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Abstract

Pursuing a continuous visual representation that offers flex-
ible frequency modulation and fast rendering speed has re-
cently garnered increasing attention in the fields of 3D vi-
sion and graphics. However, existing representations of-
ten rely on frequency guidance or complex neural net-
work decoding, leading to spectrum loss or slow rendering.
To address these limitations, we propose WIPES, a uni-
versal Wavelet-based vIsual PrimitivES for representing
multi-dimensional visual signals. Building on the spatial-
frequency localization advantages of wavelets, WIPES ef-
fectively captures both the low-frequency “forest” and the
high-frequency “trees.” Additionally, we develop a wavelet-
based differentiable rasterizer to achieve fast visual render-
ing. Experimental results on various visual tasks, including
2D image representation, 5D static and 6D dynamic novel
view synthesis, demonstrate that WIPES, as a visual prim-
itive, offers higher rendering quality and faster inference
than INR-based methods, and outperforms Gaussian-based
representations in rendering quality.

1. Introduction

Representing visual signals as continuous functions has
garnered increasing attention in recent years. Owing to
the inherent advantages of end-to-end differentiability and
scalable querying, these continuous representations can be
seamlessly integrated with various imaging and rendering
functions. This integration facilitates the optimization of
inverse problems, whether the resolution is down-sampled
or the dimensionality is reduced. Since these representa-
tions are optimized independently for different scenarios,
pursuing a universal visual primitive, which offers com-
plex frequency compatibility and fast rendering speed, is
of paramount importance.

However, existing representations suffer from spectral
loss or slow rendering. For instance, the representational
capacity of popular implicit neural representations (INRs)
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Figure 1. Spatial-Frequency Localization Benefits of WIPES. (a)
shows the spatial and frequency distributions of Gaussian and
WIPES primitives with various parameters. Adjusting o only
affects the Gaussian frequency bandwidth, unable to overcome
its low-frequency constraint. In contrast, WIPES flexibly modu-
lates frequency, making it advantageous for complex visual tasks.
(b) displays image fitting on the Kodak dataset, where WIPES
achieves higher PSNR with the same primitives count, and this ad-
vantage grows with more primitives. (c) illustrates that Gaussian
primitives smooth complex textures due to low-frequency limita-
tion, while WIPES accurately reconstructs rooftop patterns and
railings through adaptable frequency properties.

[34] is often constrained by spectral bias [27], only the fre-
quencies defined by hyperparameters are effectively learned
[35, 41, 46], resulting in the loss of information in other fre-
quency bands. Furthermore, the complex network architec-
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tures of INRs require substantial computational resources

[24] to decode signal attributes, thereby impeding process-

ing speed across various visual tasks. Explicit representa-

tions, among which the 3D Gaussian Splatting (3DGS) [14]

specifically models the visual world by employing multiple

Gaussian functions. However, the inherent low-pass nature

of Gaussian functions introduces inaccuracies in capturing

high-frequency details. To mitigate these low-pass charac-
teristics, frequency regularization [43] or modulation losses

[11] are often employed, which necessitates extensive ex-

pertise to tune hyperparameters for different scenes.

These problems arise from a mismatch between the char-
acteristics of the visual primitives used and the visual sig-
nals themselves. According to Marr’s vision theory, visual
signals are perceived hierarchically, and intensity changes
are detected at multiple scales. Wavelet, designed for multi-
scale signal analysis, aligns well with the human visual sys-
tem and can capture both the “forest” and the “trees” in vi-
sual signals [10]. Consequently, we developed WIPES, a
universal primitive for representing visual signals.

WIPES leverages the Morlet wavelet—known for its
continuous differentiability and robust spatial-frequency lo-
calization—to effectively capture signals exhibiting signifi-
cant frequency variations. We extend the Morlet wavelet by
developing a wavelet primitives adaptable to arbitrary di-
mensions, making it well-suited for various visual signals
in real-world applications (e.g., 2D images, 5D static and
6D dynamic radiance fields). Additionally, we develop a
fast, differentiable rasterizer for WIPES by utilizing an effi-
cient GPU sorting algorithm [18]. To mitigate the substan-
tial computational overhead associated with automatic dif-
ferentiation during training, we derive explicit gradients for
all parameters in both forward and backward propagations.
Our rasterizer effectively replaces Gaussian-based rasteriz-
ers, enabling seamless integration with different loss func-
tions [5, 43] and subsequent visual tasks [38, 42, 44] built
upon Gaussian splatting techniques.

