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Question:

What is he doing?

Answer:

Walk towards the cabinet.

Question:

What might he do next?

Answer:

Operate the microwave.

Question:

How is he interacting with the laptop? 

Answer:

He picks up the laptop.

Question:

Can he move on without encountering obstacles?

Answer:

No, there is a chair blocking his moving path.

Question:

As an embodied assistant, what can you 

do to help him?

Answer:

Since he is holding the laptop, and the 

chair is blocking his way, I can help by 

moving the chair to the side of the bed, 

out of the person’s way.

Question:

What is his position?                       Answer:

At the corner of the sofa.

Question:

How can he get to the refrigerator?

Answer:

Keep his moving direction, turn left at the 

end of the sofa, and walk straight.
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Figure 1. (a) Illustration of HIS-QA task, which understands human behaviors in scene context. HIS-QA tasks span from basic perception
tasks, such as recognizing human activity, interaction, and position in scene, to higher order functions like prediction, reasoning, planning,
and navigation, facilitating embodied intelligence in real world. (b) Illustration of HIS-GPT. Unlike previous models that focus solely on
either scene or human understanding, HIS-GPT could jointly perceive scene and human modalities to tackle the challenges of HIS-QA.

Abstract

We propose a new task to benchmark human-in-scene un-
derstanding for embodied agents: Human-In-Scene Ques-
tion Answering (HIS-QA). Given a human motion within a
3D scene, HIS-QA requires the agent to comprehend hu-
man states and behaviors, reason about its surrounding
environment, and answer human-related questions within
the scene. To support this new task, we present HIS-
Bench, a multimodal benchmark that systematically eval-
uates HIS understanding across a broad spectrum, from
basic perception to commonsense reasoning and plan-
ning. Our evaluation of various vision-language models
on HIS-Bench reveals significant limitations in their abil-
ity to handle HIS-QA tasks. To this end, we propose
HIS-GPT, the first foundation model for HIS understand-
ing. HIS-GPT integrates 3D scene context and human mo-
tion dynamics into large language models while incorpo-
rating specialized mechanisms to capture human-scene in-

teractions. Extensive experiments demonstrate that HIS-
GPT sets a new state-of-the-art on HIS-QA tasks. We
hope this work inspires future research on human be-
havior analysis in 3D scenes, advancing embodied AI
and world models. Codes and data will be available at
https://github.com/ZJHTerry18/HumanInScene.

1. Introduction
In recent years, intelligent systems for 3D vision-language
understanding have witnessed remarkable progress [12, 25,
48, 49, 51, 56], largely driven by the advancements in Large
Language Models (LLMs) [15–17, 21, 58]. Specifically, 3D
scene LLMs [24, 30, 32, 55] excel in tasks such as caption-
ing and grounding within 3D layouts, whereas 3D human
LLMs [34, 39, 43, 65] exhibit strong capabilities in open-
ended interpretations of human poses and motions. By em-

*Corresponding author.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4317



bracing 3D world, these models significantly promote the
developments in robotics and embodied AI.

Despite significant progress in separately perceiving 3D
scenes and humans, a critical yet underexplored challenge
remains: human-in-scene (HIS) understanding. This task
requires an agent to jointly comprehend human subjects and
their surrounding environments to capture intricate interac-
tions and relationships. Such capability is essential for ac-
curately recognizing fundamental human states (e.g., posi-
tioned in front of the TV) and actions (e.g., sit on a chair)
in real-world scenarios. With effective HIS understanding,
embodied agents could reason, predict, and react based on
their observations of human-scene dynamics, thereby serv-
ing as versatile assistants in applications such as household
robots. However, the current limitations of 3D LLMs to in-
tegrate human and scene perception largely hinder further
advancements in embodied intelligence.

To bridge this critical gap, we introduce HIS-QA, a
novel task for Human-In-Scene Question Answering, where
an agent answers questions about human states and behav-
iors within a 3D scene, as depicted in Fig. 1 (a). To sys-
tematically evaluate this task, we propose HIS-Bench, the
first multimodal benchmark tailored for HIS understand-
ing. As shown in Tab. 1, HIS-Bench differs from previous
benchmarks by integrating both human and scene modal-
ities for open-ended, language-guided understanding. A
major challenge in constructing HIS-Bench is the lack of
detailed textual annotations in existing HIS datasets [4, 18,
28, 29, 35, 63], which primarily provide coarse action labels
(e.g., walking, sitting). Additionally, the intrinsic 3D spatial
complexity of human-scene interactions makes it impracti-
cal to generate precise annotations using proprietary models
like GPT-4o [33]. To overcome this limitation, we develop
a specialized data annotation pipeline that combines ad-
vanced 3D understanding tools with rule-based algorithms
for text annotations. This pipeline enables the generation
of rich annotations covering human actions, scene proper-
ties, and human-scene interactions. Built upon these de-
tailed annotations, HIS-Bench comprises 800 questions or-
ganized hierarchically into 3 general abilities, 7 core tasks,
and 16 sub-tasks, spanning a broad spectrum from basic hu-
man activity perception to advanced reasoning, prediction,
and planning. This comprehensive benchmark establishes a
new standard for evaluating HIS understanding.

