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Abstract

Knowledge distillation (KD) aims to transfer the knowl-
edge of a more capable yet cumbersome teacher model to
a lightweight student model. In recent years, relation-based
KD methods have fallen behind, as their instance-matching
counterparts dominate in performance. In this paper, we
revive relational KD by identifying and tackling several key
issues in relation-based methods, including their suscepti-
bility to overfitting and spurious responses. Specifically, we
transfer novelly constructed affinity graphs that compactly
encapsulate a wealth of beneficial inter-sample, inter-class,
and inter-view correlations by exploiting virtual views and
relations as a new kind of knowledge. As a result, the stu-
dent has access to richer guidance signals and stronger reg-
ularisation throughout the distillation process. To further
mitigate the adverse impact of spurious responses, we prune
the affinity graphs by dynamically detaching redundant and
unreliable edges. Extensive experiments on CIFAR-100,
ImageNet, and MS-COCO datasets demonstrate the supe-
rior performance of the proposed virtual relation matching
(VRM) method, where it consistently sets new state-of-the-
art records over a range of models, architectures, tasks, and
set-ups. For instance, VRM for the first time hits 74.0%
accuracy for ResNet50 — MobileNetV?2 distillation on Ima-
geNet, and improves DeiT-T by 14.44% on CIFAR-100 with
a ResNet56 teacher. The code and models are released at
https://github.com/VISION-SJTU/VRM.

1. Introduction

Deep learning is achieving incredible performance at the
cost of increasing model complexity and overheads. As a
consequence, large and cumbersome neural models strug-
gle to work in resource-constrained environments. Knowl-
edge distillation (KD) [27] has been proposed to address
this issue by transferring the knowledge of larger and
more capable models to smaller and lightweight ones that
are resource-friendly. KD works by minimising the dis-
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Figure 1. Conceptual illustration of VRM compared to existing
KD methods based on instance matching and relation matching.

tance between compact representations of knowledge ex-
tracted from the teacher and student models. It has found
widespread application across a spectrum of downstream
tasks [18, 22, 30, 34, 62, 64, 67,70, 75, 77, 83].

According to the type of knowledge representations to
be transferred, KD methods can be broadly categorised into
feature-based [56], logit-based [27], and relation-based [52]
approaches. The former two directly match the feature
maps or logit vectors produced by the teacher and student
models for each training sample, which is essentially in-
stance matching (IM). By contrast, relation matching (RM)
methods construct and match structured relations extracted
within a batch of model responses. A conceptual illustration
is presented in Figs. 1a and 1b.

Instance matching has been the prevailing distillation ap-
proach in recent years. Popular KD benchmarks see a dom-
inance by IM methods such as FCFD [45], NORM [47],
and CRLD [76], with different downstream tasks suc-
cessfully tackled by directly adopting IM-based distilla-
tion [6, 14, 62, 69]. Yet, recent studies discovered that rela-
tional knowledge is more robust to variations in neural ar-
chitectures, data modalities, and tasks [52, 61]. Meanwhile,
methods transferring relations have also achieved promising


https://github.com/VISION-SJTU/VRM

performance for a range of tasks, including but not limited
to segmentation [67] and detection [15, 32].

Despite growing interest, relation-based methods still
fall significantly short compared to their instance matching
counterparts. Even the strongest RM method has been out-
performed easily by recent IM solutions [29] (see Tabs. |
and 2). RM-based methods also struggle with more chal-
lenging tasks such as object detection [29]. Moreover,
previous RM solutions are primarily limited to match-
ing inter-sample [29, 53, 61], inter-class [29], or inter-
channel [46, 73] relations via simple Gram matrices. To our
best knowledge, no different forms of relations other than
these have been proposed since the work of DIST [29].

This paper fills this gap with a new kind of relations for
KD - inter-view relations (Fig. 1¢), which seamlessly and
compactly integrate with previous inter-sample and inter-
class relations. Our designs are motivated by two impor-
tant observations made about RM methods in a set of pilot
experiments: 1) RM methods are more susceptible to over-
fitting than IM methods; 2) RM methods are subject to an
adverse gradient propagation effect. We empirically find
that incorporating richer and more diverse relations into the
matching objective helps mitigate both issues.

To this end, we generate virtual views of samples through
simple transformations, followed by constructing virtual
affinity graphs and transferring the virtual relations be-
tween real and virtual samples along the edges. In lieu
of Gram matrices that suffer from significant knowledge
loss [29, 53, 61], we preserve the raw relations along the
secondary dimension as auxiliary knowledge which adds to
the types and density of relational knowledge transferred.
Moreover, we also prune our affinity graphs by striping
away both redundant and unreliable edges to further allevi-
ate the propagating gradients of spurious samples (Fig. 1d).