In summary, we make the following contributions:

* We design a universal differentiable wavelet primitive
that adaptively models various frequency features in real-
world scenes without relying on handcrafted frequency
guidance.

* We develop a fast differentiable rasterizer for our WIPES,
enabling anisotropic splatting and efficient backpropaga-
tion across different dimensions to achieve general and
effective visual representation.

* The proposed wavelet-based approach benefits superior
reconstruction performance across multiple task dimen-
sions compared to other visual representations.

2. Related Work

Implicit Neural Representations (INRs) play a pivotal
role in modeling continuous functions of signals found in

images, scenes and videos [19]. They leverage MLPs to ac-
curately map spatial coordinates to their corresponding val-
ues [24, 34]. This capability enables INRs to be applied in
various domains, including novel view synthesis [24], free-
hand 3D/4D echocardiography [32, 33], microscopy imag-
ing [45], and nano-optics design [4].

However, INRs are constrained by spectral bias, favor-
ing low-frequency information over high-frequency details
[27]. To mitigate this bias, strategies like positional encod-
ing [35] and specifically activation functions [20, 28, 31, 34]
have been developed. Despite these advancements, the
spectral bias remains fundamentally unaddressed and is
merely transformed into a “frequency”-specified spectral
bias [46]. Additionally, INRs suffer from slow training and
inference due to their reliance on computationally intensive
MLPs. To enhance efficiency, recent approaches have in-
tegrated explicit storage with implicit decoding, including
sparse voxel grids [9], hash tables [25, 47, 48], and multi-
scale/grid INRs [29, 30, 49]. While these approaches offer
improvements, they introduce additional complexity, mak-
ing it challenging to balance memory consumption with
real-time performance. Furthermore, INRs are highly sen-
sitive to parameter changes. Modifications to the input or
internal parameters can lead to significant variations in the
output, complicating the process of making local adjust-
ments [23]. Although strategies such as explicit encoding
and latent disentanglement [17, 36] have been proposed to
address these issues, achieving precise control over local
features in INR-based approaches remains challenging.

Explicit Signal Representations with Gaussian Primi-
tives, conversely, overcome several INR limitations and
are growing in popularity in computer vision and graphics.
They use multiple independent continuous Gaussian func-
tions to render scenes, which offers marked benefits like
enhanced expressiveness and editability, and superior fitting
efficiency than conventional INRs.

These Gaussian-based approaches have achieved top-tier
performance in rendering quality and speed [14]. Early
research on splatting introduced Gaussian primitives for
scene representation [50, 51]. Recent advancements such
as FreGS [43], mip-splatting [40], and scaffold-GS [21] en-
hance frequency management, mitigate aliasing, and incor-
porate voxel-based initialization, thereby demonstrating the
robustness and efficiency of Gaussian-based approaches.

However, Gaussian primitives are constrained by their
inherent low-pass filtering characteristics, which are ef-
fective for smooth signals but hinder the capture of high-
frequency details like sharp edges or intricate textures.
Real-world scenes frequently contain abrupt changes, such
as the complex textures of grass or nylon fabric. Accurately
representing these details requires multiple small-scale
Gaussians [11, 13], which significantly increase model
complexity, thereby reducing scalability and efficiency.
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Figure 2. Pipeline of WIPES. WIPES can be seamlessly integrated into various visual reconstruction tasks, including 2D image represen-

tation, 5D static and 6D dynamic novel view synthesis (NVS).

