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Figure 1. StableDepth achieves efficient online monocular depth estimation that produces scene-consistent and scale-invariant predictions
frame by frame. As shown in the above challenging scenarios, StableDepth generates stable depth maps with precise geometric details and
effectively handles dynamic motions, without the need of accessing future frames.

Abstract

Recent advances in monocular depth estimation signif-
icantly improve robustness and accuracy. However, rela-
tive depth models exhibit flickering and 3D inconsistency
in video data, limiting 3D reconstruction applications.
We introduce StableDepth, a scene-consistent and scale-
invariant depth estimation method achieving scene-level 3D
consistency. Our dual-decoder architecture learns from
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large-scale unlabeled video data, enhancing generalization
and reducing flickering. Unlike previous methods requir-
ing full video sequences, StableDepth enables online in-
ference at 13x faster speed, achieving significant improve-
ments across benchmarks with comparable temporal con-
sistency to video diffusion-based estimators.

1. Introduction

Monocular Depth Estimation (MDE) [12, 45] is pivotal in
bridging the gap between 2D and 3D data representation,
serving critical roles in a wide range of downstream applica-


https://stabledepth.github.io

tions, such as autonomous driving [51], robotics [54], med-
ical imaging [32], and virtual reality [13]. Advancements
in foundational models [35, 43] have greatly enhanced the
accuracy and robustness of MDE [25, 56]. Despite these ad-
vances, the intrinsic ambiguity of monocular cues still poses
substantial challenges, particularly for downstream applica-
tions that require 3D-consistent data and maintaining stabil-
ity for uncontrolled in-the-wild data.

MBDE is primarily categorized into two main task set-
tings: relative depth estimation and metric depth esti-
mation. Relative depth estimation, as explored in stud-
ies [15, 18, 25, 39, 56], involves predicting depth values
within a normalized depth range of [0, 1]. This scale- and
shift-invariant regression target facilitates robust joint train-
ing across diverse data domains. However, the predicted
depth values differ from the actual depth due to scale and
shift discrepancies, leading to inconsistency across video
frames. This inconsistency can complicate advanced down-
stream tasks like 3D reconstruction. In contrast, metric
depth estimation [4, 22, 37, 59] aims to predict physical
distances in metric scale. However, these approaches face
significant challenges. Scaled versions of a scene’s depth
values might all represent plausible depth estimations of the
actual depth. Such ambiguity complicates the learning pro-
cess of depth regression, hindering both generalization ca-
pabilities and precise 3D structures. Severe flickering and
3D inconsistency are also observed given video inputs. This
challenge prompts us to reconsider what is an effective rep-
resentation of MDE foundation models.

The limitations of existing approaches are summarized
in Tab. 1, which compares different depth estimation
paradigms. While relative depth models [25, 39, 56] of-
fer good generalization across datasets but suffer from per-
frame inconsistency, metric depth models [4, 59] provide
real-world measurements but struggle with generalization
across diverse scenes. Scale-invariant models [20] improve
upon relative models by eliminating shift ambiguity while
maintaining scale invariance, but they still lack consistency
across frames in the same scene.

To address these challenges, we propose that the ideal
task setting should be scene-consistent and scale-invariant
(SCSI) depth estimation, as shown in Tab. 1. Our ap-
proach strikes a balance between per-frame scale-invariant
methods that lack consistency and purely metric approaches
that struggle with generalization. Specifically, our model
primarily generates scale-invariant depth maps, but in the
same scene or video, predictions across multiple frames
demonstrate 3D consistency. Additionally, the scale fac-
tors for multi-frame data remain consistent compared with
the actual depth values. In this work, the development
of our model is primarily guided by the following objec-
tives: 1) ensuring high-quality, scene-consistent, and scale-
invariant depth estimations to achieve robust video consis-
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Depth Type ‘ Scale Shift ‘ General Recons Consist
Relative Per-frame Per-frame v X X
Scale-invariant | Per-frame None v v X
Metric None None X 4 X
SCSI (Ours) ‘ Per-scene None ‘ v v v

Table 1. Comparison of different depth types. Our proposed SCSI
depth combines the strengths of relative and metric depth while
overcoming their weaknesses. General: generalization capability.
Recons: reconstruction quality. Consist: scene consistency.

tency; 2) enhancing strong generalization capabilities and
precise depth details.