The above insights and remedies altogether lead to a
novel Virtual Relation Matching (VRM) framework for
knowledge distillation. VRM is conceptually simple, easy
to implement, and devoid of complicated training proce-
dures. Itis capable of transferring rich, sophisticated knowl-
edge robust to overfitting and spurious signals. VRM
sets new state-of-the-art performance for different datasets,
tasks, and settings. Perhaps more significant is that VRM
makes relation-based methods regain competitiveness and
back in the lead over instance matching approaches in dif-
ferent scenarios. To summarise, the contributions of this
work include:

We make an early effort to present comparative analy-
ses of existing KD methods through the lens of training
dynamics and sample-wise gradients, and identify over-
fitting and spurious gradient diffusion as two main cruxes
in relational KD methods.

We distill richer, more diverse relations by generating
virtual views, constructing virtual affinity graphs, and
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matching virtual relations. We also for the first time
tackle relational KD with considerations of spurious sam-
ples and gradients by pruning redundant and unreliable
edges, alongside designs to relax the matching criterion.
We present the streamlined VRM framework for knowl-
edge distillation, with extensive experimental results on a
diversity of models and tasks to highlight its superior per-
formance, alongside rigorous analyses on the soundness
and efficiency of our designs.

2. Related Work

KD via instance matching. KD was first proposed in Hin-
ton et al. [27], where a student is trained to mimic the
prediction of a pre-trained teacher model for each sam-
ple. Follow-up works have mostly followed such instance
matching (IM) paradigm, and can be categorised into logit
(or prediction)-based and feature-based methods according
to what is matched. Logit-based KD has evolved from using
adaptive-softened logits [33, 41] to decoupling target- and
non-target logits [24, 72, 81] and applying logit transforma-
tion [59, 82]. Others [50, 58] set up auxiliary ad-hoc net-
works between teacher and student to facilitate logit trans-
fer. Feature-based methods minimise the distance between
the feature maps [1, 25, 56] or salient regions within in fea-
tures [23, 74] from specified layers in both teacher and stu-
dent networks. Some also design sophisticated distillation
paths [7, 42]. All these methods are based on instance-wise
transfer of knowledge, and are herein referred to as the “IM”
methods, as illustrated by Fig. 1a.

KD via relation matching. Some works transfer instead
mutual relations mined amongst the network outputs ex-
tracted from a batch of training instances. These rela-
tion matching (RM) methods usually involve construct-
ing network outputs into compact relation representations
that encode rich higher-order information, as depicted in
Fig. 1b. Different relation encoding functions mare, includ-
ing inter-sample [29, 48, 52-54, 61], inter-class [29], inter-
channel [46, 73, 78], inter-layer [48], and contrastive [60]
relations. To date, IM solutions have dominated KD
with their superior performance, leading top-performing
relation-based methods by considerable margins. While
many new IM methods are found within the last two years,
frustratingly few RM solutions are being proposed. In this
work, we strive to close this gap with a new kind of relations
for KD — inter-view virtual relations, and revive relation-
based KD by making it overtake its IM counterparts.

Learning with virtual knowledge. While not a standalone
research topic, learning with virtual knowledge finds rele-
vance in a variety of learning-based problems. For instance,
a commonly used paradigm in 3D vision tasks is to learn (or
construct) from the raw data a virtual view or representa-
tion as auxiliary knowledge in solving the main task, rang-



100

90

a0

70

Top-1 Acc. (%) - Training Sat
Top-1 Acc. (%) - Test Set

60

s0

™M

0.0002
0.0001

0.0000

0.005

0.000

—0.005

o 50
Epoch

(a) Increasing performance on training set.

Epoch

(b) Plateaued performance on validation set.

30

(c) Diffusion of gradient perturbations within a batch.

Figure 2. Pilot studies that reveal the overfitting and spurious gradient diffusion issues with RM-based KD.

ing from object reconstruction [5] and optical flow [2] to
3D semantic segmentation [36], monocular 3D object de-
tection [13], and 3D GAN inversion [64]. More broadly,
many data-efficient learning methods also share the spirit
of utilising virtual knowledge. For instance, self-supervised
learning methods generate virtual views of the unlabelled
data to enable the learning of pretext tasks [11, 20]. Another
popular paradigm is transformation-invariant representation
learning [51, 57] in semi-supervised learning and domain
adaptation. It enforces consistency between representations
learnt for a raw sample and a virtual view of it. The vir-
tual view is often obtained by applying semantic-preserving
transformations to the raw sample [16, 17]. This work is
more related to this later paradigm, but involves learning
with virtual knowledge in a different context, via different
approaches, and for a different problem.

