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Figure 1. We propose TesserAct, the 4D Embodied World Model, which takes an input image and text instruction to generate RGB, depth,
and normal videos, reconstructing a 4D scene and predicting actions. Our model not only achieves strong performance on in-domain data
(right) but also generalizes effectively to unseen scenes, novel objects (top left), and cross-domain scenarios (bottom left).

Abstract

This paper presents an effective approach for learning novel
4D embodied world models, TesserAct, which predict the dy-
namic evolution of 3D scenes over time in response to an em-
bodied agent’s actions, providing both spatial and temporal
consistency. We propose to learn a 4D world model by train-
ing on RGB-DN (RGB, Depth, and Normal) videos. This not
only surpasses traditional 2D models by incorporating de-
tailed shape, configuration, and temporal changes into their
predictions, but also allows us to effectively learn accurate
inverse dynamic models for an embodied agent. Specifically,
we first extend existing robotic manipulation video datasets

*Equal contribution.
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with depth and normal information leveraging off-the-shelf
models. Next, we fine-tune a video generation model on this
annotated dataset, which jointly predicts RGB-DN (RGB,
Depth, and Normal) for each frame. We then present an
algorithm to directly convert generated RGB, Depth, and
Normal videos into a high-quality 4D scene of the world.
Our method ensures temporal and spatial coherence in 4D
scene predictions from embodied scenarios, enables novel
view synthesis for embodied environments, and facilitates
policy learning that significantly outperforms those derived
from prior video-based world models.


https://TesserActWorld.github.io

1. Introduction

Learned world models [21, 62, 65, 75], which simulate envi-
ronmental dynamics, play a crucial role in enabling embod-
ied intelligent agents. Such models enable flexible policy
synthesis [14, 39], data simulation and generation [65, 78],
and long-horizon planning [13, 28, 72]. However, while the
physical world is three-dimensional in nature, existing world
models operate in the space of 2D pixels. This limitation
leads to an incomplete representation of spatial relationships,
impeding tasks that require precise depth and pose informa-
tion. For instance, without accurate depth and 6-DoF pose
estimations, robotic systems struggle to determine the exact
position and orientation of objects. Furthermore, existing 2D
models can produce unrealistic results, such as inconsistent
object sizes and shapes across time steps, which limits their
use in data-driven simulations and robust policy learning.

In this paper, we explore how we can instead learn a
4D embodied world model, TesserAct, which simulates the
dynamics of a 3D world. This 4D embodied world model
allows us to generate realistic 3D interactions, such as grasp-
ing objects or opening drawers, with a level of detail that
traditional 2D-based models cannot achieve. By modeling
spatial and temporal dimensions, our model provides the
depth and pose information essential for robotic manipula-
tion. However, the task of learning a 4D embodied world
model is challenging as the dynamics of the world are ex-
tremely computationally expensive to train and learn, requir-
ing models to generate outputs in three-dimensional space
and time. To efficiently represent and predict the dynamics
of the world, we propose a substantially more lightweight
representation of the 4D world, consisting of predicting a
sequence of RGB, depth, and normal maps of the scene. This
combined representation accurately captures the appearance,
geometry, and surface of a scene while being substantially
lower dimensional than explicitly predicting world dynam-
ics. Furthermore, such a representation shares substantial
similarities to existing video models, allowing us to directly
use the generative capabilities of existing video models to
effectively construct our 4D world model.

Given this intermediate representation, we present an ef-
ficient algorithm to reconstruct accurate 4D scenes from
generated RGB-DN videos. For each frame, we use a com-
bination of both depth and normal prediction to integrate a
smooth 3D surface of the scene. We then use optical flow be-
tween generated frames to distinguish between background
and dynamic regions in the reconstructed 3D scene across
frames and introduce two novel loss functions to enforce con-
sistency across scenes over time. As shown in Figure 1, our
4D Embodied World Model enables the construction of high-
fidelity 4D-generated scenes, facilitating strong-performance
action planning for downstream tasks.

A key challenge for training TesserAct is a lack of ac-
cess to existing large-scale datasets with high-quality 4D
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annotations, or the RGB image, depth, and normal informa-
tion needed to train our approach. To overcome this, we
collect a 4D embodied video dataset consisting of synthetic
data with ground truth depth and normal information and
real-world data with estimated depth and normal information
with off-the-shelf estimators.