Utilizing HIS-Bench, we systematically evaluate HIS-
QA with existing vision-language models [7, 32, 33, 36].
We observe that existing models fall short in HIS under-
standing, largely due to their insufficient capacity for jointly
modeling human-scene characteristics in 3D space. To ad-
dress the above limitation, we propose HIS-GPT, a mul-
timodal large language model tailored for HIS understand-
ing. As shown in Fig. 1 (b), HIS-GPT fundamentally differs
from prior 3D LLMs [11, 30, 32] by jointly interpreting

3D scenes and humans. Specifically, HIS-GPT integrates
a scene encoder [64] and a motion encoder [43] to extract
structured representations of 3D environments and human
motions. These representations are subsequently processed
by the core LLM [15], enabling seamless fusion of scene
and motion cues to enhance capabilities on HIS tasks.

Beyond previous 3D LLMs that focus on perceiving a
single modality (either human or scene), a key challenge
in HIS understanding lies in accurately modeling human-
scene interactions. To this end, HIS-GPT introduces two
critical components. On one hand, an Auxiliary Interac-
tion (AInt) module enhances interactive cues within each
modality, through incorporating multiple training objectives
that require a joint understanding of human and their sur-
roundings. By enforcing these constraints, HIS-GPT is
guided to learn enriched, contextually aware representa-
tions of human-scene interactions. On the other hand, a
Layout-Trajectory Position Encoding (LTP) module gen-
erates position embeddings by encoding the spatial distribu-
tion of major objects in the scene layout, along with the tem-
poral trajectories of human motion at each timestamp. By
infusing fine-grained spatiotemporal knowledge into latent
representations of scene and human, LTP module enhances
both modalities, effectively capturing the dynamic interplay
between human motions and 3D environments.

To our knowledge, HIS-GPT is the first approach to ad-
dress the tasks of human-in-scene understanding. Extensive
experiments demonstrate that HIS-GPT achieves state-of-
the-art performance on HIS-QA task, establishing a strong
foundation for future research.

2. Related Work
3D Scene-Language Understanding. 3D scene-language
understanding is a critical technique for agents to inter-
act with the real world. It contains a wide range of
tasks, including 3D captioning [10, 13], 3D visual ground-
ing [3, 54, 59], and 3D question answering [5, 47]. Re-
cent approaches adopt LLMs to tackle various 3D scene un-
derstanding tasks within a unified framework [11, 24, 30–
32, 55, 62], benefiting from the synergies of multi-task
learning.

Despite their success in interpreting 3D scenes, these
models are confined to tasks centered solely on scenes, and
cannot handle 3D environments that include human ele-
ments. Some efforts [44, 53, 61] explore situated scene un-
derstanding by assuming the presence of a subject in 3D
scenes. However, these approaches rely on explicit text in-
puts or first-person views to establish a subject’s location,
while also lacking full-body pose representation. In con-
trast, our proposed HIS-QA requires to directly model both
3D scene and humans from vision modalities, while being
aware of the human pose. This setting allows for a more
comprehensive perception of human states within the scene.
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Q: What is the person doing? 

A: The person is tidying up the bed.

Q: What is the person facing at the beginning? 

A: The table.

Q: Which part is in contact with the table?

A: Left elbow and left wrist.

Q: Can you help me find a 

comfortable place to sit down?

A: There is an armchair behind you, 

next to a table and a black chair.

Q: What can you do to assist the person?

A: Since he is writing on the whiteboard, 

I can bring him a marker or eraser to 

make his task easier. 

Q: Can the person directly walk to the closet 

in a straight line?

A: No, because there is a bed 

between him and the closet, 

he needs to bypass it.

Q: Where is the person likely to move next?

A: The person is likely to move closer 

to the couch on the left and remain 

near the table in the middle.

Figure 2. (a) Task taxonomy and data samples of HIS-Bench. HIS-Bench is structured into 3 general abilities and 7 core tasks. (b)
Statistics of HIS-Bench. HIS-Bench is diverse in term of scene types, motion lengths, and word distributions.

Table 1. Overview of existing benchmarks related to 3D scene and
human. ‘mo.gen.’, ‘det.’, ‘cap.’ and ‘q.a.’ refers to motion genera-
tion, detection, caption, and question-answering, respectively.

