappa statistic above 0.8. At
this point, we ensure that subsequent LLM-generated de-
scriptions for the remaining dataset align with our objec-
tives. Additional details on the text prompt and example
descriptions can be found in Appendix B.

In summary, the KinMo dataset provides three types of
descriptions for each motion: 1) Global action descriptions;
2) Spatial and temporal per-group descriptions of the move-
ment and dynamics of each kinematic group g; 3) Spa-
tial and temporal per-group-pair descriptions of the rela-
tive movements and dynamics between each pair of kine-
matic groups h and g. We will refer to them as global
action descriptions (Tc), group-level descriptions (Tg), and
interaction-level descriptions (Ti), respectively.

3.3. Hierarchical Text-Motion Alignment (HTMA)
Existing text-motion alignment methods typically encode
global actions and parse additional descriptions directly [15,
43, 61], which limits spatial understanding. Rich contextual
dependencies and explicit positional relationships among
descriptions make it challenging to capture high-quality se-
mantics when directly encoding additional descriptive lev-
els [24, 64]. Instead, we propose a hierarchical framework
that first encodes the global action as coarse embeddings
and then progressively incorporates group- and interaction-
level descriptions to refine the embeddings, achieving hier-
archical alignment, as illustrated in Figure 2.
Modality Encoders. To align motion and text modalities,
we follow TMR [35] to map textual descriptions and mo-
tion into a shared co-embedding space. Motion and text
encoders are Transformer-based [55] with additional learn-
able distribution parameters, as in the VAE-based ACTOR

model [33]. We follow a probabilistic approach that utilizes
two prefix tokens for each text or motion sequence to learn
the (µ,Σ) of a Gaussian distribution N , from which a latent
vector z ∈ Rd is sampled.

Motion sequences are processed directly by the mo-
tion encoder. For the textual inputs, we first extract text
features from a pre-trained and frozen RoBERTa [25] or
DistilBERT [41] to obtain global action, group-level, and
interaction-level text descriptions, and then encode these
features with cross-attention in a hierarchical process:

hc = Ec

(
emb(Tc)

)
, (4)

hg = Eg

(
CrossAttn(emb(Tg),hc)

)
, (5)

hi = Ei

(
CrossAttn(emb(Ti),hg)

)
, (6)

where emb(·) represents a pre-trained RoBERTa or Distil-
BERT model for feature extraction, and Ec,g,i are the VAE-
based ACTOR models used as text encoders for each level.
CrossAttn(·, ·) denotes a single cross-attention layer with
a residual connection. The cross-attention mechanism al-
lows each level to build upon previous embeddings, creat-
ing progressively refined semantic embeddings. The group-
level embeddings incorporate global action, while the
interaction-level embeddings incorporate the group-level.
Contrastive Learning. We use contrastive learning to align
the embeddings of motion and text modalities in each hi-
erarchy [35]. For simplicity, we denote any level of text
and motion pair as (zT , zM ), T ∈ {Tc, Tg, Ti} . For a
batch of N positive pairs (zT1 , z

M
1 ), . . . , (zTN , zMN ), any pair

(zTi , z
M
j ) where i ̸= j is considered a negative sample. The

similarity matrix S computes the pairwise cosine similari-
ties for all pairs in the batch, defined as Sij = cos(zTi , z

M
j ).

We apply an InfoNCE loss [54], as follows:

LNCE =
−1

2N

∑
T

∑
i

(
log

expSii/τ∑
j expSij/τ

+ log
expSii/τ∑
j expSji/τ

)
,

(7)

where τ represents a temperature parameter.
To maximize the proximity between the two modalities,

we follow TMR [35] to construct a weighted sum of 3
losses: (a) Kullback–Leibler divergence loss LKL, (b) cross-
modal embedding similarity loss LE, and (c) motion recon-
struction loss LR for each semantic hierarchy.