Overall, our paper has the following contributions:
* We collect a 4D embodied video dataset with compact
and high-quality RGB, depth, and normal annotations and
learn a 4D embodied world model, TesserAct.
We present an algorithm to convert the generated RGB-DN
video into high-quality 4D scenes coherent across both
time and space.
Extensive experiments demonstrate our 4D embodied
world model can predict high-fidelity 4D scenes and
achieve superior performance in downstream embodied
tasks compared to traditional video-based world models.

2. Related Work

Embodied Foundation Models A flurry of recent work
has focused on constructing foundation models for general
purpose agents [17, 66]. One line of work has focused on
constructing multimodal language models that operate over
images [12, 20, 29, 38, 50, 61, 71] as well as 3D inputs [24,
25] and output text describing the actions of an agent. Other
works have focused on the construction of vision-language-
action (VLA) models that directly output action tokens [6,
34, 74]. Both of the previous approaches aim to construct
foundation model policies (over text or continuous actions).
In contrast, our work aims to instead construct a foundation
4D world model for embodied agents, which can then be
used for downstream applications such as planning [13, 72]
or policy synthesis [14, 39].

Learning World Models Learning dynamics model of the
world given control inputs has been a long-standing chal-
lenge in system identification [41], model-based reinforce-
ment learning [54], and optimal control [4, 79]. A large
body of work focused on learning world models in the low
dimensional state space [1, 16, 37], which while being effi-
cient to learn, is difficult to generalize across many environ-
ments. Other works have explored how world models may
be learned over pixel-space images [10, 11, 21, 22, 42], but
such models are trained on simple game environments. With
advances in generative modeling, a large flurry of recent
research has focused on using video models as foundation
world models [7, 45, 62, 65, 75, 77] but such models operate
over the space of 2D pixels which does not fully simulate
the 3D world. Most similar to our work are [74], which
predicts only the 3D goal state for robotic tasks, and [55],
an geometric-aware world model trained purely on synthetic
data without language grounding or downstream robotic
tasks; in contrast, our approach models the 4D scene from
RGB-DN videos and supports language-conditioned control.



Dataset ‘ Domain Depth Source Normal Source Embodiment  # of videos
RLBench [26] ‘ Synthetic Simulator Depth2Normal [2]  Franka Panda 80k
RT1 Fractal Data [5] Google Robot 80k
Bridge [59] Real Rolling Depth [31] Marigold [32] WidowX 25k
SomethingSomethingV?2 [19] Human Hand 100k

Table 1. Overview of the 4D embodied video datasets.

4D Video Generation The task of 4D video generation has
gained increasing attention in recent years [53, 69], driven
by advancements in diffusion models [23, 46, 52], neural ra-
diance fields [43], and 3D Gaussian splatting [33]. However,
existing methods often suffer from slow optimization due
to hybrid frameworks [3, 40, 63, 73] and the convergence
challenges of SDS loss [30, 51]. Instead, we represent 4D
scenes using RGB-DN videos, which offer more efficient
training and provide high-accuracy 3D information crucial
for embodied tasks. Furthermore, our approach is the first
to directly predict 4D scenes from the current frame and the
embodied agent’s action described in the text.

3. Preliminaries

3.1. Latent Video Diffusion Models

Diffusion models [23, 52] are capable of learning the data
distribution p(z) by progressively adding noise to the data
until it resembles a Gaussian distribution through a forward
process. During inference, a denoiser e is trained to recover
the data from this noisy state. Latent video diffusion models
[75] utilize a Variational Autoencoder (VAE) [35, 58] to
encode the data in the latent space, maintaining high-quality
outputs while more efficiently modeling the data distribution.

We formulate the task of RGB V, depth D, and normal
N video generation as a conditional denoising generation
task, i.e., we model the distribution p(v,d, n|v",d% n°, T),
where v, d, n represent the predicted future latent sequences
of RGB, depth, and normal maps, respectively; the condi-
tions v, d", n°, T are the latent of RGB image, depth and
normal maps, and embodied agent’s action in text.