Our framework introduces three key innovations to
achieve scene-consistent depth estimation. First, we lever-
age temporal priors from pre-trained video diffusion mod-
els to generate pseudo-labels with inherent 3D consistency,
replacing traditional unstable photometric constraints [3,
23, 47, 48]. Second, we design a dual-branch architec-
ture where one branch processes labeled data for metric
accuracy, while the other aligns unlabeled video frames
to pseudo-labels through scene-level normalization, decou-
pling conflicting objectives. Third, our semi-supervised
paradigm jointly optimizes metric supervision and tempo-
ral alignment, enabling the model to generalize across do-
mains while eliminating flickering artifacts. This unified
approach supports real-time inference without requiring fu-
ture frames, overcoming the limitations of both single-
frame and video-based methods.

We evaluate our model on multiple datasets under zero-
shot settings, aligning each scene using only a single
scale (SCSI). As demonstrated in Figure 1, our method
robustly handles challenging scenarios including dynamic
motions and complex textures while preserving geometric
fidelity frame-by-frame. Compared to DepthCrafter [23],
we achieve 13 faster inference speed with online process-
ing capability, improving prediction accuracy on Sintel [5],
Bonn [36], ScanNet v2 [9], and KITTI [17] by 13.2%,
86.8%, 39.3%, and 8.2%, respectively. Our contributions
are summarized as follows:

* We introduce StableDepth, a novel monocular depth es-
timation framework that achieves scene-consistent and
scale-invariant (SCSI) depth estimation, bridging the gap
between relative and metric depth prediction while main-
taining temporal consistency in video sequences.

We propose a video diffusion baking strategy that lever-
ages pre-trained video diffusion models for generat-
ing high-quality pseudo-labels, enabling effective semi-
supervised learning from unlabeled video data while pre-
serving temporal consistency.

We develop a dual-decoder architecture that simultane-
ously handles supervised metric depth estimation and un-
supervised depth alignment, effectively addressing the
target misalignment issue while maintaining accuracy.



We demonstrate state-of-the-art performance across mul-
tiple benchmarks, achieving up to 86.8% improvement in
accuracy while providing 13X faster inference compared
to previous methods. Our method enables efficient, online
inference while maintaining comparable temporal stabil-
ity to video diffusion models.

2. Related Work

Monocular depth estimation. MDE focuses on inferring
depth from a single image. Early works [8, 31, 55] learn
ordinal relationships from coarse annotations but cannot re-
cover geometric structure. Recent methods [11, 39, 56, 57]
leverage large-scale data to learn affine-invariant depth with
improved generalization. However, unknown depth shifts
cause geometric distortions, hindering 3D applications. To
address this, recent works attempt zero-shot metric depth
estimation [4, 19, 22, 37, 38, 59, 61] and explore self-
supervised scale-consistent learning [50, 60], though main-
taining consistent scale across scenes remains challenging.
Towards consistent video depth. Video depth estimation
requires both temporal consistency and per-frame preci-
sion. Traditional approaches use post-processing optimiza-
tion [27, 34] or temporal modeling [29, 49], but incur com-
putational costs or fail in dynamic scenes. Other meth-
ods leverage camera poses [46, 53] or memory-based ap-
proaches [52, 58], but often sacrifice geometric fidelity for
smoothness. Recent works like Video Depth Anything [7]
and video-free approaches [26] show promise for tempo-
ral consistency in long sequences. Video Depth Anything
freezes the Depth Anything V2 encoder and incorporates
cross-frame attention in the DPT [40] decoder for temporal
consistency, though these methods still produce depth with
inherent shift ambiguity.

