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Abstract

Chain-of-thought (CoT) reasoning greatly improves the
interpretability and problem-solving abilities of multimodal
large language models (MLLMs). However, existing ap-
proaches focus on text CoT, limiting their ability to lever-
age visual cues. Visual CoT remains underexplored, and
the only work [35] is based on supervised fine-tuning that
relies on extensive labeled bounding-box data and is hard
to generalize to unseen cases. In this paper, we introduce
Unsupervised Visual CoT (UV-CoT), a novel framework
for image-level CoT reasoning via preference optimization.
UV—-CoT performs preference comparisons between model-
generated bounding boxes (one is preferred and the other is
dis-preferred), eliminating the need for bounding-box an-
notations. We get such preference data by introducing an
automatic data generation pipeline. Given an image, our
target MLLM (e.g., LLaVA-1.5-7B) generates seed bound-
ing boxes using a template prompt and then answers the
question using each bounded region as input. An eval-
uator MLLM (e.g., OmniLLM-12B) ranks the responses,
and these rankings serve as supervision to train the target
MLLM with UV-CoT by minimizing negative log-likelihood
losses. By emulating human perception—identifying key
regions and reasoning based on them—UV-CoT can im-
prove visual comprehension, particularly in spatial reason-
ing tasks where textual descriptions alone fall short. Our
experiments on six datasets demonstrate the superiority of
UV—-CoT, compared to the state-of-the-art textual and vi-
sual CoT methods. Our zero-shot testing on four unseen
datasets shows the strong generalization of UV-CoT.

1. Introduction

With the recent advancements in multimodal large language
models (MLLMs) [3, 21, 22, 45], many efforts have been
made to incorporate text CoT reasoning [9, 17, 40, 49] to

*Corresponding author. The code is available in https://github.
com/kesenzhao/UV-CoT.
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handle complex vision-language tasks [42, 43, 50]. How-
ever, the visual understanding ability of MLLM is lim-
ited by fixed-granularity image processing, i.e., the MLLM
cannot dynamically adjust focus across different spatial re-
gions of the input image, even when guided by text CoT
prompts [11]. This underscores the critical need to explic-
itly integrate visual cues into the CoT process.

A very recent work, Visual-CoT [35], has made an ini-
tial attempt towards this goal. The model is trained using
supervised fine-tuning (SFT) with human-labeled bounding
boxes that indicate the key image regions relevant to the
question. It performs the multimodal CoT approach with
human-annotated reasoning steps by associating textual in-
puts with the detected regions. An overview of Visual-CoT
is presented in Fig. 1. However, it has two key drawbacks:
(1) it relies on large-scale, high-quality labeled data, mak-
ing it costly and hard to scale; and (2) SFT learns only from
positive examples (i.e., the labeled data), limiting its abil-
ity to generalize to unseen or ambiguous scenarios where
intermediate reasoning or dynamic interpretation is needed.

To address these issues, we introduce an Unsupervised
approach to Visual CoT dubbed as UV-CoT. It has two key
parts: data collection and model training. The data collec-
tion does not need human annotation, as it leverages the
data generation and evaluation capabilities of pre-trained
MLLMs. The model training is inspired by the idea of di-
rect preference optimization (DPO). It is implemented with
an adapted version of DPO to address specific limitations in
capturing the degree of preference and fine-grained region-
based reasoning when conducting visual CoT on MLLMs.

Our method UV-CoT, as shown in Fig. 1, differs from
Visual-CoT [35] by adopting an unsupervised approach
with contrastive preference data. We design an automatic
two-step pipeline to generate this data: 1) Region Gener-
ation: Given an image, the target model generates multi-
ple seed bounding boxes using a template prompt. Then
it answers the question by processing each bounded re-
gion together with the question as input. 2) Quality As-
sessment: An evaluator MLLM scores the responses, using
these scores as proxies to measure the quality of the regions.
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Figure 1. Comparison of Visual-CoT [35] and our UV-CoT. Left: Visual-CoT relies on human-annotated bounding boxes to identify key
regions. The model is trained via supervised fine-tuning to maximize the likelihood of the labeled data. Right: UV-CoT eliminates the
need for human annotation. Given an image, the target model generates seed bounding boxes and answers questions based on these regions,
respectively. An evaluator MLLM then scores the responses as a proxy for assessing region quality. Lastly, the target model is optimized
via preference optimization by maximizing the likelihood of preferred regions over dis-preferred ones.