The forward diffusion process adds Gaussian noise to the
latent z € {v,d, n} over T timesteps, defined as:

q(z¢|ze-1) = N (265 Vauze—1, (1 — ap)T) (D

where t € {1,2,...,T} denotes the diffusion step, « is
a parameter controlling the noise influence at each step,
and I is the identity matrix. In the reverse process, the
model aims to recover the original latent from the noise.
Let x = [v,n, d] denoting the concatenation of v,n,d, a
denoising network e (x;, t, x", T) with learning parameters
6 is trained to predict the noise added at each timestep. The
reverse process is defined as:

po(xi—1|xt, X0, T) = N (x¢-1; pro(x¢, 1, x°, T), So(x¢, 1)) (2)
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Once the denoised latent x( is obtained, the model maps it
back to the pixel space to obtain the final RGB-DN video.

3.2. Depth Optimization via Normal Integration

As discussed in [8, 18, 64], normal maps provide informa-
tion about surface orientation, which is vital for enforcing
geometric constraints and imposing surface smoothness and
continuity during depth optimization. This spatial optimiza-
tion leads to more accurate depth estimates that closely align
with the true 3D geometry and capture fine surface details.
To formalize the process, we use the perspective camera
model to set constraints on the depth and surface normal. In
the coordinate system of the 2D image at frame ¢, a pixel
position is given as u = (u,v)? € V?, and its corresponding
depth scalar, normal vector is d € D%, n = (n,, Ny, N;) €
N, Under the assumption of a perspective camera with
focal length f and the principal point (c,, ¢,)T, as proposed
by [15], the log-depth d = log(d) should satisfy the follow-
ing equations: 7,0ud +n, = 0 and 7,0,d + ny = 0 where
Ny = ng(u — ¢y) + ny(v — ¢y) + n, f. In addition, we can
add the assumption that all locations are smooth surfaces [8].
We can convert the above constraint to the quadratic loss
function, allowing us to find the optimized depth map:

m(}n // (ﬁzauci—i— ngﬁ)2 + (fzzaud—&— ny)Qdudv. 3)
Q

Following [8], we can convert the above objective to an
iteratively optimized loss objective. At iteration step ¢, we
can compute the matrix W (d;) and iteratively optimize for

a refined depth prediction d;1:
diy1 = arg min(i(AJ, — b)TW(d,)(Ad — b) &f arg ming, L, (D, N7)

where A and b are defined by normals and camera intrinsic.

4. Learning a 4D Embodied World Model

Learning how 3D scenes may change over time based on the
current observation and action is crucial for embodied agents.
We propose to learn a 4D embodied world model, TesserAct,
by training on RGB-DN videos and reconstructing the 4D
scenes from it. We first introduce the 4D embodied video
dataset we collected in Sec. 4.1, then discuss the model
architecture and training strategy in Sec. 4.2. In Sec. 4.3, we
propose an efficient optimization algorithm with two novel
loss functions to convert the generated RGB-DN videos into
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Figure 2. Architecture and Training Overview of TesserAct.

4D scenes. Finally, in Sec. 4.4, we demonstrate how the 4D
world model can help downstream embodied tasks.

4.1. 4D Embodied Video Dataset

Learning 4D embodied world models requires large-scale
4D datasets, which are expensive to collect in the real world.
In this section, we present a data collection and annota-
tion pipeline that enables us to automatically construct 4D
datasets from existing video datasets.

Simulator-synthesized data provide ground truth depth
information, so we first selected 20 tasks of relatively high
difficulty from RLBench [26] and generated 1000 instances
captured from 4 different views for each task, making 80k
synthetic 4D embodied videos in total. Although the simula-
tor provides metric depth information, it lacks surface nor-
mal data. To estimate normals, we use the depth2normal
function from DSINE [2]. To enhance the generalization, we
adopt the scene randomization techniques from the Colos-
seum data generation pipeline [47], which alters the back-
ground, table texture and light of the scene.

While synthetic data provides depth and normal data of
high quality, their diversity is limited, resulting in a gap
compared to real-world scenarios. To bridge this gap, we
also incorporate real-world video datasets. As most of these
datasets lack depth and normal annotations, we employ the
state-of-the-art video depth estimator RollingDepth [31] to
annotate the videos with affine-invariant depth. As affine-
invariant depth map does not directly yield normal map as
metric depth does and a reliable video normal estimator
is currently unavailable, we annotate normal maps using
Temporal-Consistent Marigold-LCM-normal. These two ap-
proaches allow us to obtain high-quality, sharp, and tempo-
rally consistent video depth and normal annotations. Specifi-
cally, we select two high-quality datasets from OpenX [56],
the Fractal data [5], and the Bridge [59] dataset. Moreover,
to further increase the diversity of the instructions, we in-
corporated the human-object interaction dataset, Something
Something V2 [19]. Detailed statistics are shown in Table 1.
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4.2. Model Architecture and Training Strategy