4. Motion Understanding and Generation
KinMo framework provides new insight into motions. By
bridging the gap between text and motion through our pro-
posed motion representations and alignment method, we
will show how KinMo achieves motion understanding2 and

2Since motion understanding currently lacks diverse downstream tasks,
with only text-motion retrieval widely used, our claim of motion under-
standing may be an overstatement. Here, we specifically explore its impact
on text-motion retrieval.
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Figure 3. Motion Retrieval and Generation. Left: Overview of Text-to-Motion Retrieval, where we compute the similarity matrix
defined between text and motion embeddings. Here, we present a batch of three samples with an example. To retrieve the most similar
motion to the 2nd text Tc2 , we use Motion Reasoner to generate corresponding group- and interaction-level descriptions, producing aligned
embeddings µT (c;g;i)

2 . We then check the similarity matrix against the motion embeddings, where S32 has the highest value, indicating that
the 3rd motion is the closest match to the 2nd text. Right: Given a global action, Motion Reasoner generates group- and interaction-level
descriptions. The aligned text embeddings at each level are prepended to the motion tokens and collectively fed into the motion generator
through a coarse-to-fine generation process. Editing can be performed on the texts either before or after the Motion Reasoner stage. HTMA
Text/Motion Encoder (Sec. 3.3) aligns text and motion into a shared embedding space to obtain their respective aligned representations.

generation, as well as downstream applications (Sec. 5.4).
Motion Reasoner. Our goal is to generate group- and
interaction-level descriptions based on global action inputs.
We finetune LLaMA-3 [6] on the KinMo Dataset to serve
as a motion reasoner. The model is trained using the stan-
dard next-token prediction loss, with an added conditioning
on global action Tc to output the corresponding group-level
descriptions Tg and interaction-level descriptions Ti:

Lreasoner = −
N∑
i=1

yi log(ŷi|Tc, T<i), (8)

where yi and ŷi represent the ground truth and predicted to-
kens at position i, respectively. T<i denotes the previously
generated tokens. This loss encourages the model to gener-
ate motion descriptions at different granularity levels.
Text Alignment. Given the additional descriptions of Mo-
tion Reasoner, we obtain their corresponding text embed-
dings µc, µg, µi based on hierarchical text encoders from
Sec. 3.3 for various applications.

4.1. Text-Motion Retrieval
As shown in Fig. 3, for a given motion M and its corre-
sponding text descriptions Tc, Tg, Ti, the mean token of the
output motion parameters µM

j serves as aligned motion em-
bedding, while the mean token of the output text parame-
ters µT (c;g;i)

i = [µc;µg;µi] acts as aligned text embedding
in the co-embedding space at different hierarchical levels.
For retrieval, we directly compare these embeddings, iden-
tifying the best match by maximizing the cosine similarity
between motion and text embeddings.

4.2. Coarse-to-Fine Motion Generation
For motion generation, we adopt MoMask [9] as the base
architecture. Specifically, a VQ-VAE [53, 59] is trained to

convert a motion sequence into discrete tokens. Then, given
a text Tc prepended to the discrete motion tokens as input
condition, a Transformer-based generator is trained with a
masking-based strategy for token generation. The gener-
ated token will be used to query VQ-VAE to generate mo-
tions. To incorporate KinMo into the existing motion gen-
eration framework, we leverage Motion Reasoner to output
group-level Tg and interaction-level Ti descriptions given
input global action descriptions and then encode them into
µc, µg, µi. In addition, we propose a coarse-to-fine genera-
tion procedure conditioned on the text hierarchy.