Wavelet-based Signal Representations have been proven
to be highly effective in analyzing complex signals within
vision tasks. Traditional Fourier approaches use sine func-
tions for their smoothness and clear characteristics in the
Fourier domain. However, they decompose signals into
global sine bases, which lack localization in both space
and frequency [22]. This limitation makes Fourier ap-
proaches less suitable for visual data with local features
and abrupt changes. In contrast, wavelets provide opti-
mal localization in both domains, effectively capturing local
high-frequency variations and sudden signal changes while
maintaining a compact representation. Recent studies have
leveraged wavelets to enhance vision models. MFN [8]
employs wavelets as nonlinear filters to approximate com-
plex functions with fewer parameters, improving frequency
information representation. TriNeRFLet [15] integrates
wavelets into Triplane’s multi-scale representations, en-
hancing cross-scale information sharing and high-frequency
regularization for better 3D reconstructions. WavePlanes
[2] uses wavelet compression on the spatiotemporal feature
planes of dynamic NeRFs, reducing model size and enhanc-
ing high-frequency details.

However, recent wavelet-inspired representations are im-
plicitly integrated into neural networks, which significantly
reduce the rendering speed. On the contrary, the proposed
wavelet-based primitives operate on the visual signal ex-
plicitly and directly, thus improving the efficiency while
maintaining the advantages of spatial-frequency location.

3. Preliminaries

3.1. 3D Gaussian Splatting

3DGS [14] explicitly represents 3D scenes using Gaussian
primitives, enabling efficient scene reconstruction. Specif-
ically, each Gaussian primitive is parameterized by a spa-
tial mean vector [i, a covariance matrix X (expressed as
> = RSS'R', where R denotes rotation and S denotes
scaling), an opacity value «, and color attributes encoded
by spherical harmonic coefficients c. In the world space,
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the Gaussian primitive centered at jf with 3 is defined as:

i—p) =N E-)

g(fvﬁ’z):e_%( ) (1
where 7 and /i are column vectors in the world space, de-
noted as (x,y,2) " and (s, gy, 1) ', respectively, the co-
variance matrix X is a 3x3 symmetric matrix.

When employing the splatting method for rendering, the
3D reconstruction kernel must be integrated along the z-
axis to evaluate its contribution to each pixel on the image
plane. Since integrating a 3D Gaussian function along a
given axis still results in a Gaussian function, we can ef-
fectively transform a 3D Gaussian G(Z) into a 2D Gaussian
G’ (Z") on the image plane using the ray-coordinate transfor-
mation described in [50]:

[o@nDi-g@iE).
R
where @ = (z,y)" and i’ = (piz, pyy) | represent coordi-
nates in the projected 2D image plane. To achieve accurate
perspective projection, the original covariance matrix 3 un-
dergoes transformation through the world-to-camera trans-
formation matrix W, followed by projection via the local
affine Jacobian matrix J. This yields a ray-space covariance
matrix ¥ = JWXW ' JT. Ultimately, the 2D covariance
matrix Y’ in image space can be easily obtained by taking
the upper left 2 x2 submatrix of 3.

Finally, the pixel values on the 2D image are obtained by
a-blending:
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where Z’ denotes the queried pixel position and N repre-
sents the set of sorted 2D Gaussians associated with Z'.

3.2. Expansion of 3D Gaussian Splatting

Gaussian-based representations have demonstrated excep-
tional performance not only in 3D scene signal modeling



Table 1. Quantitative comparison of image fitting on Kodak and DIV2K datasets. We color code each cell as best and second best .

Methods | Metrics Kodak DIV2K

PSNR? SSIM+ LPIPS, FPST PSNR? SSIMt LPIPS/ FPSt
WIRE [31] 38.02 0.9541 0.0477 19.55 33.20 0.9565 0.1303 11.63
GSImage-RS [44] 43.09 0.9983 0.0216 2129.18 39.85 0.9978 0.0371 2190.40
GSImage-Cholesky 44.06 0.9985 0.0188 2061.99 39.53 0.9975 0.0430 2248.74
WIPES-RS 45.76 0.9988 0.0132 1708.28 40.34 0.9976 0.0360 1817.48
WIPES-Cholesky 45.87 0.9987 0.0120 1778.75 40.32 0.9978 0.0361 1830.10