Benchmark Task Modalities Language task
Scene Human Language Open-ended Text generation

TRUMANS [35] mo.gen. ✓ ✓ ✗ - -

ScanRefer [8] det. ✓ ✗ ✓ ✗ template
SQA3D [44] q.a. ✓ ✗ ✓ ✗ template
OpenEQA [46] q.a. ✓ ✗ ✓ ✓ human

Motion-X [40] cap. ✗ ✓ ✓ ✓ auto
MoVid-Bench [9] q.a. ✗ ✓ ✓ ✓ auto

HIS-Bench(Ours) q.a. ✓ ✓ ✓ ✓ human&auto

3D Human-Language Understanding. 3D human-
language understanding primarily focuses on recognizing
human poses or motions [19, 20, 27, 37]. Recently, several
works introduce LLMs to interpret human pose and mo-
tions [9, 23, 34, 39, 43, 57, 65], addressing tasks like motion
captioning [26, 40] and question-answering [9, 22]. How-
ever, these approaches overlook the environmental context
of humans, constraining their ability to comprehensively
recognize human status. To overcome this limitation, we
present HIS-GPT, which processes human motions along-
side scene contexts, enabling a more comprehensive under-
standing of human behavior in real-world environments.

3. HIS-Bench

To explore the problem of understanding human behaviors
in 3D scenarios, we propose HIS-QA, a new task for ad-
dressing human-in-scene understanding of AI agents. A
problem instance in HIS-QA can be formulated as a quadru-
plet ⟨S,M,Q,A⟩. S denotes 3D scene in point cloud. M
denotes 3D human motion sequence, with each frame char-
acterized by a SMPL pose [41]. Q refers to a natural lan-
guage question and A is the ground-truth answer. The agent
is tasked with generating an answer Â = Agent(S,M,Q)

that closely aligns with the true answer A.
However, existing 3D scene QA [5, 44] and 3D human

QA benchmarks [9, 22] focus solely on scene or human un-
derstanding in isolation, overlooking human-scene interac-
tions. To address this gap, we propose HIS-Bench, the first
dedicated benchmark for HIS-QA. Next, we introduce the
task taxonomy and data generation pipeline for HIS-Bench.
More details on constructing HIS-Bench are provided in
Appendix A, and additional examples of HIS-Bench are
provided in Appendix B.

3.1. Task Taxonomy
As shown in Fig. 2, HIS-Bench defines a structured taxon-
omy of benchmark tasks, encompassing three fundamental
abilities: basic perception, complex reasoning and embod-
ied applications. These categories comprise 7 core tasks,
further divided into 16 sub-tasks:

• Activity. (1) Single Activity: Recognize the human activ-
ity within the scene. (2) Sequential Activity: Recognize
the human activity before or after a specific action.

• Spatial Relationship. (3) Human Position: Identify the
human’s precise location in the scene. (4) Body Orienta-
tion: Identify the human body’s orientation relative to the
scene. (5) Object Orientation: Identify the object that is
at a given orientation relative to the human.

• Human-object Interaction. (6) Interaction Type: Rec-
ognize the type of human-object interaction. (7) Interact-
ing Object: Recognize the object the human is interacting
with. (8) Contact Part: List the human body parts in con-
tact with a given object.

• Analysis. (9) Focus Analysis: Infer the object or area the
human is attending to. (10) Situated Analysis: Deduce
scene-related knowledge from the human’s perspective,
such as affordance and approachability.
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Scene segmentation map

Scene Annotations

ID: 1

Label: window

Box: [0.5,-0.2,0.3,1.0,0.1,1.1]

Ref: ‘on the wall’,

        ‘in front of table’..

ID: 2

Label: table

Box: [1.0,0.3,0.2,1.1,0.4,0.5]

Ref: ‘on the floor’,

        ‘between two chairs’..

       

Frame-level detailed annotations

…

Human Motion Annotations

Contact: [left foot, floor]  

[right foot, floor]

Rule-based

Position: [left, 0.3, chair]         

Pose: 

[facing to, 0.5, table]

Contact: [right foot, floor]

[left hand, table]

Position: [left, 0.2, window]

Pose: Slightly bent forward, left arm bent at elbow.. 

[facing to, 0.1, table]

PoseScript
Torso is straight, left leg in front of right leg..

…

…

…

…

…

Motion-level Activity: walking to the table between to chairs. 

([body_part, contact object])

([direction, distance, object])
Rule-based

Rule-based

PoseScript

Rule-based

Motion sequence

Figure 3. Text annotation pipeline for HIS data. For scene an-
notations, we segment the 3D scene to derive instance-level la-
bels, bounding boxes, and reference expressions. For motion an-
notations, we obtain motion-level activities from existing labels
or video MLLMs. Additionally, expert models and rules are used
to generate frame-level annotations, including pose, human-scene
contact, and human position.

• Prediction. (11) Intent Prediction: Predict the human’s
next intended activity. (12) Movement Prediction: Predict
the human’s future trajectories and spatial positions.

• Dialogue. (13) Situated Dialogue: Complete a conversa-
tion with the human regarding the scene context.

• Planning. (14) High-level Task: Provide a general plan
to assist the human based on their status. (15) Low-level
Task: Provide step-by-step instructions for assisting the
human. (16) Navigation: Provide a route to guide the
human towards a specified destination.