Hierarchical Generation. As shown in Fig. 3, we extend
MoMask [9] from generation under condition CLIP(Tc),
into condition µc, µg, µi, which are aligned embeddings
of [Tc;Tg;Ti], through a coarse-to-fine generation process.
Specifically, after the initial motion tokens are generated
conditioned on µc, they will be re-fed into the generator
to output intermediate tokens conditioned on µg. Then, the
intermediate tokens are re-fed into the generator to produce
the final tokens conditioned on µi. The final tokens are used
to query motions into a trained VQ-VAE. For efficiency, the
generator shares weights with the same logit classification
loss functions that were used to reconstruct motion tokens
for the three levels of text conditioning. Other configura-
tions are the same as in MoMask [9].

5. Experiments

We conduct experiments on the motion-text benchmark
dataset, HumanML3D [8], which collects 14,616 motions
from AMASS [30] and HumanAct12 [7] datasets, with
each motion described by 3 text scripts, totaling 44,970
descriptions. We adopt their pose representation and aug-
ment the dataset using mirroring, followed by a 80/5/15
split for training, validation, and testing, akin to previous
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Original: A person walks forward fast, uses right hand to reach forward, then turns around and walks back

KinMo (Ours)                                      MoMask MMM                                                 STMC 

Original: A person leans his upper body and steps forward, trying to balance himself

Edited: A person leans his upper body forward with both arms behind him, trying to balance himself

Edited: A person walks forward fast, then squats down to pick something up, then turns around and walks back

Time axes

Time axes
Figure 4. Comparisons with different methods for two original and edited text descriptions from HumanML3D test set. Unlike
previous methods, our results match the input text descriptions better and show the ability to edit specific body parts.

Table 1. Text-to-motion retrieval benchmark on HumanML3D. Evaluation protocols with decreasing difficulty from (a) to (d).

Protocol Methods Text-motion retrieval Motion-text retrieval
R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓

(a) All TEMOS [34] 2.12 4.09 5.87 8.26 13.52 173.0 3.86 4.54 6.94 9.38 14.00 183.25
HumanML3D [8] 1.80 3.42 4.79 7.12 12.47 81.00 2.92 3.74 6.00 8.36 12.95 81.50
TMR [35] 5.68 10.59 14.04 20.34 30.94 28.00 9.95 12.44 17.95 23.56 32.69 28.50
Ours (distilbert) 8.13 14.16 19.69 27.07 39.18 18.00 9.29 15.51 20.61 28.29 40.25 18.00
Ours (RoBERTa) 9.05 15.23 20.47 28.62 41.60 16.00 9.01 15.92 21.42 29.50 41.43 16.00

(b) All with threshold TEMOS [34] 5.21 8.22 11.14 15.09 22.12 79.00 5.48 6.19 9.00 12.01 17.10 129.0
HumanML3D [8] 5.30 7.83 10.75 14.59 22.51 54.00 4.95 5.68 8.93 11.64 16.94 69.50
TMR [35] 11.60 15.39 20.50 27.72 38.52 19.00 13.20 15.73 22.03 27.65 37.63 21.50
Ours (distilbert) 10.82 18.49 25.33 33.89 46.54 12.00 12.25 19.69 24.98 32.70 44.04 14.00
Ours (RoBERTa) 11.39 19.18 25.73 34.76 47.94 12.00 11.65 19.54 25.45 33.67 45.08 14.00

(c) Dissimilar subset TEMOS [34] 33.00 42.00 49.00 57.00 66.00 4.00 35.00 44.00 50.00 56.00 70.00 3.50
HumanML3D [8] 34.00 48.00 57.00 72.00 84.00 3.00 34.00 47.00 59.00 72.00 83.00 3.00
TMR [35] 47.00 61.00 71.00 80.00 86.00 2.00 48.00 63.00 69.00 80.00 84.00 2.00
Ours (distilbert) 45.73 62.80 70.73 79.88 90.85 2.00 46.95 62.80 70.12 82.93 91.46 2.00
Ours (RoBERTa) 57.73 78.35 81.44 86.60 90.72 1.00 63.92 80.41 82.47 87.63 90.72 1.00