Unlike traditional DPO, we propose Score-DPO (sDPO),
which not only ranks preference data (i.e., preferred and
dis-preferred responses shown in Fig. 1) but also assigns
preference scores. This scoring enables more precise op-
timization based on score differences. During UV-CoT
training, the rankings of the preference data act as super-
vision by minimizing negative log-likelihood loss, while
the scores define the decision margin. By mimicking hu-
man perception—first identifying key regions, then reason-
ing over them—UV-CoT significantly improves visual com-
prehension, especially in spatial reasoning tasks where text-
based methods fall short. By leveraging unsupervised data
in a contrastive way, UV-CoT also shows strong general-
ization ability when tested on unseen datasets.

Our contributions in this paper include: 1) an automatic
pipeline for generating high-quality preference data, en-
abling robust and scalable preference learning of UV-CoT;
2) an improved version of DPO by integrating the degree
of preference for visual regions, allowing the model to dis-
tinguish key regions more precisely; and 3) extensive ex-
periments on multiple challenging datasets, demonstrating
state-of-the-art performance of UV-CoT on four bench-
marks and strong generalization to four unseen test datasets.

2. Related Works

Chain-of-thought in LLMs and MLLMs. LLMs [3, 10,
14, 24, 29, 38] with CoT [5, 8, 40] show strong inferential
abilities by introducing intermediate reasoning steps. Both
manually designed [40] and self-generated [17, 49] reason-
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ing approaches have proven effective. In contrast, MLLMs
rely on image encoders [15, 32, 52-54] to extract visual
features but often struggle with reasoning due to inherent
differences in how textual and visual data are processed
[23, 48, 51]. Multimodal CoT methods [42, 43, 50] attempt
to address this by transforming multimodal inputs into a
unified textual format, enabling LLMs to perform CoT at
the text level. However, this transformation introduces sig-
nificant information loss and prevents the models from cap-
turing key visual details [50]. For example, LLaVA-CoT
[42] leverages GPT-40 to summarize questions and image
captions but suffers from weak optical character recognition
and sometimes hallucinations.

A very recent work, Visual-CoT [35], improves the
MLLM reasoning by introducing CoT methods at the im-
age level. This approach involves scanning the entire image,
identifying key references, and then focusing the model on
specific regions for reasoning. Despite its improvements,
Visual-CoT is heavily based on costly human-annotated
data. In contrast, our UV-CoT framework utilizes unsu-
pervised preference optimization with auto-generated pref-
erence data, eliminating the need for manual annotations.

Preference learning in LLMs and MLLMs. RLHF [56]
aligns LLMs with human preferences by training a reward
model via contrastive response evaluations. To reduce re-
liance on human annotations, RLAIF [19] leverages pre-
trained LLMs for preference label generation. However,
RL-based fine-tuning faces stability and efficiency chal-
lenges. Direct Preference Optimization (DPO) [33] ad-
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Figure 2. Illustration of UV-CoT reasoning.

dresses this by directly linking reward functions to opti-
mal policies, eliminating reward model fine-tuning. Further
improvements include IPO [2], which mitigates overfitting
with a bounded preference function, and KTO [7], which
removes the need for paired preference data, relying instead
on single examples labeled as either ‘good’ or ‘bad’.

These preference learning techniques are applied to
MLLMs, with RLHF-V and RLAIF-V [46, 47] refining be-
havior alignments using human and LLM-generated labels.
To mitigate reward hacking, Sun et al. [37] enhance re-
ward models with additional factual details, such as image
captions and verified choices, further improving the per-
formance of MLLM. Some works have attempted to apply
DPO in the CoT process [18, 30]. However, these methods
are designed for only text-level CoT and do not effectively
handle visual features or cues. In contrast, in this paper, we
propose UV-CoT, a specialized framework for image-level
CoT reasoning inspired by the idea of DPO. Unlike tradi-
tional DPO, UV—-CoT not only ranks preference data (i.e.,
preferred and dis-preferred data) but also assigns preference
scores. This scoring enables more precise optimization of
the MLLMs based on score differences.