3.2. Data Generation Pipeline
Text Annotation. Acquiring multimodal resources for 3D
HIS data is challenging, as existing datasets primarily con-
tain 3D scene-language [24, 54] or human-language [40,
45], but lack the necessary human-in-scene descriptions es-
sential for HIS understanding. To bridge this gap, we pro-
pose a multi-faceted annotation pipeline that generates rich
and comprehensive human-scene descriptions.

As shown in Fig. 3, our multi-faceted annotation pipeline
comprises scene annotations and human motion annota-
tions. For Scene Annotations, following [24], we utilize
3D scene segmentation tools [50] and visual caption mod-
els [38] to generate semantic labels, 6D bounding boxes,
and referring expressions for key objects in the scene. For
Human Motion Annotations, we first generate motion-
level activities: for scene data with recorded videos, a video
captioner [36] is prompted to generate descriptions on hu-
man activities. For datasets lacking video recordings, we
directly adopt the action labels provided in the original an-
notations. Additionally, we generate frame-level detailed

annotations for key frames in the motion sequence, includ-
ing: (1) Pose: PoseScript [19] is used to generate detailed
narrations on part-level body postures. (2) Contact: Utiliz-
ing SMPL fitting model [41], we extract human joint loca-
tions and annotate those that establish contact with the 3D
mesh of scene objects. (3) Position: We design a rule-based
approach to compute object orientation and distance rela-
tive to the human, categorizing these spatial relationships
into predefined classes in natural language format.
Benchmark Construction. First, we collect 3D HIS
data from PROX [28] and GIMO [63], two high-quality
HIS datasets covering diverse scenarios and human activ-
ities. Then, we apply our multi-faceted text annotation
pipeline to generate linguistic labels, which are then fed
into GPT [2] with self-crafted prompts to create multi-
plex question-answer (QA) pairs, forming the foundation of
HIS-Bench. This process enables the construction of sam-
ples for 13 out of 16 sub-tasks. However, for focus analysis,
situated analysis, and navigation tasks, existing annotations
are insufficient. So we recruit human annotators to manu-
ally label these data. To ensure data quality, we manually
verify each sample to preclude incorrectness or ambiguity
in answers. After these procedures, we finalize HIS-Bench
with 800 unique questions (each sub-task has 50 questions)
covering 31 scenes and 500 motion segments, possessing
diversity across scene types, motion patterns, and linguis-
tic expressions. The statistics of HIS-Bench is presented
in Fig. 2 (b).

4. HIS-GPT
Existing vision-language models [9, 11, 32] struggle to
jointly model 3D human and scene modalities, limiting their
effectiveness in HIS understanding. In this work, we pro-
pose HIS-GPT, a multi-modal framework designed to in-
tegrate human motion with scene context information, en-
abling more comprehensive HIS understanding.

4.1. Model Architecture
Overview. As shown in Fig. 4, HIS-GPT takes as input
a 3D scene S, a human motion sequence M and a text
instruction I. The scene is represented as a point cloud
S ∈ RP×6, with each point characterized by 3D coordi-
nates and RGB values. The motion M = {Mi}Ti=1 is a
sequence of T SMPL human poses. The 3D scene S and
human motion M are encoded separately into latent embed-
dings using dedicated encoders. To enhance human-scene
interactions, we introduce two key modules: the Auxiliary
Interaction (AInt) module, which injects interaction-aware
knowledge into the scene and motion embeddings, and
the Layout-Trajectory Position Encoding (LTP) module,
which encodes spatial and temporal relationships between
scene and human motions. Finally, the enriched embed-
dings from both modalities are projected and prefixed to the
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Figure 4. (a) HIS-GPT overall architecture. HIS-GPT uses separate pretrained encoders for scene and motion to extract embeddings,
which are then combined with instructions and processed by the LLM. (b) Auxiliary Interaction (AInt) module: Enhance human-scene
interactions through three auxillary sub-tasks. (c) Layout-Trajectory Position Encoding (LTP) module: Encode spatial and temporal
relationships into position embeddings, injecting contextual knowledge to enhance HIS understanding.

text instruction I, before being fed into the LLM to generate
natural language answers.
Scene Encoder. Following [32], we extract object features
using a pretrained 3D encoder [64], with object point clouds
derived from a 3D scene segmentor [50]. The scene encoder
generates a set of scene embeddings

{
si ∈ Rd

}N

i=1
for 3D

scene S , where N denotes the number of detected objects
and d is the latent embedding dimension.
Motion Encoder. Following [43], we adopt a motion
VQ-VAE [52] as the motion encoder. The motion encoder
maps human motion M to a set of motion embeddings{
mt ∈ Rd

}T

t=1
derived from the learned motion codebook.