(d) Small batches [8] TEMOS [34] 40.49 53.52 61.14 70.96 84.15 2.33 39.96 53.49 61.79 72.40 85.89 2.33
HumanML3D [8] 52.48 71.05 80.65 89.66 96.58 1.39 52.00 71.21 81.11 89.87 96.78 1.38
TMR [35] 67.16 81.32 86.81 91.43 95.36 1.04 67.97 81.20 86.35 91.70 95.27 1.03
Ours (distilbert) 72.28 85.42 90.15 94.01 97.09 1.00 72.21 85.19 90.00 94.42 97.04 1.00
Ours (RoBERTa) 72.88 85.54 89.91 93.46 96.68 1.00 73.00 85.64 90.17 93.70 96.49 1.00

work [9, 38]. Our KinMo dataset is built on this dataset with
each motion described by 6 group-level and 15 interaction-
level descriptions scripts in accordance with human kine-
matics (see Sec. 3.2). An example is presented in the sup-
plementary material (Appendix B), along with additional
details on dataset collection. All experiments are performed
in such settings, as shown in Fig. 3.

5.1. Text-Motion Retrieval
We first evaluate whether the introduction of group- and
interaction-level motion descriptions reduces any ambigu-
ity for the text-motion retrieval problem and improves the
overall motion understanding.
Evaluation Metrics. We adopt TMR settings [35] to mea-
sure retrieval performance using recall scores at various
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Table 2. Comparison of text-to-motion generation on HumanML3D. For each metric, we repeat the evaluation 20 times and report the
average with 95% confidence interval. The right arrow (→) indicates that the closer the result is to real motion, the better.

Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑Top-1 ↑ Top-2 ↑ Top-3 ↑
Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

MDM [52] 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

GuidedMotion [15] 0.503±.002 0.691±.002 0.788±.002 0.057±.006 3.040±.012 9.864±.077 2.473±.096

KP [24] 0.496 - - 0.275 - 9.975 2.218
FG-MDM [43] 0.374±.003 0.582±.003 0.709±.005 0.618±.009 5.274±.048 9.563±.0.097 -
FineMoGen [61] 0.504±.002 0.690±.002 0.784±.002 0.151±.008 2.998±.008 9.263±.094 2.696±.079

MotionLCM [3] 0.504±.002 0.698±.003 0.796±.002 0.304±.003 3.012±.007 9.634±.064 2.267±.082

ParCo [64] 0.515±.003 0.706±.003 0.801±.002 0.109±.005 2.927±.008 9.576±.088 1.382±.060

MMM [38] 0.504±.003 0.696±.003 0.794±.002 0.080±.003 2.998±.007 9.411±.058 1.164±.041

MoMask [9] 0.521±.002 0.713±.002 0.807±.002 0.045±.003 2.958±.008 9.678±.052 1.241±.040

Ours (CLIP) 0.529±.003 0.722±.002 0.817±.002 0.050±.003 2.907±.009 9.684±.063 1.313±.041

Ours (HTMA) 0.532±.002 0.724±.003 0.821±.003 0.039±.003 2.901±.010 9.674±.058 1.321±.039
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Figure 5. User Study. We generate 80 videos for each method to
assess Realness, T2M Alignment, and Overall Impression.

ranks (e.g., R@1, R@2) and the median rank (MedR) of our
results. MedR represents the median ranking position of the
ground-truth result, with lower values indicating more pre-
cise retrievals. The four evaluation protocols used in our ex-
periments are outlined below: (i) All uses the complete test
dataset, though similar negative pairs can affect precision;
(ii) All with threshold sets a similarity threshold of 0.8 to de-
termine accurate retrievals; (iii) Dissimilar subset uses 100
distinctly different sampled pairs measured by sBERT [39]
embedding difference; and (iv) Small batches evaluates per-
formance on random batches of 32 motion-text pairs.
Evaluation Results. We benchmark KinMo against [8, 34,
35]. In Tab. 1, our model outperforms existing baselines,
particularly in setting (a). This improvement is primarily
due to our annotated descriptions, which help to resolve
ambiguities in action-level text-motion correspondence. By
providing finer-grained details, our approach enhances the
discrimination of motions with subtle local movement dif-
ferences but similar global action descriptions. Our pro-
posed formulation and annotations contribute significantly
to motion understanding by capturing intricate local move-
ment details throughout the motion sequence. Motion un-
derstanding can be further enhanced using RoBERTa [25]
as a stronger text encoder for additional descriptions.