3. Method

Fig. 2 illustrates the pipeline of UV-CoT reasoning. Given
the original image and the question, we append a CoT
prompt to guide the target MLLM in identifying the most
informative image region and specifying its location via
bounding box coordinates. A visual sampler then extracts
the bounded region from the image. The MLLM subse-
quently integrates visual tokens from original and cropped
images to generate more precise and comprehensive an-
swers. In Sec. 3.1, we detail the automatic preference data
generation pipeline. In Sec. 3.2, we describe our Score-
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Algorithm 1 Preference data generation for a query x
1:

Input: Target model fia, evaluator fe,,, an image-
question query x, number of seeds n, and number of
preference pairs k.
Output: Preference data D
Initialize yo = x
fort =1to T do
{yt ', < Generate(fiar, Yo:t—1, 1)
{s’ }n 1 < Evaluate( feval, yo:t—1, {yi 1 )
D; « ConstructPairs(yo.r—1, {y; }i-1, {3 k)
yp < Select(yo.—1. {yi }imy, {s"}iey)
end for
return D = {Dy, ...

R A A S o

._
4
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DPO (sDPO) for image-level CoT reasoning.

3.1. Preference Data Generation

Given a target model fia, an evaluator model fe,4 (the
target MLLM can also serve as the evaluator, validated in
Tab. 5), and an image-question pair x, we illustrate how
to construct n preference data points. Assuming there are
T steps in CoT reasoning process, we generate preference
data for 7" times on the way, as described in Algorithm 1.
At each timestep ¢ (i.e., a reasoning step t), the process in-
cludes four stages: Response Generation, Response Evalu-
ation, Pair Construction, and Response Selection.
Response generation. The goal of this stage is to generate
seed bounding boxes and produce intermediate responses
to the question using the target model. Here, a ‘response’
refers to any model output at an intermediate step, not nec-
essarily the final answer to the question. We denote the
model’s response at timestep ¢ as y;, with the initial input
x represented as yg. To encourage diversity in the bound-
ing boxes and subsequent responses, we apply stochastic
decoding to the target model fi,, with n different random
seeds, resulting in a set of responses {y: }7 ;

Response evaluation. This stage evaluates the quality of all
generated responses. The evaluator model not only scores
each individual response but also counts how this response
influences the quality of its next response in the chain. This
cumulative evaluation approach helps quantify the impact
of each bounded region on the overall reasoning process.
Below, we elaborate on the formulation. At timestep ¢, the
evaluator assigns scores for 3! as follows:

feval(yt | Yo:t— 1)
[feval(yt+1 | yo:t—hyi)],
S;L:ur + ’YS:‘IX'U

cur

ey

where si, reflects the impact on the next response and
~ > 0 is a hyperparameter to combine the current and next



response scores, with v = 0 at the last step. We estimate
the expectation E[-] by randomly sampling next responses.
Pair construction. At each timestep ¢, we randomly select
k (preferred and dis-preferred) pairs from {yi}”™ ;. For a
single pair, we concatenate the preferred response with the
past response chain yg.;—1 (preserved after t — 1 timesteps)
and get a “preferred chain” denoted as y;”, and then we con-
catenate the dis-preferred response in the same way to get a
‘dis-preferred chain’ denoted as y!. The pair of chains also
includes their respective scores, and they are represented as
{Yw, Sw, Y1, $1}. The overall k pairs of chains compose the
preference dataset D;.

Response selection. The abovementioned ‘past response
chain yo.4—1’ is unique and is concatenated by the highest-
scoring response at timestep t—1 and the preserved chain at
timestep t = 2, i.e., Yo.t—2. In other words, when finishing
each timestep process, we preserve only the best chain and
use it for the next step.

3.2. Unsupervised Learning of Uv-CoT

Assume the preference dataset D has been generated across
t timesteps, we then optimize the target model with our
UV-CoT via preference optimization on D. DPO [1] is
widely used in preference learning, and it ranks responses
without quantifying preference intensity. In our case of
image-level reasoning, key regions vary in influence, neces-
sitating finer differentiation between responses. Therefore,
we refine DPO by adjusting the margin to capture the key
region’s influence. We name our loss Score-DPO, abbrevi-
ated as sDPO, as it incorporates the preference score into
the optimization. The loss is formulated as:

o . 70w | 7).
ﬁsDPO(e) - (w,yw],};:JL)ND |:10g <B log 7Tref(yw | LIZ‘)
mo(y | x)
—Blog e Ta] (9(sw) — 9(51))” ,
(2

where 7y is the target model, and ¢ is its frozen initializa-
tion, serving as a reference to constrain deviation from the
original model. g(-) : R — R is a monotonically increasing
function that maps preference scores into the logit space of
the DPO objective.