GT WIPES GSImage WIRE

Figure 3. Qualitative comparison on Kodak and DIV2K datasets. Our approach effectively captures both low- and high-frequency details.

but also in various other domains. For instance, Gaussian
Image [44] explicitly parameterizes 2D image signals using
2D Gaussian primitives defined directly on the image plane,
replacing traditional a-blending with a simplified weighted
summation mechanism:

C@) =Y caGi(@, i, %). (4)
iEN
Moreover, to handle dynamic 3D content, D-3DGS [38]
employs an MLP network F to model the deformation field
of 3D Gaussian primitives. Thus, the primitives efficiently
adapt to dynamic variations over time, yielding a high-
fidelity representation of temporally-varying 3D scenes:

(67, 62) = ]:6‘('7(3_3’)77@))7 )

where  denotes positional encoding [24].

4. Wavelet-based Visual Primitives
4.1. 3D Splatting with Wavelet Primitives

The wavelet transform decomposes a signal into a lin-
ear combination of translated and scaled short oscillatory
pulses, effectively capturing localized variations in both
spatial and frequency domains. Due to their compact sup-
port in these domains, wavelets achieve superior accuracy
in signal approximation [6]. This property substantiates the
feasibility of using differentiable wavelet basis functions in
our methodology. Inspired by the Morlet wavelet, we obtain

the 3D wavelet primitive by applying cosine modulation to
the 3D Gaussian primitive. A 3D wavelet primitive is de-
scribed by:

—

W, 1 3) = Sleos(F (7 = ) + 16,5, ©)

where f = (fu, fy, f-) " is the frequency of cosine modu-
lation. Notably, the Gaussian primitive can be considered a
subset of the proposed 3D wavelet primitive by setting the
parameter f to 0.

Integrating the 3D wavelet primitive along the z-axis
produces results similar to those described in Eq. (2):

/ W(E i, [ S)de = W@, 7, ), ()
R

where f = (fes fy) " and @ — [’ is the same as the 3D
Gaussian primitive in Eq. (2).

The projected 2D covariance matrix X’ for each wavelet
primitive is computed via a similar spatial transformation
used in projecting Gaussian primitives from 3D world space
to the 2D image plane. Specifically, the covariance ma-
trix 3 and modulation frequency vector f of the wavelet
primitive undergo the identical ray-space transformation de-
fined by matrices W and J, resulting in the transformed fre-
quency vector f" and the projected covariance matrix X'.

For rasterization, we follow a similar pipeline as in 3D
GS while substituting the primitives with our proposed 3D
wavelets. In the end, the volumetric a-blending can be
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GT WIPES

Gaussian

Figure 4. Comparisons of Gaussian and wavelet primitives for rep-
resenting complex texture patterns. Results indicate that wavelet
primitives effectively overcome the low-frequency bias of Gaus-
sian primitives and demonstrate excellent performance in high-
frequency texture regions.

easily obtained by replacing the Gaussian primitive G’ in
Eq. (3) with the wavelet primitive W'.

4.2. Wavelet-Based Frequency Flexibility

Gaussian functions inherently act as low-pass filters, as il-
lustrated in Fig. la. Specifically, in the frequency domain,
Gaussians with large variance exhibit narrow bandwidths
concentrated around zero frequency, while those with small
variance produce wider bandwidths. This bell-shaped
Gaussian spectrum rapidly attenuates high-frequency sig-
nals, thus limiting its capacity to represent signals rich
in high-frequency content. Consequently, a large num-
ber of Gaussian basis functions with smaller variances are
inevitably required to accurately capture intricate high-
frequency details.

In contrast, wavelets provide significantly enhanced fre-
quency flexibility. By employing adaptive frequency modu-
lation, wavelet primitives simultaneously encode both low-
and high-frequency components within a single basis func-
tion. This modulation introduces a controllable shift in the
wavelet spectrum, positioning the Gaussian-like envelope
around a desired center frequency. The modulation fre-
quency defines this spectral center, and the Gaussian enve-
lope controls the bandwidth, ensuring optimal coverage of
the spatial-frequency domain.