3. Preliminaries

KD methods generally employ a cross-entropy (CE) loss
and a distillation loss to supervise student learning. The CE
loss is computed between student logits z; for each sample
and its ground-truth label y;. The distillation loss matches
teacher and student outputs via a distance metric ¢(-). In
vanilla KD [27], ¢(-) is the Kullback-Leibler divergence
(KLD) between teacher logits z* and student logits z*:

L = ¢KLD(Z§ z;)

=7 Zaj

where o(-) is the Softmax operation with temperature pa-
rameter 7, and C' is the number of classes. For feature-
based methods, ¢(-) can be the mean squared error (MSE)
between teacher and student feature maps for each in-
stance [56], i.e., LXP = ¢yse(f7, £Y).

For relation-based methods, a relation encoding function
1(+) first abstracts teacher or student outputs of all instances
within a training batch into a relational representation, be-
fore applying ¢(-) to match these relational representations
between the teacher and the student. For example, the KD
objectives of DIST [29] take the general form of:

D — o((z3, 235, ...,

/) 1og7‘ (1)

z3),0(z}, 25, ...
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where B is the batch size, and subscript i of £XP is dropped
as the loss is computed for a batch of instances. DIST uses
both inter-class and inter-sample relation encoders as 9 (+).

4. Pilot Studies

Training dynamics of KD methods. We examine the
training dynamics of different relation-based methods on
CIFAR-100 with ResNet32 x4—ResNet8 x4 as the teacher-
student pair. In Figs. 2a and 2b, we immediately notice that
relational methods achieve significantly higher training ac-
curacy, but they only marginally lead or even fall short in
test accuracy compared to IM-based KD [27]. We hypothe-
sise that relational methods are more prone to overfitting.
This is expected given that the optimality of IM match-
ing (cond. .A) implies the optimality of relation matching
(cond. B), while the converse does not hold. Concretely,
A= B A =B = —-A. In other words, relation matching
is a weaker and less constrained objective than IM, which
makes the student more readily fit the teaching signals and
not generalise well. Thus, we conclude that CI: relation
matching methods are more prone to overfitting.

Gradient analysis of KD methods. We investigate the gra-
dient patterns within a batch when a spurious sample pro-
duces a major misguiding signal. To this end, we first gener-
ate two random vectors x,y ~ N(0,1) for x,y € RE*P,
where B is the batch size and D is the dimension of per-
sample predictions, x is taken as the sample-wise predic-
tions, and y the supervision signals. We then add a noise
vector € = ¢ - z to X4, where z ~ A/(0,1) and ¢ is a scaling
factor. In this case, x; + € becomes a spurious prediction
within our batch. We compute the loss from x and y us-
ing either IM or RM objectives, and consider the change in
sample-wise gradients g within the batch upon the injection
of the spurious sample. Formally, we visualise:

o 1%

( )HQ HMHQ 1':17
s.t.xi=x;+e-M(i=t), Le{Llinm,Lru} Q)

In Fig. 2¢ (B = 64 and t = 32), when the IM objective
is used, only the spurious sample receives a prominent gra-
dient. Whereas for an RM objective, many other samples
receive significant gradients as they are directly connected

Ag = H
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to x; in the computational graph of the RM loss. In other
words, the spurious signals produced by one malign predic-
tion will propagate to and affect all samples within a batch
(in fact, those closer to x; within the prediction manifold
are more strongly affected). This means other sample-wise
predictions will be significantly updated only to accommo-
date a malign prediction, even if they are already in rela-
tively good shape. Through this investigation, we discover
that C2: relation matching methods are more prone to the
adverse impact of spurious samples. We also present this
pilot analysis on ImageNet training in Fig. 4.

For CI, common approaches to combat overfitting in-
clude the incorporation of richer learning signals and regu-
larisation, which for RM-based KD methods means richer
relations constructed and transferred. For C2, an intuitive
solution is to identify and suppress the effect of spurious
predictions or relations or to slacken the matching criterion.
Guided by these principles, we now proceed to formally
build up our method step by step.

5. Method

5.1. Constructing Inter-Sample Relations

We first construct relation graph G’ that encodes inter-
sample affinity within a batch of sample predictions
{z;}B ,. Different from [52, 61], our relations are con-
structed from predicted logits which embed more compact
categorical knowledge. We use the pairwise distance be-
tween instance-wise predictions within a batch as our mea-
sure of affinity. Existing methods leverage the Gram matri-
ces [29, 53, 54, 61] to encode inter-sample relations, but we
find that this leads to collapsed inter-class knowledge via
the inner product operation. Instead, our pairwise distance
preserves the inter-class knowledge along the secondary di-
mension (i.e., the class dimension), which enables such in-
formation to be explicitly transferred as auxiliary knowl-
edge alongside the matching of inter-sample relations.
Thus, we have constructed a dense relation graph Ggis,
which comprises B vertices and B x B edges: G/¥ =
(VI9,£19). Each vertex in G/ represents the prediction
vector z € R for one instance within a batch, and is con-
nected to all instances within the batch including itself. The
attribute of edge &/ S connecting vertices 4 and j describes
the class-wise relatlons between the predictions of instances
¢ and j. In practice, we can organise all edges into matrix

Epoch

(b) Test accuracy
Figure 3. Alleviated overfitting and improved training dynamics.
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Figure 4. Alleviated spurious gradients.