Diffusion priors for depth modeling. Video diffusion
models [21, 24] demonstrate potential for consistent depth
estimation. DepthCrafter [23] achieves temporal stability
but generates only relative depths, while ChronoDepth [47]
suffers from limited temporal contexts. Our proposed SCSI
depth estimation leverages video diffusion baking and dual-
decoder architecture for temporally consistent depth suit-
able for efficient online inference.

3. StableDepth

Our work leverages both labeled images and unlabeled
video data to enhance SCSI depth predictions, achieving
video consistency and enhanced generalization capabilities
through the distillation of video diffusion priors. Formally,
we denote the sets of labeled image-depth pairs and unla-
beled videos as D! = {(z;,d;)}M, and D¥* = {v;}}¥ |, re-
spectively. Our objective is to utilize a high-quality labeled
image dataset, Hypersim [42], to help the model grasp real-
world scale, while employing unlabeled video data to guide

7071

the model’s depth predictions toward achieving video con-
sistency and improved generalization.

3.1. Mining Consistency from Unlabeled Videos

StableDepth is designed to learn from both labeled images
and unlabeled videos. For labeled image data, we predict
the depth in metric space. The activation function of the
network’s last layer is sigmoid, after which its predictions
are scaled to match the dataset values by multiplying with a
predefined maximum depth. The SiLogLoss [12, 44, 57] is
then used to minimize the error between the prediction and
the ground truth:

HW 2 HW 2
1 di 1 di
Liabel = \J W ; (log d?) - A <HVV ; log d:) )

ey
where d and d; are the prediction and ground truth, re-
spectively, and )\ is a hyper-parameter.

For unlabeled video data, we leverage video diffusion
models, specifically DepthCrafter [23], to generate pseudo-
labels due to their inherent advantages in maintaining tem-
poral consistency. These models, pre-trained on large-scale
video data with cross-frame attention mechanisms, can gen-
erate stable depth predictions across entire video segments
while preserving a consistent global scale and shift rela-
tionship with metric depth. Unlike conventional image-
based MDE approaches that process frames independently,
video diffusion models account for temporal dependencies,
making them particularly effective for generating reliable
pseudo-labels that exhibit strong video consistency - a cru-
cial property for our scene-consistent training objective. For
a video, we need a method to normalize the depth predicted
by our model to the same space as the pseudo-labeled depth.
Unlike the normalization used in single-frame relative depth
training, this approach focuses on ensuring that an entire
video has a unique scale and shift, rather than each frame
having an independent scale and shift. This method aims
to achieve video consistency in the depth predictions within
the same scene. To supervise our model, we first use the
following formula to normalize the pseudo-labels,

D(vi) —m(D(vs))
s(D(vi)) ’

D(’Ul) =

2

where D(v;) is the pseudo-label for video v;, and m(D(v;))
and s(D(v;)) are used to remove the shift and scale for this
video, respectively:

m(D(v;)) = median(D(v;)),

3
> D) - mDE).

(D)) = 7o

For the frame-by-frame depth predictions of video v;
from our model, we concatenate them to obtain P(v;) with
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Figure 2. Overview of StableDepth. StableDepth employs a shared encoder with dual decoders to process both labeled images and
unlabeled videos. The upper branch handles labeled images with direct metric depth supervision (“Sup’), while the lower branch processes
unlabeled video sequences using temporal-coherent pseudo-labels generated by pre-trained video diffusion priors [23] (“Bake”). This
architecture enables scene-consistent and scale-invariant (SCSI) depth prediction by combining the benefits of metric depth supervision
with temporal consistency learning from video sequences. Solid arrows indicate the primary data flow, while dashed arrows represent the

auxiliary training path for unlabeled data.

dimensions [T, H, W]. We then apply the same normaliza-
tion process to the depth predictions P(v;) to obtain its nor-
malized version P(v;). For P(v;) and D(v;), we use the
following alignment loss to minimize their difference,

1 THW
»Cunlabel = m Z

=1

P(v;) — D(v;)] . 4)

In one iteration, we simultaneously sample a certain pro-
portion of labeled images and unlabeled videos for joint
training, and use the following combined loss as the final
loss for this iteration:

L= Elabel + ’Y»Cunlabela (5)

where ~y gradually increases following a cosine curve as the
number of iterations progresses.