We validate this advantage by comparing Gaussian and
wavelet primitives on two images exhibiting complex moiré
patterns (Fig. 4). Under identical conditions and equal num-
bers of primitives, Gaussian primitives consistently failed
to represent detailed high-frequency structures, resulting in
noticeable modeling voids. In contrast, the wavelet-based
representation accurately captured intricate frequency tran-
sitions, effectively modeling sharp discontinuities and fine
details. This result demonstrates that wavelets, through
their inherent frequency adaptability, offer superior effi-

ciency and accuracy in representing signals characterized
by rapid spatial variations.

4.3. Expansion of 3D Wavelet Splatting

We further leverage wavelet primitives to enhance repre-
sentation quality, especially for signals exhibiting complex
spatial-frequency content. Specifically, we validate the ef-
fectiveness of wavelet primitives in two key applications:
image fitting and dynamic novel view synthesis.

For the image fitting task, we replace the original 2D
Gaussian primitives G’ defined in Eq. (4) with frequency-
adaptive wavelet primitives YW’. This substitution intro-
duces modulation frequencies f’ , significantly expanding
frequency coverage compared to Gaussian-based models.
In dynamic novel view synthesis, we further generalize
wavelet primitives by making them temporally adaptive.
The modified formulation is given by:

(07,8 f,0%) = Fo(1(D),~(t)). (8)

Comprehensive experimental validation demonstrating
the superiority of our wavelet-based approach is provided in
Sec. 5, confirming their ability to efficiently represent high-
frequency details and complex temporal variations.

5. Experiments

Our experiments demonstrate the robustness and versatil-
ity of WIPES in representing real-world scenes, effectively
capturing both high-frequency details (e.g., edge variations
and intricate textures) and low-frequency contours. To vali-
date WIPES as a generalized signal representation frame-
work, we systematically evaluate its performance across
three distinct tasks: 2D image fitting, 5D static novel view
synthesis, and 6D dynamic novel view synthesis.

All experiments are consistently executed on a single
NVIDIA A6000 GPU. To ensure a fair comparison, we
adopt the same initialization schemes, optimization strate-
gies, and hyperparameter configurations as those of the
baseline approaches. Specifically, frequency modulation
coefficients are randomly initialized in alignment with com-
peting methods to exclude initialization bias. Addition-
ally, our implementation builds upon the recent gsplat li-
brary [39], augmented by custom CUDA kernels that enable
wavelet-based differentiable rasterization blending. This
adaptation is critical for efficiently leveraging wavelet prim-
itives in rendering tasks.

5.1. 2D Image Fitting

Configurations. In this section, we utilized the Kodak [7]
and DIV2K [1] datasets. The DIV2K dataset was down-
scaled by a factor of 2 using bicubic interpolation, result-
ing in images with resolutions ranging from 408 x 1020 to
1020 x 1020. For our WIPES, we conducted experiments

27342



Table 2. Quantitative comparison of static novel view synthesis on Mip-NeRF360, Tanks & Temples and DeepBlending datasets. Results
marked with T were adopted from the 3DGS paper [14], all others come from our experiments.

Methods | Metrics Mip-NeRF360 Tanks & Temples DeepBlending

PSNR{ SSIMt LPIPS| FPST | PSNRT SSIMf LPIPS| FPSt | PSNRT SSIMt LPIPS]| FPSt
Plenoxels [9] 2332 0646 0451 6.79 | 21.08 0.719  0.379 13 23.06 0.795 0510 11.2
INGP [25] 25.19  0.667 0440 11.7 | 21.72 0.723 0330 17.1 | 23.62 0.797 0423 3.26
Mip-NeRF360" [3] | 27.69  0.792 0237 0.06 | 2222 0759 0257 0.4 | 2940  0.951 0245  0.09
3DGS [14] 27.28  0.811 0220 1182 | 2335 0.835 0.182 1624 | 2943 0.898 0.246 124.1
WIPES 27.55 0816 0215 957 | 2378 0.852 0.171 1263 | 29.82 0907 0.238 92.6

GT WIPES 3DGS Mip-NeRF360 Plenoxels INGP

Detail  Error map

using the two covariance construction methods proposed in
GSImage, namely Cholesky and RS. The frequency coeffi-
cients were randomly initialized with a normal distribution,
while all other learnable parameters followed the initializa-
tion strategy described in GSImage [44]. To ensure a fair
comparison with WIRE [31] and GSImage [44], all hyper-
parameters were kept consistent with those used in GSIm-
age.