5.2. Text-Motion Generation
Evaluation Metrics. We adopt (1) FID [10] as an overall
motion quality metric to measure the difference between

Table 3. Comparisons with other methods. Motion Generation
with CLIP-embed additional texts as conditions of MoMask.

Method FID↓ R-Prec(Top 3)↑ MM-Dist ↓ MModality ↑
MoMask(base) 0.045 0.807 2.958 1.241

MoMask+LGTM 0.057 0.801 2.963 1.123
MoMask+FinMoGen 0.062 0.799 2.998 1.223

Ours+Parco (2-group) 0.077 0.793 3.232 1.101
Ours (MoMask+KinMo) (6-group) 0.050 0.817 2.907 1.313

generated and real motion distributions; (2) R-Precision (R-
Prec) and multimodal distance (MM-Dist) to quantify the
semantic alignment between text and generated motions;
and (3) Multimodality (MModality) to assess the diversity
of motions generated from the same text, as in T2M [8].
Evaluation Settings. To present a fair comparison, we con-
sider each T2M method as the whole system. For KinMo,
we apply a different random seed during inference. Motion
Reasoner generates the group- and interaction-level motion
descriptions based on the provided global action descrip-
tions and feeds them into the generator.
Evaluation Results. Tab. 2 compares KinMo with various
methods for T2M generation [3, 9, 15, 24, 34, 38, 43, 52,
60, 61, 64]. Our method attains the best motion generation
quality with the highest text alignment score (R-Prec and
MM-Dist). Thanks to the introduction of explicit group-
and interaction-level descriptions, we observe that KinMo
generates better aligned motions for any given dense and
fine-grained text descriptions shown in Fig. 4, while other
baseline methods fail to capture local body part movements.
User Study. To assess the quality of our results, we conduct
a user study involving 20 participants and 320 samples, 80
from KinMo, MoMask [9], MMM [38], and STMC [37],
respectively. Each participant was presented the video clips
in a random order and asked to rate the results between 1
(lowest) and 5 (highest) based on (1) realness, (2) correct-
ness of text-motion alignment, and (3) overall impression.
Fig. 5 shows that, unlike other baseline methods, KinMo
achieves higher Mean Opinion Scores (MOS) overall.
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(a) Tc (b) Tc + Tg (c) Tc + Tg + Ti (d) Ground truth

A man bends his knees in a squatting motion while holding a bar over his shoulders with both hands

Figure 6. Additional Descriptions resolve the ambiguity of motion generation. We create motion using (a) only global action, (b) global
+ group-level descriptions, and (c) global, group-level, and interaction-level descriptions, and compare them with (d) the ground truth.

Table 4. Effect of Additional Descriptions for Text-Motion
Alignment. Different strategies for incorporating descriptions
generated by Motion Reasoner on motion- and text-retrieval tasks.

Motion Text-motion retrieval Motion-text retrieval
Semantic R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓

global 3.67 7.17 10.32 40.00 8.08 11.56 17.23 38.00
+ group 7.58 13.16 16.97 22.00 8.58 14.51 19.21 21.00

+ interact 9.05 15.23 20.47 16.00 9.01 15.92 21.42 16.00
- cross 7.63 13.13 16.94 22.00 8.60 14.54 19.21 21.00

Table 5. Effect of Hierarchical Text-Motion Alignment. Com-
parisons are conducted for Motion Generator with RQ base layer.