3.2. Avoiding Conflict in Depth Labels

In the field of video consistency for depth prediction, most
research [23] focuses on improving video consistency in
near-field scenes. Therefore, we use depth in the disparity
space for video data training.

Following the previous network structure [2, 39, 56, 57],
we use the ViT-L encoder [10], denoted as &, paired with
the decoder from DPT [40], denoted as D;. The decoder
outputs depth in SCSI space with a range of (0, 1). A natu-
ral approach is to utilize this original decoder to predict the
disparity-space depth of a video sequence, and then take the
reciprocal of the predictions. Specifically, the depth predic-
tion P(v;) is given by:

Plg) = —— ©)
Y DiE(vi)
Finally, the depth predictions are normalized and supervised
in semi-supervised settings following Eq. 3 and 4.
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Unfortunately, in our experiments, we found that al-
though this modification improves the video consistency
of depth predictions for videos, it reduces the accuracy of
depth prediction by the model, resulting in lower metrics
such as §;. We speculate that this is mainly due to the used
pseudo-labeling model [23], which, despite having good
video consistency, still lags behind Depth Anything V2 [57]
in terms of depth prediction accuracy, particularly in the
prediction of distant objects. To address this issue, we pro-
pose to use an auxiliary network to decouple the prediction
and supervision of labeled images and unlabeled videos. To
this end, we experimented with two approaches:

In the first approach, both labeled images and unla-
beled videos share the encoder £ and the decoder D;. A
lightweight CNN network, denoted as C, is used to directly
process the prediction results of the original decoder D;,
with the CNN network outputting depth in disparity space:

P(vi) = C(D1(E(vi)))- ©)

In the second approach, labeled images and unlabeled
videos share the encoder £. An additional DPT [40] de-
coder, denoted as D, is used to process the features ex-
tracted by the encoder £ for unlabeled videos, as illustrated
by Fig. 2. D, directly produces depth in disparity space,
while D; continues to output depth in SCSI space.

P(Z‘l) = Dl(é’(xz)), P(’Uz) = Dg(é’(vz)) (8)

The final results indicate that sharing the encoder be-
tween labeled images and unlabeled videos, while using two
independent DPT decoders, achieves the best accuracy and
video consistency.

3.3. Scene-Consistent Depth Evaluation

Scale alignment. For zero-shot evaluation, we enforce
single-scale consistency per scene through RANSAC-
based alignment with zero shift constraint. Each scene’s



predictions are scaled by a unified factor determined
through 1,000 sampling iterations, retaining inliers with
dfli;jd, djf:d) < 7, where T 1.25. The opti-
mal scale is refined via least-squares optimization over
all inliers, preserving geometric fidelity while eliminating
cross-frame scale ambiguity. This per-scene single-scale
paradigm ensures coherent depth relationships across dy-
namic sequences without per-frame adjustments.
Motion-aware temporal metric. We propose the Motion-
aware Temporal Difference (MTD) to quantify depth con-
sistency in dynamic regions:

max

T—1
1 Douy |AD - W,
MTD*T—ltzz:l HxWwW ’ ©)
where AD; = Dy — Dy 1 and Wy(z,y) = (1 + ||f;]]2) !

weights the depth variations by optical flow magnitude f;
(computed via Farneback [14] algorithm). Lower MTD
indicates better temporal stability, penalizing flickering in
high-motion areas.

3.4. Discussion

In this section, we address several important aspects of our
approach to provide further clarity on methodology, design
choices, and relationships to existing work.