Results. Tab. | presents a quantitative comparison between

0.00 I (025

Figure 5. Qualitative comparison of static novel view synthesis on Mip-NeRF360, Tanks & Temples and DeepBlending datasets.

our proposed WIPES and existing advanced INR-based
and Gaussian-based approaches. Our approach achieves
the best performance across all metrics, including PSNR,
SSIM, and LPIPS. Additionally, as illustrated in Fig. 3,
WIPES effectively captures both low-frequency features
(e.g., walls and gates) and high-frequency details (e.g., tiles
and streetlamps) within the scenes. Although GSImage
demonstrates the highest rendering speed, our approach
maintains a competitive frame rate, ensuring efficient per-
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Table 3. Quantitative comparison on static novel view synthesis
with GES [11], which incorporates frequency guidance, across
the Mip-NeRF360, Tanks & Temples and DeepBlending datasets.
GES(3e-4) uses the default parameters from the original GES pa-
per, while GES(2e-4) adopts the same settings as 3DGS [14].

(a) Mip-NeRF360

Methods | Metrics | PSNR? SSIM1 LPIPS) Points].
GES(3e-4) 26.98 0.7208 0.3257 1.521M
WIPES(3e-4) 27.11 0.7958 0.2518 1.401M
GES(2¢e-4) 27.36 0.8148 0.2172 3.055M
WIPES (2e-4) 27.55 0.8164 0.2149 2.787TM
(b) Tanks & Temples
Methods | Metrics | PSNR? SSIM1 LPIPS] Points].
GES(3e-4) 23.44 0.8394 0.1954 0.913M
WIPES(3e-4) 23.76 0.8433 0.1914 0.931M
GES(2e-4) 23.59 0.8481 0.1772 1.601M
WIPES(2e-4) 23.78 0.8523 0.1709 1.591M
(c) DeepBlending
Methods | Metrics ‘ PSNR? SSIM? LPIPS| Points].
GES(3e-4) 29.59 0.9053 0.2492 1.243M
WIPES(3e-4) 29.72 0.9062 0.2501 1.137M
GES(2e-4) 29.55 0.9041 0.2434 2.059M
WIPES(2e-4) 29.82 0.9069 0.2383 1.933M

formance without sacrificing quality. This balance between
high-quality image reconstruction and rendering efficiency
underscores the practical effectiveness of our approach.

5.2. 5D Static Novel View Synthesis

Configurations. In this section, we evaluated WIPES on 13
scenes sourced from the Mip-NeRF360 [3], Tanks & Tem-
ples [16], and DeepBlending [12] datasets. Specifically,
we set the learning rate for the frequency coefficients to
2.5 x 1072 in WIPES. Differentiable rasterization was im-
plemented via custom CUDA kernels, while all other learn-
able parameters and experimental settings remained aligned
with those of 3DGS [14]. This configuration facilitated a di-
rect comparison with state-of-the-art approaches including
Plenoxels [9], INGP [25], Mip-NeRF360, and 3DGS.
Results. Tab. 2 presents a quantitative comparison be-
tween WIPES and leading 5D novel view synthesis ap-
proaches, demonstrating that our approach outperforms ex-
isting methods in most scenarios. Notably, WIPES exhibits
significant advantages in environments with complex fre-
quency components, such as large-scale outdoor scenes.
Additionally, Fig. 5 provides qualitative comparisons for se-
lected indoor and outdoor scenes from the dataset. The re-
sults indicate that WIPES excels at reconstructing reflective
environments (e.g., mirror frames and truck windshields)
and effectively captures high-frequency details (e.g., potted
plants and distant transmission towers).