Auxiliary Interaction (AInt) Module. However, the scene
and human motion embeddings are generated individually,
lacking essential human-scene interactive cues. To address
this, we propose AInt, which incorporates a set of auxiliary
tasks to guide scene and motion embeddings in capturing
these interactive cues, as shown in Fig. 4 (b):

(1) Activity Classification. As human activities involve
interactions with surrounding scenes, we introduce an ac-
tivity classification task to predict human activity within the
scene. In detail, we first perform scene context fusion by
integrating motion embeddings with the features of objects
likely to be involved in the activity. Specifically, for the mo-
tion mt, we identify the k nearest objects based on spatial
proximity to mt, and fuse their latent embeddings with the
motion embedding:

m̃t = mt +Avg (st1 , ..., stk ) , (1)

where t1 ∼ tk denotes the indices of the k nearest objects
for mt, and Avg(·) is the averaging operation. The fused
motion embedding is then passed through a multi-layer per-
ceptron (MLP) to predict the human activity category, su-

pervised by a cross-entropy loss:

Lact = CE (pa,SM(MLP(Avg(m̃1, . . . , m̃T )))) , (2)

where pa stands for the ground-truth activity category, SM
denotes the softmax operation, and CE denotes the cross-
entropy loss function.

(2) Spatial Relation Detection. Accurately distinguish-
ing spatial relations between human and scene context is
crucial for modeling interactive cues. To enhance this capa-
bility, we introduce a spatial relation detection task to clas-
sify human-scene spatial relations. Specifically, we define 8
categories (e.g., ‘facing’) to characterize human-object spa-
tial relations. Given the scene embedding si and motion
embedding mt, AInt module predicts the spatial relation
between the i-th object and human motion at t-th frame,
supervised by a cross-entropy loss:

Lspa =
∑
i,t

CE (psit, SM(W spa
s (si) ·W spa

m (mt))) , (3)

where psit stands for the ground-truth spatial relation label
between the i-th object and t-th motion frame, W spa

s and
W spa

m are linear projection weights.
(3) Contact Detection. Another crucial aspect for

human-scene interactions is physical contact between hu-
man body and surrounding objects. To capture these
cues, we introduce a contact detection task, which predicts
whether an object is in contact with a specific human body
part, supervised by a binary cross-entropy loss:

Lcont =
∑
i,t

BCE(pcit, σ(W
cont
s (si) ·W cont

m (mt))), (4)

where pcit represents the ground-truth contact label, with
[pcit]l = 1 (or 0) indicating that the i-th object is in contact
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(or not) with the l-th body joint at t-th motion frame, W cont
s

and W cont
m are projecting weights. σ denotes the sigmoid

function and BCE denotes binary cross-entropy function.
Layout-trajectory Position Encoding (LTP) Module.
Traditional position encoding in MLLMs primarily model
sequential relationships among tokens, overlooking the
complex spatiotemporal relationships between human and
their surrounding environment. To this end, we propose
LTP, which generates position embeddings based on spa-
tial locations and temporal orders of human and scene in-
put. By globally aligning spatial and temporal information
across human motion and scene modalities, LTP enhances
contextural awareness, enabling each modality to more ef-
fectively incorporate relevant information from the other.

As shown in Fig. 4, LTP module consists of a Spatial
Fourier-transform (SF) and a Temporal Fourier-transform
(TF) layer to encode 3D spatial coordinates and temporal
information, respectively. Specifically, given a 3D coordi-
nate µ = [x, y, z] and a timestamp t ∈ [1, T ], ST and TF
layers are implemented as follows:

SF (µ) = sincos(ϕSF · 2πµ), TF (t) = sincos(ϕTF · 2πt), (5)

where ϕSF and ϕTF are linear projection weights, and
sincos(·) denotes the concatenation of sine and cosine re-
sults along latent dimension.

Leveraging SF and TF layers, for human motion modal-
ity, LTP generates a position encoding vector emt =
SF (µt) + TF (t) for the t-th motion frame, based on its
3D location µt = [xm

t , ymt , zmt ] and timestamp t. For 3D
scene modality, LTP module yields a position encoding vec-
tor esi = SF (µi) +

1
T

∑
t TF (t) for the i-th object, based

on its 3D location µi = [xs
i , y

s
i , z

s
i ]. Note that we apply

averaging to the temporal fourier transformations across all
motion timestamps, as the object presents throughout the
entire motion sequence. Finally, we aggregate the posi-
tion encodings into the embeddings of each modality as:
fs
i = si+ esi , fm

t = mt+ emt . In this manner, we obtain la-
tent features F s = {fs

i }
N
i=1 and Fm = {fm

t }Tt=1 for scene
and motion modality, respectively.
LLM. After the LTP module, the latent scene feature F s

and motion feature Fm are fed into a decoder-only LLM.
Given the test instruction I and answer A, the LLM predicts
the probability distribution of potential next answer token at
each step, P

(
A[n]|F s, Fm, I,A[<n]

)
, in an autoregressive

manner. The objective is to maximize the log-likelihood of
this predicted probability distribution, denoted as Lllm =
−
∑

n logP
(
A[n]|F s, Fm, I,A[<n]

)
.