To provide a deeper understanding of our sDPO loss, we
establish its connection to the standard DPO loss. DPO re-
formulates reward model training as policy optimization by
reparameterizing the reward function in PPO [34]:

— 810 mo(y | )
r(a,y) = Blog ==

ref
Using the Bradley-Terry [4] model, the standard DPO aims
to minimize the negative log-likelihood of the difference of

+BlogZ(x) ()
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Algorithm 2 Iterative learning of UV-CoT

1: Input: Initial target model f.,, evaluator model feyal,
X = {Xy,..., X}, each X; is a subset of image-
question query
Output: f7
for i = 1tomdo

D; + GenerateData(fL,, feval, X;) > Algorithm 1

P Train(fL,, Ds) > Eq. (2)

end for

return f!

N R

rewards between paired responses:

P(yw—y >0)=0(r(z,y0) —7r(2,5))

4)
EDPO = 7]E(z,yw,yl)~'D [IOgP (yw -y > 0)] )

where o(x) = m is the sigmoid function.

Let A, 9(sw) — g(s;) and define the Gumbel-
distributed random variables R,, ~ Gumbel (1 (x,y,,), 1)
and R; ~ Gumbel (r (z,y;),1). Then, we derive:

P (Rw - Rl > Ar) =0 (T (x,yw) -Tr (‘T’yl) - AT)
=0 (ﬁ log W | @) (W | 2) — Blog T le) (v | z) — Ar)
Tret (Yuw | @) et (Y1 | @) )

This result follows from the definition of Gumbel random
variables [1] and the Gumbel-max trick [25]. We provide
a detailed proof in Appendix B. By maximizing the log-
likelihood, we obtain our proposed loss function. The Gum-
bel distribution models the extreme values of a variable,
while A, quantifies the degree of difference between pref-
erence pairs. Thus, our loss function explicitly optimizes
preference learning by distinguishing not only the order but
also the magnitude of preference differences.

Iterative learning. Standard DPO relies on static prefer-
ence data during training, which can lead to distributional
mismatch between training data and the model’s generated
outputs. To mitigate this issue, we adopt an iterative learn-
ing approach inspired by [47]. Algorithm 2 outlines the it-
erative learning process of UV-CoT, which incrementally
refines a target model through preference learning. The it-
eration repeats m times, and the total image-question query
set X' is evenly divided into m subsets, X = {X4,..., X}
, each assigned to one iteration. The process starts with an
initial target model fi,,, an evaluator model fe 4, and X.
In each iteration ¢, the algorithm first generates preference
data D; using the current target model f, and the subset
X, using the procedure in Algorithm 1. This newly gener-
ated preference data is then used to train the next iteration
of the target model f5* using our UV—CoT loss of Eq. (2).
The process continues until the final model f;7. is obtained.
By dynamically updating the preference data, our approach



MLLM ‘ DocVQA TextVQA InfographicsVQA Flickr30k GQA VSR Average

LLaVA-1.5-7B 0.198 0.507 0.131 0.539 0.480 0.504 0.393
LLaVA-1.5-13B 0.225 0.543 0.169 0.607 0.506 0.512 0.427
MiniCPM-0-8B 0.232 0.529 0.175 0.618 0.495 0.521 0.428
OmniLMM-12B ‘ 0.254 0.578 0.172 0.621 0.509 0.523 ‘ 0.443
Visual-CoT-7B (100% label) ‘ 0.294 0.673 0.194 0.652 0.546 0.532 ‘ 0.482
UV-CoT (0% label) 0.265 0.686 0.173 0.632 0.536 0.548 0.473
UV-CoT (10% label) 0.283 0.711 0.198 0.649 0.568 0.553 0.494

Table 1. Overall comparison of different models on six evaluation benchmarks. The best result is bold, the second-best is underlined.
‘%’ indicates the percentage of supervised data used in Visual-CoT. By default, our UV-CoT uses only unsupervised data.