ETS € RB*BXC ip which:

z; —

12 —Zg||2

IS __
T

eRY for i,je[1,B], (4)

where we empirically find that normalisation along the sec-
ondary dimension helps regularise relations and improves
performance. Concretely, £ encodes inter-sample class-
wise relations within a batch of B training samples. This
design is different from and empirically more effective than
previous relation formulations.

5.2. Constructing Inter-Class Relations

Although G'® encodes rich inter-sample relations within
a batch, it fails to explicitly model inter-class correlation
patterns that are also beneficial structured knowledge [29].
Therefore, we propose to build a novel inter-class batch-
wise relation graph GI¢ = (V1€ £1¢), instead of the
Gram matrices in the inner product space as in [29]. The
construction of GI¢ mirrors that of G5, Vertices in GI€
are the class-wise logit vectors w € RZ. Each edge in
ETC ¢ REXCXB embeds the pairwise difference between
the i-th and j-th per-class vectors. Concretely:

IC w; —

i

eR? for i,je1,0]. (5

[wi —nglz

Our inter-class relations preserve the batch-wise dis-
crepancies by treating them as a dimension of additional
knowledge (reciprocal to the case of inter-sample relations),
which is unlike any other previous methods [29]. We will
demonstrate in Tab. 7 that our novel formulation of inter-
sample and inter-class relations by preserving the raw affin-
ity knowledge along the secondary dimension perform sig-
nificantly better than previous relation encoders v(-) via
Gram matrices [29, 52, 53, 61] or third-order angular dis-
tances [52].

5.3. Constructing Virtual Relations

For each prediction z; within a batch {z,;}2 ;, we create a
virtual view of it, denoted as “z;”, by applying semantic-
preserving transformations to original image x;. While
other transformations are applicable, we choose RandAug-
ment [17] that applies stochastic image transformations (see
Supplementary Material for details). With our batch of pre-
dictions augmented into {z;,%;}2 |, we can construct a



Teacher ResNet56 ResNet32 x4 WRN-40-2 WRN-40-2 VGG13|ResNet32x4  VGG13 ResNet50  WRN-40-2
Student Vente ResNet20 ResNet8 x4 WRN-16-2 WRN-40-1 VGGS [ShuffleNetV2 MobileNetV2 MobileNetV2 ShuffleNetV 1
Teacher 72.34 79.42 75.61 75.61 74.64 79.42 74.64 79.34 75.61
Student 69.06 72.50 73.26 71.98 70.36 71.82 64.60 64.60 70.50
Feature-based
FitNets [56] ICLR’15 69.21 73.50 73.58 72.24 71.02 73.54 64.16 63.16 73.73
AT [74] ICLR’17 70.55 73.44 74.08 72.77 71.43 72.73 59.40 58.58 73.32
CRD [60] ICLR’20 71.16 75.51 75.48 74.14 73.94 75.65 69.63 69.11 76.05
SRRL [68] ICLR’21 71.13 75.33 75.59 74.18 73.44 - - - -
PEFD [12] NeurIPS’22| 70.07 76.08 76.02 74.92 74.35 - - - -
TaT [42] CVPR’22 | 71.59 75.89 76.06 74.97 74.39 - - - -
ReviewKD [10] CVPR’21 | 71.89 75.63 76.12 75.09 74.84 77.78 70.37 69.89 77.14
NORM [47] ICLR’23 71.35 76.49 75.65 74.82 73.95 78.32 69.38 71.17 77.63
FCFD [45] ICLR’23 71.96 76.62 76.43 75.46 75.22 78.18 70.65 71.00 77.99
Logit-based
KD [27] arXiv’15 70.66 73.33 74.92 73.54 72.98 74.45 67.37 67.35 74.83
TAKD [50] AAAT20 | 70.83 73.81 75.12 73.78 73.23 74.82 67.91 68.02 75.34
CTKD [41]  AAAT23 | 71.19 73.79 75.45 73.93 73.52 75.31 68.46 68.47 75.78
NKD [72] ICCV’23 | 70.40 76.35 75.24 74.07 74.86 76.26 70.22 70.76 75.96
DKD [81] CVPR’22 | 71.97 76.32 76.24 74.81 74.68 77.07 69.71 70.35 76.70
LSKD [59] CVPR’24 | 7143 76.62 76.11 74.37 74.36 75.56 68.61 69.02 -
TTM [82] ICLR’24 71.83 76.17 76.23 74.32 74.33 76.55 69.16 69.59 75.42
CRLD [76] MM’24 72.10 77.60 76.45 75.58 75.27 78.27 70.39 71.36 -
Relation-based
RKD [52] CVPR’19 | 69.61 71.90 73.35 72.22 71.48 73.21 64.52 64.43 72.21
CC [54] CVPR’19 | 69.63 72.97 73.56 72.21 70.71 71.29 64.86 65.43 71.38
SP[61] ICCV’19 | 69.67 72.94 73.83 72.43 72.68 74.56 66.30 68.08 74.52
ICKD [46] ICCV’21 71.76 75.25 75.64 74.33 73.42 - - - -
DIST [29]1 NeurIPS’22| 71.75 76.31 - 74.73 - 77.35 68.50 68.66 76.40
VRM - 72.09 78.76 77.47 76.46 76.19 79.34 71.66 72.30 78.62