4.2. Training
To effectively align the 3D scene and human modalities
with the LLM, we propose a two-stage training strategy:
Stage1: Modality alignment: In this stage, we use the an-
notation pipeline described in Sec. 3.2 to craft detailed HIS

captions for aligning input modalities with LLM. Addition-
ally, we add scene captions and motion captions to further
enhance the alignment. This stage uses the autoregressive
loss of LLM along with the auxiliary tasks in AInt module
for training: L = Lllm+λactLact+λspaLspa+λcontLcont,
where λact, λspa and λcont are hyperparameters.
Stage2: HIS instruction tuning: In this stage, we synthe-
size a diverse instruction-following HIS data corpus, which
covers a wide range of capabilities and formats for tuning.
We only fine-tune HIS-GPT with Lllm to ensure the quality
of instruction following.

In total, our training data comprises 60k visual captions
and 700k instruction tuning samples, covering over 750 di-
verse scenes. More details about the training data are pro-
vided in Appendix C.2.

5. Experiments

5.1. Experimental Setup

HIS-QA Baselines. Inspired by the recent advances in
vision-language models, we investigate how well these
models could address the proposed HIS-QA task. (1) 3D
scene LLMs. Current 3D scene LLMs are incapable of pro-
cessing sequential human motion. To adapt these models
for HIS-QA, we convert the human body from a randomly
selected frame into a point cloud format, and input it along-
side the scene mesh into the 3D scene LLM. We employ
LL3DA [11] and Chat-Scene [32] for evaluation. (2) Vi-
sion LLMs. Since existing vision LLMs cannot directly
process 3D input, we render HIS data into video segments
and input them into vision LLMs. We select models from
the GPT [33], Qwen [6], and LLaVA [36] families. (3)
LLMs w/ Frame Captions. To leverage strong image cap-
tioners, we first derive frame-level captions from rendered
HIS videos, and input these captions into a LLM to answer
HIS questions. We adopt Qwen-vl-max [6] and LLaVA-
OV [36] as captioners, and GPT-4 [2] as LLM. (4) LLMs
w/ Scene&Motion Captions. To extract linguistic infor-
mation from HIS data, we separately use captioners for 3D
scene and 3D human motions, and feed these scene and mo-
tion captions into an LLM to perform HIS tasks. Specifi-
cally, we use LL3DA [11], AvatarGPT [65], and GPT-4 [2]
as scene captioner, motion captioner, and LLM respectively.
The detailed implementation of HIS-QA baselines is pro-
vided in Appendix C.3.
Implementation Details for HIS-GPT. We adopt Vicuna-
1.5 [15] as LLM backbone, and AdamW [42] optimizer for
training. HIS-GPT is trained in two stages: stage 1 runs for
100k steps with a learning rate of 1 × 10−4, while stage 2
runs for 50k steps with a reduced learning rate of 5× 10−5.
The batch size is set to 16 for both stages. To preserve the
original capabilities of the backbones, we keep the scene
encoder, motion encoder and LLM frozen throughout train-
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Table 2. Quantitative evaluation results on HIS-Bench. We run the evaluation for three times and report the average score for each
dimension. The full score for each dimension is 100. ‘Avg.’ is the average score across all 16 dimensions. The best and second-best results
are boldfaced and underlined, respectively.

Methods Activity Spatial Relationship Human-object Interaction Analysis Prediction Dialogue Planning Avg.
AC SA HP BO OO IT IO CP FA SA IP MP HT LT NA

3D Scene MLLMs

LL3DA [11] 9.0 4.0 3.5 4.7 19.0 4.0 10.5 11.7 6.5 17.2 4.2 6.3 4.7 1.0 0.3 0.0 6.7
Chat-Scene [32] 1.8 16.5 0.5 6.5 5.2 3.0 24.3 14.7 3.7 18.3 6.3 7.3 3.5 10.0 8.8 1.3 8.2

Vision LLMs

GPT-4v [1] 10.5 22.3 7.2 34.7 25.0 24.2 49.2 24.7 5.7 28.3 12.2 16.0 58.7 33.5 24.2 10.5 24.2
GPT-4o [33] 24.3 36.0 9.7 36.5 31.3 32.7 46.0 31.2 31.3 39.7 23.3 17.7 36.5 54.3 35.3 15.0 31.3
Qwen-VL-max [6] 25.3 32.0 7.7 31.8 13.2 25.0 54.7 31.7 9.0 17.8 19.3 9.7 33.0 31.5 26.2 8.7 23.5
Qwen2.5-VL [7] 10.2 11.0 5.5 27.3 18.3 16.7 49.0 29.7 2.8 20.3 12.5 16.7 15.5 21.5 20.0 7.7 17.8
LLaVA-OV [36] 15.3 7.7 9.2 16.0 14.3 16.7 41.3 27.7 1.0 14.5 9.5 7.5 16.7 17.8 8.2 4.0 14.2
LLaVA-Video [60] 11.3 16.2 4.0 20.8 9.0 17.8 27.8 29.0 13.8 21.5 12.5 14.0 20.8 19.7 16.0 6.2 16.3