Comparison with frequency-constrained approaches.
We compare WIPES with Gaussian-based approaches that
utilize frequency priors or guidance. Since FreGS [43] has
not released its source code, we present quantitative results
against GES [11]. GES employed a densify gradient thresh-
old of 3e~*, whereas the original 3DGS [14] used 2e~%.
To ensure fairness, we evaluated GES with both thresh-
olds. Experiments on the Mip-NeRF360, Tanks & Tem-
ples, and DeepBlending datasets (Tab. 3) demonstrate that
WIPES achieves superior reconstruction without requiring
frequency guidance. Additionally, when using identical
densify gradient thresholds, WIPES matches GES in param-
eter count, highlighting its ability to deliver enhanced re-
sults without relying on frequency priors or guidance while
maintaining comparable parameter efficiency.

5.3. 6D Dynamic Novel View Synthesis

Configurations. In this section, we employed the D-NeRF
[26] and NeRF-DS [37] datasets to assess performance un-
der varying dynamic conditions. WIPES utilized a fre-
quency coefficient learning rate of 2.5 x 1073, consistent
with the settings of D-3DGS [38]. All other learnable pa-
rameters were maintained in alignment with D-3DGS to
ensure a fair comparison. Differentiable rasterization was
achieved through the integration of custom CUDA kernels,
mirroring the configurations used in the 6D tasks.

Results. Tab. 4 presents the quantitative experimental re-
sults of WIPES in comparison with INR-based approaches
and Gaussian-based approaches referenced in our work.
WIPES exhibits enhanced expressive capabilities for var-
ious frequency components in dynamic scenes, enabling
similar reconstruction performance to D-3DGS with fewer
primitives. This indicates that the deformable INR in
WIPES more effectively learns the dynamic features of
primitives. Consequently, WIPES achieves superior perfor-
mance in both reconstruction quality and rendering speed.
Fig. 6 showcases qualitative results of WIPES across dif-
ferent dynamic datasets. It is evident that WIPES delivers
more detailed and accurate results for both low-frequency
elements, such as cloth, and high-frequency textures.

6. Conclusion

In this paper, we have proposed WIPES, a univer-
sal wavelet-based visual primitive for representing multi-
dimensional visual signals. We have enhanced the Morlet
function by designing a universally applicable and contin-
uously differentiable wavelet primitive. Without relying on
any frequency guidance or priors, WIPES has adaptively
captured various real-world visual signals with rich fre-
quency components, achieving impressive results in recon-
struction tasks for 2D image representation, SD static, and
6D dynamic novel view synthesis. To facilitate WIPES, we
have developed a fast differentiable wavelet rasterizer that
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Table 4. Quantitative comparison of dynamic novel view synthesis on D-NeRF and NeRF-DS datasets.

Methods|Metrics D-NeRF NeRF-DS
PSNR? SSIM? LPIPS| FPSt PSNRt SSIM? LPIPS| FPSt
D-NeRF [26] 30.43 0.9572 0.0724 0.117 - - - -
NeRF-DS [37] - - - - 23.58 0.8582 0.2496 0.008
D-3DGS [38] 39.16 0.9895 0.0132 71.7 23.69 0.8423 0.1976 38.36
WIPES 39.52 0.9899 0.0127 84.0 23.95 0.8527 0.1762 42.45
WIPES D-3DGS D-NeRF

f*b';b,]

e

b

4

Figure 6. Qualitative comparison on D-NeRF and NeRF-DS datasets. Our approach demonstrates more accurate registration, delivering

outstanding performance in both static and dynamic regions.

seamlessly integrates into Gaussian-based pipelines, en-
hancing rendering speed and efficiency during reconstruc-
tion. We have conducted extensive experiments on several
challenging datasets across different dimensions, demon-
strating the generality and effectiveness of our approach
through both qualitative and quantitative evaluations.
However, our framework has limitations. The current
Gaussian-based training pipeline has restricted scene

representation due to fixed hyperparameters. Additionally,
gradient-based densification in Gaussian approaches has
caused instability and performance variability. Future work
will aim to develop a more robust and efficient wavelet-
based training and rendering framework to address these
issues, fully leveraging WIPES’s potential and advanc-
ing continuous signal representation in computer vision.
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