Table 1. Results for same- and different-model teacher-student pairs on CIFAR-100. }: using re-trained, stronger teachers.

larger inter-sample edge matrix £/° € R2BX2BXC gpd a
larger inter-class edge matrix £/¢ € REXCx2B,

From the perspective of sample views, our new £7° and
ETC constructed from a batch of real and virtual samples
essentially capture three types of knowledge, namely rela-
tions amongst real views (denoted as “real-real”), relations
amongst virtual views (“virtual-virtual”), and relations be-
tween pairs of real and virtual views (“real-virtual”). For
instance, a real-virtual edge that connects real vertex m and
virtual vertex n in £7° is computed as:

Zym — Zp

SIS —
1Zm — Znll2

o = € RC. (6)

5.4. Pruning into Sparse Graphs

Pruning redundant edges. The augmented £7° in Sec. 5.3
contains 2B x 2B edges, leading to quadrupled overheads.
For better efficiency, we prune G'S into sparse graphs.
Noticing that £7° is symmetric along its diagonals, we first
prune its redundant half to save up to 50% edge count.
We also remove intra-view edges to get a further 50% re-
duction, as we empirically find them redundant and harm
knowledge transfer. For G'¢, we decompose the augmented
batch of predictions of size 2B into a real-view batch and
a virtual-view batch, each of size B, and in lieu use the
inter-sample batch-wise affinity vectors between them as its
vertices. Compared to their original intra-view formulation
of size 2B in Sec. 5.3, this design encodes purely inter-view
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affinity knowledge with halved parameters. With redundant
edge pruning (REP), our graphs now become sparse and the
remaining edges can again be rearranged into compact ma-
trices: £1°V € RBXBXC apd £1CV ¢ REXCXB,

Pruning unreliable edges. To mitigate the diffusive ef-
fect of spurious predictions discovered earlier, we further
identify and prune the unreliable edges. In previous graph
learning works, the absolute certainty of two vertices are
often used to determine the reliability of an edge. For in-
stance, REM [9] computes the reliability of an edge as the
mean of the maximum predicted probabilities of two sam-
ples (i.e., two vertices). However, we argue this could bias
the learning towards easy samples. Instead, we measure
the discrepancy between two predictions. The larger this
discrepancy, the more unreliable the relation constructed.
The unreliable edge pruning (UEP) criterion is given by
gV =0 if H(z,25) > Py, where H(-) computes the
joint entropy (JE) between two predictions and P, is the
m-th percentile within the batch. Note that the criterion is
enforced on student predictions, resulting in adaptive and
dynamic pruning as different edges get pruned in each iter-
ation, which improves learning most of the time.

5.5. Full Objective

With G5 and GI° constructed for both teacher and stu-
dent predictions, our VRM objective matches edge matrices
ETSV and E1CV between teacher and student via distance