LLMs w/ Frame Captions

LLaVA-OV [36]+GPT-4 [2] 9.0 10.3 5.5 22.3 16.0 14.7 29.3 18.0 2.7 21.2 27.5 13.0 53.5 22.7 15.3 5.5 17.9
Qwen-VL-max [6]+GPT-4 [2] 5.3 6.0 3.2 8.3 10.0 3.5 29.7 13.0 0.6 6.0 14.5 5.3 22.0 6.5 1.7 4.8 8.8

LLMs w/ Scene&Motion Captions

LL3DA [11]+AvatarGPT [65]+GPT-4 [2] 1.3 0.5 2.5 5.7 0.3 2.5 21.5 12.8 0.0 3.7 6.0 2.7 13.3 3.3 2.7 1.0 5.0

HIS Foundation Models (Ours)

HIS-GPT 39.3 49.8 37.0 57.3 32.0 52.8 58.3 55.5 33.8 48.2 50.5 50.0 53.2 55.7 58.0 48.0 48.7

Table 3. Ablations on the key components of HIS-GPT. ‘act’, ‘spa’
and ‘cont’ denotes the activity classification, spatial relation detec-
tion and human-scene contact detection task in AInt module. ‘PE’
denotes position encoding methods.

Methods AInt PE HIS-Bench
act spa cont Act. Spa. HoI. Avg.

1 sine 41.8 34.7 45.8 43.0

2 ! ! ! sine 43.5 35.3 51.0 44.1
3 LTP 43.5 38.8 50.3 46.0
4 ! LTP 44.8 36.5 47.5 45.3
5 ! LTP 42.4 39.7 48.8 47.3
6 ! LTP 43.3 38.5 52.0 46.9

7(Ours) ! ! ! LTP 44.6 42.1 55.5 48.7

ing, fine-tuning only the projection layers, AInt and LTP
modules. The loss weights λact, λspa and λcont are set to
0.5, 0.5 and 0.1, determined by grid search.
Evaluation Metrics of HIS-Bench. Considering that HIS-
Bench consists of open-ended questions, we use GPT-4 as
an automatic evaluator to assess answer correctness. Fol-
lowing [14], we prompt GPT-4 to assign a score between 0
and 2 for each answer. Since each task in HIS-Bench con-
sists of 50 questions, the full score for each task is 100.

5.2. Quantitative Results
Tab. 2 provides the quantitative results on HIS-Bench.
Based on the results, we summarize our findings as follows:
Question types. From Tab. 2, we observe that almost
all models perform relatively well on dialogue (SD) and
task-planning (HT, LT), likely because these dimensions are
closely aligned with the conversation and reasoning abili-
ties inherent in original LLMs. In contrast, tasks requir-
ing a strong understanding of spatial characteristics, such as
Human Position (HP) and Navigation (NA), present signif-

Table 4. Ablations on the training strategy of HIS-GPT. ‘HIS’,
‘Scene’ and ‘Motion’ denotes the usage of HIS, scene and motion
data in stage 1 training.

Stage 1 Stage 2 HIS-Bench
HIS Scene Motion Act. Spa. HoI. Ana. Pre. Dia. Pla. Avg.

! ! ! 39.3 30.2 41.0 32.8 40.5 35.5 41.8 37.5
! 39.0 31.3 47.8 37.0 46.0 47.5 50.8 42.6

! ! 42.2 36.5 51.8 37.8 47.0 41.5 52.3 45.8
! ! ! 39.0 39.7 46.9 38.8 46.0 42.5 51.2 44.0
! ! ! 39.5 42.8 49.7 41.0 46.0 48.5 52.5 46.0

! ! ! ! 44.6 42.1 55.5 41.0 50.3 53.2 53.9 48.7

icant challenges, highlighting the need for the development
of more advanced spatial interaction modeling capabilities.
HIS-QA baselines results. Among all the baselines, vi-
sion LLMs demonstrate significantly superior performance
compared to other model families. This can be attributed to
their outstanding instruction-following abilities which en-
able them to effectively follow HIS-QA questions, as well
as their robust visual generalization to rendered videos.
While 3D scene LLMs excel in 3D understanding, their
ability to generalize to 3D human input is limited due to
the absence of human-centric data in their training corpus.
Similarly, LLMs w/ captions are restricted by the lack of
detailed spatial information and human-scene interactions
within their generated captions, leading to a weaker under-
standing of complex human-in-scene behaviors.
HIS-GPT results. As evident in Tab. 2, HIS-GPT sig-
nificantly outperforms all HIS-QA baselines, achieving an
average score exceeding the highest-performing baseline,
GPT-4o, by 17.4 points. Compared to other vision-language
models, HIS-GPT demonstrates particular strength in tasks
requiring a nuanced understanding of spatial relations be-
tween humans and their 3D surroundings, such as Human
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USER: What is the person doing?

Qwen-VL: The person is standing.

HIS-GPT: He is walking.

USER: Where is the person standing in relation 
to the couch and the cabinet ?