MLLM DUDE SROIE Visual7w | Average
LLaVA-1.5-7B | 0.165  0.147 0.340 0.217
LLaVA-1.5-13B | 0.174  0.159 0.352 0.228
MiniCPM-0-8B | 0.182  0.165 0.341 0.229
OmniLMM-12B | 0.194  0.166 0.357 0.239
Visual-CoT-7B | 0.206  0.181 0.397 0.261
UV-CoT 0.241  0.184 0.432 0.286
UvV-CoT* 0.253  0.227 0.455 0.312

Table 2. Zero-shot experiments on DUDE, SROIE and Visual7w.
‘UV-CoT*” denotes our model trained with additional unlabeled
preference data from the three zero-shot datasets.

ensures that the learned model adapts to its evolving distri-
bution, enhancing training robustness.

4. Experiments

4.1. Setup

Datasets. For a comprehensive evaluation, we adopt
ten datasets spanning five domains: (1) Text/Document:
DocVQA [26], TextVQA [36], DUDE [39], and SROIE
[12]. (2) Chart: InfographicsVQA [27]. (3) General VQA:
Flickr30k [31] and Visual7W [55]. (4) Relation Reasoning:
VSR [20] and GQA [13]. (5) High-Resolution Image Rea-
soning: V* Bench [41]. Notably, we also provide a model
trained on data excluding DUDE, SROIE, Visual7W, and
V* Bench, which is used to evaluate zero-shot performance.
See Appendix C.1 for details.

Evaluation. Following prior work [22], we prompt GPT-
40 [28] to assign a score between 0 and 1, with higher scores
indicating better prediction. See details in Appendix C.2.
Baselines. We compare UV-CoT with five baselines.
LLaVA-1.5-{7B, 13B} [21] and OmniLMM-12B are strong
general baselines. MiniCPM-0-8B [44] adopts adaptive vi-
sual encoding for fine-grained understanding and Visual-
CoT-7B [35] learns image-level CoT via SFT.
Implementation details. We use LLaVA-1.5-7B as the tar-
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MLLM Attributes GPT4V-hard OCR | Average
LLaVA-1.5-7B 0.317 0 0.1 0.139
LLaVA-1.5-13B 0.326 0.118 0.133 | 0.192
MiniCPM-o0-8B 0.322 0.118 0.1 0.180
OmniLMM-12B | 0.326 0.118 0.167 | 0.204
Visual-CoT-7B 0.330 0.118 0.593 | 0.347
UV-CoT ‘ 0.352 0.176 0.677 ‘ 0.402

Table 3. Zero-shot experiments on V* Bench (high-resolution
image reasoning task, average resolution 2246 x 1582).

get model and OmniLMM-12B as the evaluator. To ensure
scalability, we avoid using GPT-4 as the evaluator, prevent-
ing constraints imposed by high API costs. We implement
iterative learning of UV—CoT over four iterations, utilizing
a total of 249K preference data pairs. Notably, UV-CoT
achieves higher data efficiency than Visual-CoT, which uses
376K data pairs. For each iteration, we train the model
with AdamW optimizer for 4 epochs with a learning rate of
5 x 10~7, 8 = 0.1, and a batch size of 8. In total, data gen-
eration takes 80 hours and training requires 60 hours, both
conducted on an 8 x A100 40GB machine. Additionally, we
provide a variant UV—-CoT trained with extra SFT on 10%
of the labeled Visual-CoT data, denoted as UV-CoT (10%).

4.2. Comparison with State-of-the-Art Methods

The overall performance comparisons are reported in Tab. 1,
leading to the following key observations:

Explicitly incorporating visual cues proves beneficial
for multimodal reasoning. For instance, MiniCPM-o-
8B, which uses rule-based cropping to focus on salient re-
gions, outperforms LLaVA-1.5-7B by an average of 3.5%.
However, its reliance on heuristics limits adaptability. In
contrast, image-level CoT models like Visual-CoT and our
UV-CoT achieve greater performance gains, even surpass-
ing the larger LLaVA-1.5-13B, by leveraging MLLMs to
adaptively generate key visual regions. This highlights the
superior effectiveness of image-level CoT reasoning.