Teacher ResNet34 ResNet50
Student ResNet18 MobileNetV1
Venue
Teacher 73.31/91.42 76.16/92.86
Student 69.75/89.07  68.87/88.76
Feature-based
AT [74] ICLR’17 70.69/90.01 69.56/89.33
OFD [25] ICCV’19 70.81/89.98 71.25/90.34
CRD [60] ICLR’20 71.17/90.13 71.37/90.41
CAT-KD [23] CVPR’23 71.26/90.45 72.24/91.13
SimKD [8] CVPR’22  71.59/90.48 72.25/90.86
ReviewKD [10] CVPR’21 71.61/90.51 72.56/91.00
SRRL [68] ICLR’21 71.73/90.60 72.49/90.92
PEFD [12] NeurIPS’22  71.94/90.68 73.16/91.24
RSD [78] ICCV’25 72.18/90.75 73.05/91.26
FCFD [45] ICLR’23 72.24/90.74 73.37/91.35
Logit-based
KD [27] arXiv’'15 70.66/89.88 68.58/88.98
TAKD [50] AAAT20 70.78/90.16 70.82/90.01
DKD [81] CVPR’22  71.70/90.41 72.05/91.05
SDD [63] CVPR’24  71.14/90.05 72.24/90.71
TTM [82] ICLR’24 72.19/- 73.09/-
LSKD [59] CVPR’24  72.08/90.74 73.22/91.59
CRLD [76] MM’24 72.37/90.76 73.53/91.43
Relation-based
RKD [52] CVPR’19  71.34/90.37 71.32/90.62
CC [54] CVPR’19 70.74/- -
ICKD [46] ICCV’21 72.19/90.72 -
DIST [29] NeurIPS’22  72.07/90.42 73.24/91.12
VRM - 72.67/90.68  74.16/91.78

Table 2. Results on ImageNet.

metric ¢(-), for which the Huber loss is used. Formally,
LIZY = O(€°V Ef°) and LISY = o(€LCY E1Y).
The full objective is a weighted combination of the CE loss
and the proposed VRM losses:

+ aLISV

vrm

+BLICV

vrm

Ltotal = Lce (7)

where L. is the CE loss applied to student’s predictions of
both real and virtual views and supervised by GT; a and
[ are balancing scalars. A PyTorch-style pseudo-code for
the computing of VRM losses is provided in Algorithm | in
Supplementary Material.

6. Experiments

6.1. Experimental Settings

Our method is evaluated on CIFAR-100 [35] and Im-
ageNet [19] datasets for image classification, and MS-
COCO [43] for object detection. All experimental config-
urations follow the standard practice in prior works. More
details are provided in Supplementary Material.

6.2. Main Results

Results on CIFAR-100. The results for different KD
methods on CIFAR-100 are shown in Tab. 1. For same-
model KD, (left of Tab. 1), VRM surpasses all previous
relation-based methods across all teacher-student pairs by
large margins, including DIST [29]. Noticeably, VRM sig-
nificantly outperforms the strongest feature-based method,
FCFD [45]. On average, it also performs much better than
top logit-based methods such as CRLD [76] and TTM [82].

ResNet101 —ResNetl8  ResNet50— MobileNetV2

AP AP5() AP75 AP AP5(‘| AP75

Teacher 42.04 6248 4588 4022 61.02 43.81

Student 3326 53.61 3526 29.47 48.87 30.90
Feature-based

FitNets [56] 3443 5416 3671 30.20 49.80  31.69

FGFI [62] 3544 5551 3817 31.16 50.68 3292

TAKD [50] 3459 5535 37.12 3126 51.03 3346

ReviewKD [10]  36.75 56.72 34.00 33.71 53.15 36.13

FCFD [45] 3737 57.60 4034 3497 55.04 3751

Logit-based

KD [27] 3397 5466 36.62 30.13 50.28  31.35

CTKD [41] 3456 5543 3691 3139 5234 3310

LSKD [59] - - - 31.74 5277  33.40

DKD [81] 35.05 56.60 37.54 3234 5377 3401
Relation-based

VRM 3546 5691 3793 32.67 5396 34.48

Table 3. Results on MS-COCO. All detectors are based on a Faster-
RCNN [55] backbone.

Teacher

Student T. S. KD AT SP LG AutoKDLSKD VRM

ResNet56 DeiT-T 70.43 65.08 73.25 73.51 67.36 78.15
ResNet56 T2T-ViT-7 70.43 69.37 74.15 74.01 72.26 78.35
ResNet56 PiT-T  70.43 73.58 75.47 76.03 74.97 78.48
ResNet56 PVT-T 70.43 69.22 74.66 77.07 70.48 77.48

78.58 78.55 79.52
78.62 78.43 78.88
78.51 78.76 79.25
73.60 7843 79.42

Table 4. Results for cross-architecture distillation on CIFAR-100.
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These are significant, given that IM methods are known
to be naturally more adapt at distilling between homoge-
neous model pairs. For different-model KD (right of Tab. 1),
which RM methods are supposed to be more competent
with, VRM readily surpasses all RM and IM methods with
notable margins. These results highlight VRM’s versatility
on both homogeneous and heterogeneous model pairs.

Results on ImageNet. VRM surpasses all feature- and
relation-based methods on this large-scale dataset, as shown
in Tab. 2. The advantage of VRM is again more appar-
ent over the heterogeneous pair (i.e., ResNet50 — Mo-
bileNetV2), whereby it for the first time hits 74.0% Top-
1 accuracy. Notably, VRM outperforms strong competitors
such as FCFD [45] and CRLD [76] with comparable or even
less computational overheads as compared in Tab. 10.