Decouple accuracy and consistency via dual learning.
Our dual-decoder architecture decouples depth accuracy
from temporal consistency learning, enabling joint opti-
mization from diverse data sources. The primary decoder
specializes in per-pixel depth precision through supervised
training on high-quality labeled images, while the auxiliary
decoder learns scene-level coherence from unlabeled videos
via pseudo-labels. This separation resolves the inherent
conflict where video-based methods like DepthCrafter [23]
sacrifice depth accuracy for temporal smoothness, and
single-frame approaches fail to ensure cross-frame consis-
tency. Crucially, our design preserves absolute depth scales
critical for 3D reconstruction, unlike relative-depth repre-
sentations in video diffusion models.

Beyond video diffusion priors. We repurpose video
diffusion models as sources for scene consistency rather
than as direct depth estimators. = While models like
DepthCrafter [23] excel at generating temporally consis-
tent sequences, they produce relative depth representations
with limited accuracy, particularly for distant objects, mak-
ing them unsuitable for downstream tasks requiring precise
geometry. Our approach extracts the temporal consistency
knowledge from these models through scene-level normal-
ization while maintaining superior depth accuracy. This
strategy enables online inference 13x faster than video-
based methods while achieving both better depth precision
and comparable temporal stability.
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4. Experiment

4.1. Implementation Details

Network parameters and training details. We use the
network architecture from Depth Anything V2 (DAv2) [57],
consisting of a pre-trained ViT-L [10] encoder for feature
extraction and a DPT [40] decoder for depth regression. The
ViT-L encoder is initialized with parameters from the DAv2
model, while the primary decoder is randomly initialized
with Sigmoid activation for metric depth output. The aux-
iliary decoder, also initialized randomly, uses ReLLU acti-
vation for disparity (inverse depth) prediction. Each batch
consists of a 1:2 ratio of labeled images to unlabeled video
frames, totaling 24 frames. The learning rate for the encoder
is 2.5 x 1079, while the decoder’s learning rate is 10 times
larger. We use the AdamW optimizer [33] with a weight
decay of 0.01 and employ a polynomial decay schedule for
the learning rate. For data augmentation, we apply hori-
zontal flipping to labeled images. In Eq. (5), the maximum
value of ~y is set to 1. In Eq. (1), A is set to 0.5.

Training dataset and pseudo-labeling. To train our model,
we utilize DepthCrafter [23], a model finetuned on SVD [3],
to generate video-consistent pseudo-labels for unlabeled
video data. For metric depth supervision, we use Hy-
persim [42], a high-quality synthetic dataset with ~60K
frames, as training data for decoder D;. We select 6,000
videos from SA-V [41], which features dynamic foreground
objects, yielding approximately ~200K frames for pseudo-
labeling training. To enhance the model’s performance on
distant scenes where DepthCrafter shows limitations, we
incorporate additional datasets with accurate depth labels
including VKITTI2 [6, 16], LightwheelOcc [30], and Ma-
trixCity [28], treating frames from the same scene as video
sequences during training.

4.2. Evaluation

Evaluation datasets. We evaluate on four datasets span-
ning diverse scenarios: Sintel [5] (23 synthetic videos, 50
frames each with precise depth labels), Bonn [36] (26 dy-
namic videos using frames 30-140 with foreground mo-
tions), ScanNet v2 [9] (100 indoor test videos sampled ev-
ery third frame), and the full KITTI validation set [17]
(13 outdoor driving videos with first 110 frames per se-
quence). This comprehensive benchmark covers synthetic
animations, dynamic interactions, static indoor scenes, and
real-world autonomous driving environments.

Quantitative results. We evaluate our method against
strong baselines: DepthCrafter [23], known for video con-
sistency, Metric3D [59], a state-of-the-art metric depth es-
timator, and ZoeDepth [1], a robust monocular depth esti-
mation method. For fair comparison, we align all predic-
tions within each video using a single shared scale factor
across the entire scene with shift set to zero. As shown in



Sintel (~50 frames) Bonn (110 frames) ScanNet (90 frames) KITTI (110 frames)