Model ‘ DocVQA TextVQA InfographicsVQA Flickr30k GQA VSR ‘ Average
UV-CoT (10% labels) ‘ 0.283 0.711 0.198 0.649 0.568 0.553 ‘ 0.494
IF: w/o UV-CoT 0.149 0.574 0.160 0.585 0.509 0.522 0.417
IF: UV-CoT w/ G.T. BBox 0.528 0.769 0.504 0.655 0.664 0.585 0.618
Tr: w/ naive DPO 0.258 0.695 0.189 0.623 0.552 0.534 0.475
Tr: w/o iterative learning 0.256 0.671 0.162 0.609 0.523 0.531 0.459
Ge: wlo~y 0.247 0.539 0.152 0.551 0.484 0.460 0.406

Table 4. Ablation study on key components of UV-CoT (10% labeled data). ‘w/o UV-CoT’ denotes standard inference without CoT
reasoning. ‘UV-CoT w/ G.T. BBox’ uses annotated ground truth bounding boxes. ‘w/ naive DPO’ applies the standard DPO loss. ‘w/o
iterative learning’ generates preference pairs for the entire set of question queries X in a single pass and trains once. ‘w/o «’ evaluates
responses with v = 0. IF, Tr, and Ge indicate ablations on the inference process, training loss, and data generation, respectively.

UV-CoT fundamentally differs from distillation/pseudo-
labeling. Unlike distillation, where student performance is
typically bounded by the teacher, UV-CoT outperforms its
evaluator OmniLMM-12B by 5.1% on average. This sug-
gests that UV-CoT goes beyond simply mimicking a larger
model. Direct generation of accurate bounding boxes re-
mains a challenge for MLLMs due to the need for precise
spatial localization. Instead, UV—CoT reformulates the task
as ranking—an inherently simpler and more tractable prob-
lem—which leads to better performance.

UV-CoT outperforms the supervised Visual-CoT. De-
spite using significantly less data (249K unlabeled vs.
376K labeled), UV-CoT outperforms Visual-CoT-7B
on TextVQA (+1.3%) and VSR (+1.6%). Moreover,
UV-CoT(10%) surpasses Visual-CoT-7B by 2.1% on av-
erage, with notable gains on TextVQA (+2.5%), GQA
(+2.2%), and VSR (+2.1%) and achieves comparable or bet-
ter performance on the remaining datasets. This validates
the effectiveness of our high-quality preference data gener-
ation and enhanced preference optimization method.

4.3. Zero-Shot Generalization

We evaluate the zero-shot performance of UV-CoT on the
test sets of SROIE, DUDE, Visual7W, and V* Bench [41],
without any training exposure to these datasets. V* Bench
is a high-resolution benchmark (avg. size: 2246 x 1582)
covering diverse tasks; we focus on three representative
ones: Attributes (object attribute recognition), GPT4V-
Hard (complex visual reasoning), and OCR. Additionally,
we train a variant of our model, UV-CoT*, using preference
data generated from the training splits of SROIE, DUDE,
and Visual7W. The results are reported in Tab. 2 and Tab. 3,
leading to the following observations:

UV-CoT exhibits stronger zero-shot performance. Su-
pervised CoT learning relies on labeled data and often over-
fits to specific annotation distributions, limiting its gener-
alization to unseen tasks. In contrast, UV—-CoT uses pref-
erence optimization based on relative comparisons, avoid-
ing reliance on absolute labels and enhancing general-
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ization. As a result, UV-CoT outperforms all baselines
across zero-shot datasets (+2.5% on average), with notable
gains on DUDE and Visual7W (both +3.5%). Furthermore,
UV-CoT* achieves greater gains (5.1% on average), show-
ing that our model can effectively learn the image-level CoT
process without the need for costly human annotation.

UV-CoT excels in high-resolution image reasoning.
Image-level CoT methods—UV~-CoT (+19.8%) and Visual-
CoT-7B  (+14.3%)—significantly outperform non-CoT
baselines, with over 50% gains on OCR tasks. UV-CoT fur-
ther surpasses Visual-CoT-7B by 5.5% on average, achiev-
ing the best performance across all tasks. This large per-
formance gap underscores the advantage of unsupervised
image-level CoT for high-resolution visual reasoning.