GPT-4o: He is facing the couch and cabinet.

HIS-GPT: He is between the couch and cabinet.

USER: Which object does the 
person's left foot make contact with?

HIS-GPT: A desk.

GPT-4o: The chair.

USER: What is the person 
currently focusing on?

GPT-4o: The keyboard.

HIS-GPT: The floor.

USER: What might the person intend to do next?

GPT-4o: The person appears to be sitting at a desk or table, possibly 
interacting with something on it. They might intend to continue working, 
studying, or using a computer.

HIS-GPT: Based on the given motion sequence, it appears that the 
person is getting up from the couch. Their next intended action could be to 
move away from the couch or transition to a different location in the room.

USER: I'm looking for my laptop. 
Can you tell me where it is?

GPT-4v: Based on the information 
provided, it appears that there is a 
laptop on the table.

HIS-GPT: Sure! It's on the coffee 
table right in front of you.

USER: How to return to the chair’s location?

GPT-4v: To return to the chair's location, the figure would need to 
reverse its path and move back towards the chair.

HIS-GPT: To return to the chair's location, you should follow 
these steps: 1. Stand up from the bed. 2. Move away from the 
nightstand on your right side. 3. Walk past the dresser and the door. 
4. Continue walking straight ahead until you reach the chair.

Activity Spatial Relation Human-object Interaction Analysis

Prediction Dialogue Planning

Figure 5. Qualitative comparisons of HIS-GPT and other baselines on HIS-QA. Red/green color denotes wrong/correct outputs.

Position (HP) and Contact Part (CP). Also, HIS-GPT per-
forms well in prediction tasks, showcasing its ability to ac-
curately infer human states and perform complex reasoning.

5.3. Ablation Studies
We conduct ablation studies to validate the effectiveness of
HIS-GPT. Additional ablations, including loss weight and
LLM tuning strategy, are provided in Appendix D.
Ablations on AInt module. Tab. 3 reports the ablation
studies on the AInt module. The results indicate that inte-
grating AInt increases the average score on HIS-Bench by
1.1, demonstrating its effectiveness for human-in-scene un-
derstanding. To further analyze its impact, we break down
the contributions of individual sub-tasks within the AInt
module. As shown in Tab. 3, activity classification (act),
spatial relation detection (spa), and contact detection (cont)
tasks improve their corresponding HIS-Bench core tasks
(Activity, Spatial Relationship, and HoI) by 1.3, 0.9, and
1.7, respectively. These results indicate that explicitly mod-
eling fine-grained human-scene interactions through AInt
substantially benefits the overall capabilities of HIS-GPT.
Ablations on LTP module. As shown in Tab. 3, integrat-
ing the LTP module leads to a 3.0 average score gain on
HIS-Bench, demonstrating its effectiveness. Furthermore,
when AInt and LTP are used jointly, they achieve a sig-
nificant 5.7 performance gain over the baseline. This re-
sult highlights the complementary nature of these modules,
suggesting that combining fine-grained human-scene inter-
action modeling with structured spatial-temporal encoding
can further enhance the model’s ability to comprehensively
understand human activities in 3D environments.
Ablations on Training Strategy. Tab. 4 presents ablation
study on the two-stage training strategy. The results indicate
that both modality alignment (Stage 1) and instruction tun-
ing (Stage 2) are essential for effectively training HIS-GPT.
Additionally, incorporating scene and motion caption data

in Stage 1 leads to a rise of 2.9 in average score, validating
their effectiveness in facilitating modality alignment.

5.4. Qualitative Results
Fig. 5 presents qualitative examples of HIS-GPT across var-
ious HIS-QA tasks. Compared to baseline models, HIS-
GPT gives more accurate answers in basic perceptions
about human activities, spatial relation to scene, and inter-
action with objects. Moreover, HIS-GPT generates highly
plausible responses in reasoning and prediction tasks, show-
casing a strong understanding of human behavior within the
scene. Additionally, HIS-GPT excels in dialogue and plan-
ning tasks, which are crucial for embodied AI applications.
Notably, while GPT-4v frequently produces generic or un-
informative responses that are not helpful enough for users
to address their problems, HIS-GPT provides constructive
replies with situated knowledge (e.g., ‘right in front of you’)
and detailed guidance (e.g., ‘stand up’, ‘walk straight’) that
can effectively assist users in real-world scenarios. More
qualitative results are provided in Appendix E.

6. Conclusion
In this paper, we introduce HIS-QA, a new task formula-
tion for Human-In-Scene understanding. To evaluate this
task, we raise HIS-Bench, the first multimodal benchmark
tailored for HIS-QA, featuring diverse questions that span
basic perception, complex reasoning and embodied appli-
cations. Additionally, we propose HIS-GPT, a foundation
model that jointly perceives 3D human and scene inputs, ef-
fectively addressing HIS-QA tasks in a unified framework.
We believe the benchmark and model could benefit future
research and applications in human-centric understanding.
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