Frame Method
Interval AbsRel () 61(T) AbsRel(]) d1(1) AbsRel(]) d1(f) AbsRel(]l) d1(T)
DepthCrafter [23] 2.959 0.545 0.311 0.524 0.370 0.661 0.123 0.832
1 Zoedepth [1] 0.454 0.356 0.277 0.562 0.347 0.436 0.216 0.633
Metric3D [59] 0.372 0.610 0.055 0.981 0.059 0.974 0.067 0.977
StableDepth (Ours) 0.280 0.617 0.063 0.979 0.094 0.921 0.112 0.900
DepthCrafter [23] 6.353 0.393 0.515 0417 0.539 0.440 0.244 0.670
4 Zoedepth [1] 0.461 0.357 0.277 0.563 0.349 0.436 0.218 0.629
Metric3D [59] 0.361 0.617 0.055 0.981 0.059 0.974 0.067 0.977
StableDepth (Ours) 0.292 0.606 0.063 0.979 0.093 0.921 0.112 0.901
DepthCrafter [23] 2.048 0.398 0.495 0.412 0.571 0.423 0.241 0.656
8 Zoedepth [1] 0.470 0.357 0.276 0.562 0.352 0.434 0.218 0.633
Metric3D [59] 0.363 0.613 0.055 0.980 0.060 0.973 0.066 0.977
StableDepth (Ours) 0.300 0.604 0.062 0.980 0.094 0.920 0.112 0.902

Table 2. Comparison of depth estimation methods across different frame intervals. StableDepth maintains consistent performance
across varying frame intervals while achieving superior accuracy. Best results are shown in bold, second best are underlined. Metric3D
results on ScanNet are shown in gray as it was trained on this dataset.

Method Bonn ScanNet
AbsRel (}) 01 (1) AbsRel (}) 61 (D)
Baseline 0.071 0.946 0.102 0.903
DPT 0.109 0914 0.126 0.861
DPT + CNN 0.108 0.926 0.138 0.829
Dual DPT 0.057 0.976 0.097 0.913

Table 3. Ablation on decoders. The baseline model is trained
only on labeled image data. We compare three approaches for
handling unlabeled video data: using a single DPT decoder with
reciprocal output (DPT), adding a lightweight CNN head (DPT +
CNN), and using dual DPT decoders (Dual DPT).

Tab. 2, our method achieves superior performance across
most datasets and metrics, with particularly strong improve-
ments in AbsRel and §; metrics compared to video-based
approaches. We examine the impact of frame intervals on
prediction accuracy to simulate varying temporal densities
in real-world scenarios. Note that compared to our abla-
tion studies, these results reflect extended training with ad-
ditional iterations for optimal performance.

4.3. Ablation Study

Comparison of different decoders. In Tab. 3, we com-
pare four methods using the Bonn and ScanNet v2 datasets:
training with only labeled Hypersim data, and training with
both labeled Hypersim [42] and unlabeled SA-V [41] data
processed by three decoder designs. The first row (Base-
line) shows results with only labeled Hypersim data, while
the following rows show results with both labeled and un-
labeled data. For labeled Hypersim data, depth in SCSI
space is obtained directly from the DPT head output. For
the unlabeled SA-V data, the method for obtaining dispar-
ity space depth varies: in the second row (DPT), it’s the re-
ciprocal of the original DPT output; in the third row (DPT
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+ CNN), a lightweight CNN processes the DPT output; in
the fourth row (Dual DPT), an additional DPT head pro-
vides the disparity space depth. The results show that us-
ing a single DPT head, either by reciprocating its output or
adding a lightweight CNN, reduces prediction accuracy due
to the partial inaccuracy of the pseudo-labels. However, us-
ing two independent DPT heads improves frame-to-frame
consistency without impacting accuracy, validating the ef-
fectiveness of our disentangled approach.

Encoder feature stability. We analyze encoder feature
stability across consecutive DAVIS frames to understand
our dual-decoder effectiveness. Compared to DAv2, our
method achieves 7.1% lower mean differences, 13.5% re-
duced standard deviation, and 2.3% higher cosine similar-
ity. These improvements confirm that auxiliary decoder su-
pervision enhances encoder stability, contributing to tempo-
ral consistency in depth predictions.