4.4. Ablation Studies

In Tab. 4, we present the ablations on key components.
Image-level CoT: We design two variants to evaluate the
impact of image-level CoT: (1) ‘w/o UV-CoT’ removes
intermediate reasoning and directly outputs answers; (2)
‘UV-CoT w/ G.T. BBox’ replaces predicted regions with
ground truth bounding boxes to assess localization qual-
ity. Results show that removing CoT leads to a signifi-
cant drop (-7.7% on average), confirming its necessity. On
Flickr30k, UV-CoT matches the G.T. variant, suggesting
accurate region selection. However, in DocVQA and Info-
graphicsVQA, using G.T. boxes yields better performance,
revealing the difficulty of precise localization. This high-
lights the potential of our method and suggests future work
for improving region accuracy for complex tasks.
Score-DPO (sDPO): ‘w/ naive DPO’ applies standard DPO
loss and shows degraded performance across all datasets
(1.9% on average), especially on DocVQA (2.5%) and
Flickr30k (2.6%), revealing its limitations for CoT learn-
ing. In contrast, our sDPO incorporates preference scores
to better differentiate choices, yielding consistent gains.
Iterative learning: ‘w/o iterative learning’ generates all
preference pairs in a single pass and trains only once, lead-
ing to a significant performance drop (3.5% on average).
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Figure 3. (a&b) Bounding box evaluation on (a) training datasets and (b) zero-shot datasets. Our UV-CoT performs better than Visual-
CoT. (c) Model performance under varying visual token sizes. Our UV—-CoT demonstrates better token efficiency.

Model ‘ DocVQA TextVQA InfographicsVQA  Flickr30k GQA VSR | Average
OmniLMM-12B 0.254 0.578 0.172 0.621 0.509 0.523 | 0.443
IF: OmniLMM-12B + CoT 0.305 0.722 0.217 0.675 0.580 0.595 | 0.516
LLaVA-1.5-7B 0.198 0.507 0.131 0.539 0.480 0.504 | 0.393
IF: LLaVA-1.5-7B + CoT 0.245 0.577 0.149 0.606 0.530 0.533 | 0.440
Tr: UV-CoT (Evaluator: self-evaluated) 0.242 0.609 0.153 0.598 0.517 0.526 | 0.441
Tr: UV-CoT (Evaluator: OmniLMM-12B) 0.265 0.686 0.173 0.632 0.536 0.548 | 0473

Table 5. Analysis of evaluator model. ‘+ CoT” refers to inference assisted by bounding boxes generated by UV-CoT. Self-evaluated denotes
using target model as the evaluator during training. IF and Tr indicate experiments conducted on the inference and training process.

This underscores the importance of iterative learning in con-
tinuously aligning the preference data distribution with the
model’s evolving policy throughout the training process.

Response evaluation: ‘w/o v model’ sets v = 0 during
response evaluation stage, ignoring the next response when
generating preference scores. We observe a significant per-
formance drop (8.8% on average), particularly on TextVQA
(17.2%), highlighting the difficulty MLLM:s face in directly
evaluating bounding boxes. This underscores the necessity
of incorporating next response in our evaluation method.

4.5. Bounding Box Evaluation

We compare the quality of bounding boxes learned from
supervised and unsupervised strategies using GPT-4o0 as a
scorer, on both training datasets (Fig. 3 (a)) and zero-shot
datasets (Fig. 3 (b)). Our main observations are:

(1) Our UV-CoT outperforms Visual-CoT-7B, achieving
higher scores in five of six datasets, supporting its superior
performance in generating helpful bounding box.

(2) The bounding box quality is closely related to the fi-
nal performance. Our model exhibits lower scores (below
0.210) for bounding box generation in DocVQA and Info-
graphicsVQA, correlating with its reduced final scores in
these datasets (below 0.290 in Tab. 1). It underscores the
validity of evaluating bounding box quality through its im-
pact on subsequent answers.

(3) Both UV-CoT and UV-CoT* outperform Visual-CoT-
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7B across all zero-shot datasets, which illustrates the strong
generalization of our method in bounding box generation.