Results on MS-COCO. We demonstrate that VRM gen-
eralises to more challenging tasks by adapting it to object
detection. From Tab. 3, VRM performs better than exist-
ing logit-based methods and competitively to feature-based
methods. VRM is slightly behind top-performing feature-
based methods such as FCFD [45] and ReviewKD [10].
This is a consequence of the very nature of the object de-
tection task, where fine-grained contextual features play a
vital role, making feature-based methods inherently better-
off [62]. Nonetheless, we experimentally demonstrate that
VRM is effective on object detection, whereby it improves
the baseline by 2-3% AP, surpasses all logit-based methods,
and is on par with strong feature-based methods.

Results for cross-architecture distillation. We follow the
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Table 5. Ablation of major designs.

Table 6. Effect of matching vertices.

Table 7. Comparing different relation functions.
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Table 8. Effect of different «, 3, and n.

settings in [39] and [59] to perform CNN-to-ViT cross-
architecture distillation. Tab. 4 shows that VRM sets new
record under this set-up for different ViT architectures. No-
tably, by simply replacing the vanilla KD loss with the pro-
posed VRM objective and making no other modifications,
VRM improves DeiT-T’s accuracy by 14.44%, leading the
relation-based SP [61] by 12.16% and even surpassing Au-
toKD [40] with AutoML search.

6.3. Ablation Studies

Ablations of main design choices. In Tab. 5, starting from
the baseline where only the CE loss is applied, we gradu-
ally incorporate each of our designs. As shown, each extra
design consistently brings performance gains, which cor-
roborate the validity of individual design choices.

Effect of different relation encoding functions. Tab. 7
compares our proposed relation encoding scheme with ex-
isting ones. To demonstrate the superiority of our formu-
lation, we substitute it with existing Gram matrices [29,
53, 54, 61] or angle-wise relations [52]. Results show that
our inter-sample class-wise and inter-class sample-wise re-
lations consistently yield much better performance than ex-
isting relations, which highlights VRM’s contribution of a
novel and superior type of relation encoding in addition to
the introduction of virtual relation.

Effect of varying hyperparameters. VRM involves three
major hyperparameters: « and /3, and n. According to
Tab. 8, VRM works generally well with « and S in a rea-
sonable range. Larger « and  may produce better results
for certain model pairs but worse results for others. For n, a
larger n means more difficult images and larger inter-view
prediction discrepancy. From Tab. 8, n = 2 works best,
whereas other values also report competitive results.

Effect of different real-virtual difficulty pairs. We also

Strong-Strong
Strength Pair Policy

Figure 5. Effect of different difficulty pairs.

Weak-Strong 16 32 64 128 256 512
Batch Size

Figure 6. Robustness to varying B.

experiment with different strength combinations for gener-
ating the real and virtual samples. The results are presented
in Fig. 5, where “Weak” denotes the default transformation
used in previous methods, and “Strong” denotes RandAug-
ment with n = 2. Overall, we conclude that 1) a moderate
discrepancy leads to optimal performance, and 2) the dis-
crepancy is significant to the success of VRM.

Robustness to varying batch sizes. Relational methods are
known to be sensitive to training batch size B. We conduct
experiments to examine how robust VRM is against varying
B. To adjust the learning rate accordingly, we consider two
LR scaling rules: linear LR scaling [21] and square root LR
scaling [11]. From Fig. 6, VRM yields competitive results
across a wide range of B values. In contrast, DIST [29]
degrades significantly as B grows.

6.4. Further Analysis

Analysis of training dynamics. Figs. 3a and 3b plot the
per-epoch training and validation set accuracies throughout
training. VRM maintains a all-time lead in both training and
validation performance, with faster convergence. Besides,
while VRM’s lead in training performance tapers off to-
wards the end of training, it remains more substantial, if not
further enlarging, in validation performance, which high-
lights its superior generalisation properties. This analysis
also shows our designs are effective in mitigating the issues
with existing RM methods identified in the pilot studies.

Analysis of spurious gradients. We revisit our second pilot
study by analysing how spurious gradients are suppressed in
real ImageNet training. From Fig. 4, similar gradient diffu-
sion patterns are observed in real distillation. Samples se-
mantically more similar to the sample with spurious predic-
tions are more affected by spurious gradients (e.g., the dog
image with a watery background resembles the bubbly tex-
ture in another sample that is actually a computer mouse.).
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(b) VRM (c) RKD
Figure 7. t-SNE (a-b) and loss landscape (c—d) visualisations for RN8 x4

students distilled with an RN32 x4 teacher via RKD and VRM.