Effectiveness of unlabeled video data. As shown in Tab. 4,
we evaluate incremental training data impact. Using only
Hypersim [42] (row 1), then adding pseudo-labeled SA-
V [41] data (row 2) shows mixed results - improving Bonn
and ScanNet v2 but decreasing Sintel and KITTI perfor-
mance. This reveals DepthCrafter’s video consistency bene-
fits but limitations in distant regions. Progressively incorpo-
rating VKITTI2 [6, 16], LightWheel [30], Hypersim [42],
and MatrixCity [28] (rows 3-6) successfully addresses these
limitations, achieving best performance across all datasets.
Comparison of video consistency. Tab. 5 showcases the
performance comparison of depth estimation methods on
the DAVIS dataset evaluated using Motion-aware tempo-
ral Difference (MTD (Eq. (9)), lower is better). The video
diffusion-based DepthCrafter [23] achieves strong consis-
tency (MTD=0.003479) but requires processing the en-
tire video sequence and runs at only 0.45 FPS. While



Sintel (~50 frames) Bonn (110 frames) ScanNet (90 frames) KITTI (110 frames)
AbsRel (]) 61 (7)) AbsRel (|) 61 (D) AbsRel (|) 61 (D) AbsRel (]) 61 ()

Training Data

Hypersim only [42] 0.309 0.578 0.071 0.946 0.102 0.903 0.122 0.871
+ SA-V [41] 0.326 0.561 0.057 0.976 0.097 0.913 0.143 0.823
+ VKITTI2 [6, 16] 0.318 0.577 0.058 0.976 0.097 0.911 0.129 0.839
+ LightWheel [30] 0.312 0.573 0.060 0.976 0.094 0.916 0.134 0.847
+ Hypersim-U [42] 0.314 0.572 0.064 0.976 0.096 0918 0.123 0.870
+ Matrixcity [28] 0.315 0.580 0.062 0.979 0.092 0.924 0.114 0.895

Table 4. Comparison of depth estimation performance with different training data configurations. The baseline model is trained on
labeled Hypersim data only, with subsequent rows showing the cumulative effect of adding different unlabeled datasets (VKITTI2: Virtual
KITTI 2, Hypersim-U: treat Hypersim as unlabeled video data). Lower AbsRel (]) and higher §1 (1) values indicate better performance.
For each video segment, we align using only a single scale, setting the shift to zero.
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Figure 3. Ablation on the number of unlabeled video frames in _ )
each batch. From 0 to 16, more frames bring better scene-level Figure 4. Qualitative comparisons. StableDepth shows improved
consistency. (Out of memory for ViT-Large under 32 frames) robustness in handling ambiguous regions such as water surfaces

and sky boundaries while maintaining accurate depth estimation
for the main subjects (flamingo, horse) compared to DepthCrafter.

Method MTD () Video Model? Online? FPS (T) The highlighted region in DepthCrafter results shows inconsistent
DepthCrafter [23]  0.003479 v x 0.45 depth predictions in these challenging regions.

Baseline 0.003777 X v 5.77

StableDepth (Ours) 0.003482 X v 5.77 Bonn ScanNet

Data  Pretrained

AbsRel (1) 61 (1) AbsRel (1) 01 (1)
L DINOv2 0.086 0.929 0.098 0911

Table 5. Performance comparison of different depth estima-
tion methods on DAVIS dataset. MTD: Motion-aware Tempo-

ral Difference (Eq. (9)). Online: whether the method can process L DAv2 0.071 0.946 0.102 0.903
data without requiring the entire video. FPS: inference speed in L+U DINOv2 0.068 0.949 0.099 0.909
L+U DAv2 0.057 0.976 0.097 0.913

frames per second. StableDepth achieves comparable consistency
to DepthCrafter that based on heavy SVD [3], while maintaining Table 6
online capability and significantly faster inference.