4.6. Insight of Evaluator Model

We further perform studies to better understand the role of
evaluator model. Key findings from Tab. 5 are:

(1) We compare UV-CoT with its self-evaluated variant,
where the evaluator model is the same as the target model
(initialed with LLaVA-1.5-7B). Although the self-evaluated
version exhibits a performance decrease of 3.2% compared
to the original UV-CoT, it still outperforms LLaVA-1.5-
7B (+4.8% on average) across all evaluated datasets and
achieves performance comparable to the larger OmniLMM-
12B model (-0.2% on average). This demonstrates that
UV-CoT maintains robust performance even under self-
evaluation, highlighting its efficiency without requiring
larger model scales.

(2) For OmniLMM-12B and LLaVA-1.5-7B, we incorpo-
rate a CoT process using bounding boxes generated by
UV-CoT. The CoT-enhanced versions significantly outper-
form their original counterparts, achieving average per-
formance gains of 4.7% for LLaVA-1.5-7B and 7.4% for
OmniLMM-12B. Remarkably, these models were not fine-
tuned for the CoT process, indicating that the bounding
box information alone substantially improves performance.
This finding underscores that our evaluating process sim-
plifies the task of generating complex spatial annotations,



TextVQA

Question: Where is this letter going?
Ground Truth: washington dc

Prefered: Prefered:

[0.541, 0.682, 0.580, 0.718]

Dis-prefered:
[0.535, 0.217, 0.600, 0.240]

TO: SENATOR MIKE LEE

iy

bty i
Answer: washington dc
Score: 0.8

Answer: senator mike lee
Score: 0

Answer: oranges
Score: 0.9

[0.497, 0.491, 0.630, 0.641]

[0.138, 0.544, 0.188, 0.568]

Flickr30k

Question: What are the fruits on the counter? Question: What is attire of the individual taking the photo?
Ground Truth: oranges

Ground Truth: The individual is wearing a cream shirt.

Prefered:
[0.002, 0.344, 0.294, 0.642]

Dis-prefered: Dis-prefered:

[0.696, 0.344, 0.754, 0.380]

Answer: hat
Score: 0

Answer: bananas
Score: 0

Answer: a cream shirt
Score: 0.9

Figure 4. Visualization of preference data generated by Algorithm 1. Preferred BBoxes are in red. Dis-preferred BBoxes are in blue.
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Figure 5. Visualization of our UV-CoT inference. Model-generated bounding boxes are shown in red.

enabling MLLMs to focus on evaluating final answers.

4.7. Other Detailed Analyses

Visual token efficiency. Compared to standard MLLM
generation, image-level CoT doubles the number of visual
tokens by processing additional local image regions. To
evaluate token efficiency, i.e., performance under the same
visual token budget, we resize the input image to different
resolutions (2242, 3362 and 448%) and report the average
score of different models in Fig. 3(c). Our key findings are:
(1) MLLMs with image-level reasoning (Visual-CoT-7B
and our UV-CoT) demonstrate better token efficiency than
the standard answer generation pipeline. E.g., they achieve
higher performance with 512 visual tokens than the stan-
dard pipeline does with 1024 tokens.

(2) Our UV-CoT consistently outperforms Visual-CoT-7B
across all scales, achieving higher average scores. This
highlights the token efficiency of our method.
Visualization. Fig. 4 visualizes some preference data
from our UV-CoT inference process. Given different lo-
cal regions and their corresponding answers, the evaluator
MLLM assigns reasonable scores, validating the effective-
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ness of our automatic generation and labeling process. In
Fig. 5, we present reasoning cases with model-generated
bounding boxes overlaid. The precision of bounding box
detection and the depth of understanding play a crucial role
in determining the quality of generated answers.

5. Conclusion

In this work, we propose UV-CoT, a framework that en-
ables image-level CoT reasoning in MLLMs via preference
optimization. Unlike previous methods that rely on SFT
needing large amounts of labeled data, our approach lever-
ages unsupervised learning to refine the model’s ability with
image-level CoT using model-generated preference data
(which are rough but useful). We address key challenges in
preference data generation and effective optimization, en-
suring a more adaptive and interpretable reasoning process.
Extensive experiments demonstrate that UV-CoT achieves
state-of-the-art performance, significantly improving visual
comprehension in MLLMs on ten reasoning datasets. Our
findings highlight the potential of preference learning as a
scalable alternative to traditional SFT, enabling more robust
and data-efficient multimodal reasoning.
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