Embedder Global Joint Inter FID↓ R-Prec(Top 3)↑ MM-Dist ↓ MModality ↑

CLIP
✓ – – 0.115 0.499 2.999 1.221
✓ ✓ – 0.096 0.503 2.953 1.308
✓ ✓ ✓ 0.098 0.512 2.912 1.308

HTMA
✓ – – 0.056 0.512 2.969 1.232
✓ ✓ – 0.051 0.525 2.911 1.292
✓ ✓ ✓ 0.044 0.527 2.904 1.305

5.3. Ablation Study
Effect of Additional Descriptions generated by Motion
Reasoner at each level. Tab. 4 summarizes several
strategies for incorporating text-motion alignment: (1) only
global action (global), (2) + group-level (+ group), (3)
+ group + interaction-level (+ interact), and (4) without
cross-attention (- cross). We observe that adding extra de-
scriptions generated by Motion Reasoner enhances motion
understanding. Cross-attention improves the connectivity
of descriptions from different hierarchy levels. As shown
in Fig. 6, both group- and interaction-level descriptions are
beneficial for resolving global action ambiguity and gener-
ating local body parts (e.g., the hands and arms in the fig-
ure). Refer to Appendix D for further analysis of the order
of the different descriptions and additional design choices.
Effect of Hierarchical Text-Motion Alignment (HTMA).
We provide additional quantitative results and comparisons
for various text encoders. As demonstrated in Tab. 5, the
CLIP encoder, as used in previous work [9, 38], shows su-
perior text-motion alignment after complete training. Our
HTMA method enhances motion smoothness and natural-
ness, as evident by a significantly lower FID. For the mo-
tion generation procedure, it can be seen that both of these
text encoders benefit from our coarse-to-fine generation ap-
proach. Further analysis of training is given in Appendix D.
Text Granularity and Motion Decomposition. Several

methods, including LGTM [46], FG-MDM [43], and Fin-
MoGen [61], employ LLMs to generate supplementary mo-
tion descriptions to improve generation. KinMo formulates
the generated supplementary descriptions using insight of
motion components (position, angle, velocity) with natural
language to enhance text-motion alignment. We validate
this advantage via quantitative experiments (Tab. 3) and
ensure fairness using MoMask as the generator across all
methods, with only additional descriptions replaced. More-
over, we compare with ParCo [64] which decomposes mo-
tion into 2 parts (upper and lower body) as opposed to our
proposed 6 parts based on kinematic knowledge. KinMo
outperforms these approaches, indicating that (1) the for-
mulated text descriptions, instead of random ones, improve
model performance and (2) the proposed linguistically de-
scribable motion representation based on kinematic parts
(Sec 3.1) and corresponding descriptions are necessary.

5.4. Applications
Text-to-Motion Editing. Motion Reasoner enables precise
action-level edits (e.g., changing running to jumping) or lo-
cal joint adjustments (e.g., slightly raising the hands). Our
method uses a coarse-to-fine approach, assisted by a mask-
ing mechanism, to perform these edits at varying levels of
granularity. Please refer to Appendix D for evaluation.
Motion Trajectory Control. We employ ControlNet [57]
to condition the motion generator using the provided trajec-
tory of the target joint during the generation, with the de-
scriptions adjusted by the Motion Reasoner. We defer the
technical details to Appendix C.

6. Conclusion
We present KinMo, a framework that represents human
motion as kinematic parts movements and interactions,
thereby enabling fine-grained text-to-motion understand-
ing, generation, editability, and control. Our method pro-
gressively encodes global actions with kinematic descrip-
tions and leverages these descriptions to achieve enhanced
alignment and understanding, thus generating coarse-to-fine
motions. The KinMo dataset is publicly available to the
scientific community. Extensive comparisons with state-
of-the-art methods show that KinMo improves text-motion
alignment and body part control.
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