Performance comparison on Bonn and ScanNet. We
compare different initialization strategies: DINOv2 pre-trained
weights vs. DAv2’s well-trained parameters. L: labeled data only;

our baseline (metric depth version of DAv2-Large) en- L+U: both labeled and unlabeled data with dual-decoder.

ables online inference at 5.77 FPS, it shows relatively

higher inconsistency (MTD=0.003777). StableDepth sig- deployment, addressing a key limitation in current depth es-
nificantly improves upon our baseline with a 7.8% reduc- timation approaches.

tion in MTD (0.003482), achieving comparable consistency Comparison of unlabeled video frames. As shown in
to DepthCrafter. Crucially, StableDepth maintains online Fig. 3, MTD scores improve steadily with more unlabeled
inference capability, processing frames independently with- video frames in each mini-batch and gradually converge at
out requiring past or future frames, and operates at 5.77 FPS 16 frames, with negligible gains beyond this point, support-
on a H20 GPU - 13 x faster than DepthCrafter. Both meth- ing our choice of 16-frame clips as an optimal trade-off.
ods were evaluated on 1920x 1080 resolution images using Comparison of different pre-trained encoders. Tab. 6
half-precision (FP16) for inference speed testing. These re- shows the effectiveness of our semi-supervised training
sults demonstrate that StableDepth successfully combines strategy on the Bonn and ScanNet datasets. We compare
strong temporal consistency with practical advantages in two initialization strategies: DINOv2 and DAv?2 pre-trained
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Figure 5. Qualitative visualizations of depth predictions across diverse scenarios. Each row pair shows an input sequence and corre-
sponding depth predictions from our method. Our approach maintains consistent depth estimation while preserving fine geometric details
across challenging cases including dynamic motions (dancer), reflective surfaces (water), and large objects (rhinoceros).

weights. With only labeled data (L), DAv2 initializa-
tion outperforms DINOv2, particularly on Bonn (0.071 vs
0.086 AbsRel). Incorporating unlabeled video data (L+U)
through our dual-decoder approach yields consistent im-
provements across both datasets. DAv2 with L+U achieves
the best performance, reducing AbsRel to 0.057 on Bonn
and 0.097 on ScanNet, demonstrating the effectiveness of
our semi-supervised approach.

4.4. Qualitative Results

Our method demonstrates robust performance across di-
verse real-world scenarios. As shown in Fig. 1, it gener-
ates stable depth maps even in challenging conditions, cap-
turing dynamic motions in dog agility courses, street per-
formances, and natural scenes while maintaining consis-
tent geometry frame-by-frame. Fig. 4 shows our method’s
superiority over DepthCrafter in ambiguous depth cue
cases. In the flamingo scene, DepthCrafter produces in-
consistent depth predictions for water reflections, while our
method maintains coherent depth across the water surface.
In the horse sequence, DepthCrafter mistakenly estimates
the sky as foreground, whereas our approach handles the
background-sky transition more accurately. These results
highlight our model’s robustness to common depth estima-
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tion challenges like reflective surfaces and infinite-depth re-
gions, while preserving scene consistency. Fig. 5 further
demonstrates the effectiveness of our method in challenging
scenarios, including fast-moving subjects (dancer) and large
objects (rhinoceros). Our approach consistently preserves
fine geometric details and maintains stable depth relation-
ships across frames, even under complex lighting conditions
and dynamic motions. The temporal smoothness achieved
enables reliable depth estimation for practical applications
requiring consistent 3D understanding.

5. Conclusion

We present StableDepth, a framework that bridges the gap
between relative and metric depth estimation through our
scene-consistent and scale-invariant (SCSI) paradigm. By
leveraging our dual-decoder architecture and video diffu-
sion baking strategy, we effectively decouple depth accu-
racy from temporal consistency learning, while harnessing
knowledge from unlabeled video data. StableDepth enables
online inference at 13x faster speed than previous video-
based methods while maintaining comparable temporal sta-
bility. This approach advances monocular depth estima-
tion toward more practical applications in 3D reconstruc-
tion, robotics, and augmented reality.
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