(a) RKD

Method ‘ KD FitNets RKD ICKD DIST CRD ReviewKD
Train. Time (ms) 249 267 310 280 272 412 39.9
Peak GPU Mem. (MB) | 323 330 330 381 330 1418 1042
Method ‘SDD MLLD CRLD NORM PEFD FCFD VRM
Train. Time (ms) 342 572 432 351 362 564 47.2
Peak GPU Mem. (MB) | 690 576 551 1806 701 953 579

Table 10. Training efficiency of different distillation methods.

Visualisation of embedding space. We conduct t-SNE
analysis on student penultimate layer embeddings learnt via
different methods. As presented in Fig. 7a and 7b, VRM
leads to more compact per-class clusters with clearer inter-
class separation and less stray points. These imply better
student features distilled by VRM for the downstream task.

Visualisation of loss landscape. We further analyse the
generalisation and convergence properties of our method
through the lens of visualised loss landscape [38]. From
Fig. 7c and 7d, compared to RKD, VRM has a wider, flat-
ter, and deeper region of minima — typical hint of better
model generalisation and robustness; this wide convexity
basin surrounded by salient pikes in various directions indi-
cates excellent convergence properties. More visualisations
are provided in Supplementary Material.

Vertex matching. Within the constructed graphs G/* and
G'¢, VRM matches edges £7°V and £7¢V which carry re-
lational knowledge. By extension, we can naturally expect
vertices V) to be also transferred. From Tab. 6, matching
vertices is not as effective. The advantage of matching re-
lations (i.e., edges) is more pronounced for heterogeneous
KD pairs such as ResNet50— MobileNetV2. Adding vertex
matching to the proposed edge matching does not improve
but instead degrade performance. We argue this is because
introducing vertex matching objectives make the matching
criterion more stringent which is against our motivation of
using more slackened matching.

Role of transformation operations. We emphasise the
strong performance of VRM is not a simple outcome of
the transformations involved. This can be verified by the
results in Fig. 5 and Tab. 9, where using only the default
weak transformation (i.e., random crop and horizontal flip)
for both views achieves highly competitive and even supe-
rior performance under VRM. In fact, in the case of “Weak-
Weak”, both views still differ because of the stochastic op-
erations used. Essentially, the success of VRM lies exactly

(d) VRM

Real Virtual ‘ RN50—-MNV2 RN34—RNIS8
Default Default ‘ 74.16/91.78 72.67/90.68
Default RandAug(n=0) ‘ 74.10/91.70 72.60/90.88
Default RandAug(n=1) ‘ 74.13/91.63 72.59/90.82
Default  RandAug(n=2) ‘ 74.13/91.68 72.48/90.73

Table 9. Effect of different transformation strength pairs
on ImageNet.

Pruni ‘ RN32x4—RN8x4 ‘ V13—V8 W40-2—SNV2
uning
| Acc.  tpaten (s) Mem. (MB) | Acc. Acc.
wlo ‘ 78.38 61.4 343 ‘ 75.56 78.45
+ REP ‘ 78.46 46.3 13.6 ‘ 75.30 78.41
+ UEP ‘ 78.76 47.2 13.1 ‘ 76.19 78.62
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Table 11. Effectiveness and efficiency of pruning operations.

in the discrepancy of teacher and student predictions, where
regularisation comes into crucial play. On smaller and eas-
ier datasets such as CIFAR-100, the gap between teacher
and student predictions are relatively small, and manually
enlarging this gap via extra transformations leads to promis-
ing outcomes. Whereas the more difficult ImageNet data
already sees large teacher-student prediction discrepancy,
such that it benefits less from further amplification.

Training efficiency. From Tab. 10, VRM is reasonably effi-
cient compared to existing algorithms, including some lead-
ing feature- [12, 45, 47] and logit-based [33, 63] methods.
VRM does not introduce any extra overheads at inference.
We also breakdown the proposed pruning designs in Tab. 11
to understand how they individually impact the performance
and efficiency of VRM. We see REP boosts efficiency at
minimal performance cost, whereas UEP trades minimal ef-
ficiency cost for performance.

More experiments, analyses, and discussions are pro-
vided in Supplementary Material.

7. Conclusion

This paper presents VRM, a novel knowledge distillation
framework that constructs and transfers virtual relations.
Our designs are motivated by a set of pilot experiments,
from which we identified two main cruxes with existing
relation-based KD methods: their tendency to overfit and
susceptibility to adverse gradient propagation. A series
of tailored designs are developed and are shown to suc-
cessfully mitigate these issues. We have conducted exten-
sive experiments on different tasks and multiple datasets
and verified VRM’s validity and superiority in diverse set-
tings, whereby it consistently achieves state-of-the-art per-
formance. We hope that this work could renew the commu-
nity’s interest in relation-based knowledge distillation, and
encourage more systematic reassessment of the design prin-
ciples of such solutions.
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