Training a diffusion model to generate temporal RGB-DN
data is challenging. To effectively train RGB video models,
large-scale video datasets containing billions of high-quality
samples are typically employed [67, 75]. In contrast, our
RGB-DN dataset, even with automatic annotation, comprises
only about 200k data points, which is insufficient to train a
world model from scratch. To overcome this limitation, we
modify and fine-tune CogVideoX [67] to serve as our RGB-
DN prediction model, leveraging the pre-trained knowledge
within it to effectively bootstrap our 4D model.

Our architecture is illustrated in Figure 2. First, we uti-
lize the 3D VAE [35, 58] from CogVideoX to separately
encode the RGB (v), depth (d), and normal (n) videos,
without any additional fine-tuning of the VAE. These latent
representations are perturbed with noise to get x;, and are
then fed into our model along with the corresponding image
latent head x". For the input design, we introduce three
separate projectors for each modality to extract the embed-
dings: f, = InputProij(z,z°), where z € {v,d,n}.
DiT then takes the sum of these embeddings as input, con-
ditioned on the textual input 7 and denoising step t, to
obtain the hidden state: h = DiT(>_ f,,¢, 7). To distin-
guish between different robot arms, 7 is defined as [action
instruction] + [robot arm name], e.g., “pick up apple google
robot”. On the output side, we retain the original RGB
output method: € = OutputProj(h). However, we in-
troduce additional modules for depth and normal prediction.
A Conv3D layer is used to encode the concatenation of
the input latents and the predicted RGB denoised output.
These are then combined with the hidden states produced
by the DiT backbone and passed through the output projec-
tor to obtain the denoised predictions for depth and nor-
mal: €, DNProj(h,Conv3D(e}, (24 2% c(v,dn}))-
To preserve the pretrained knowledge, we initialize our
model with the CogVideoX weights. All other modules
are initialized with zeros, ensuring that the RGB output at
the beginning of training matches the output of CogVideoX.
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During training, we randomly select samples from the 4D
embodied dataset (V, D, N, T') constructed above and apply
Eq.! to add noise ¢y, €4, and €, to the RGB-DN data at
timestep ¢, minimizing the following objective:

2
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After obtaining the RGB-DN video, we further optimize
the depth and reconstruct the 4D scene. Similar to prior
works [32, 68], our depth representation for each image is
given by a relative map in the range [0, 1], and thus can-
not directly reconstruct the entire scene. While past work
has sidestepped this by assuming either a default scale for
depth [70] or by directly predicting metric depth [9, 74],
such reconstructions from depth are often coarse and often
cause reconstructed planes or walls to be tilted.

With the normal maps A, we can optimize the depth
maps D! via normal integration for refined depth maps
Dt as introduced in Sec. 3.2 with a loss term £, for spa-
tial consistency. However, this approach optimizes depth
frame by frame, which lacks temporal consistency across
the dynamic scene. To address this, we compute optical
flow between frames [57] F = RAFT(V) and enforce
consistency of depth across frames. We define the static
regions of each frame as the pixels with the magnitude of
optical flow smaller than threshold ¢ and obtain its mask by
M = || F¢|| < c. We then define the dynamic parts of an
image as M? = =M. We further define the background of
an image as static regions that are fixed across image frames,

= MiA M

Since optical flow represents the movement of objects in
the 2D-pixel space, we can retrieve the depth at any position
from the previous frame to impose consistency constraints.
To compute the depth values from the previous frame at

[evv €d, 6n] - ee(xht,XOvT)

L= Evg,T,t,e [

4.3. 4D Scene Reconstruction
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positions corresponding to the current frame, we utilize the
optical flow F*~(~1), For each pixel (u,v) in frame i, the
optical flow provides the displacement (Au, Av), allowing
us to find the corresponding pixel in frame 7 — 1 at position
(u — Au,v — Av). Based on this mapping, we define the
D=1 such that: D01 (u,v) = D (u — Au,v —
Av). We then introduce the consistency loss over the dy-
namic and background region of the image L.:

2

LD, DY FLFY =g +

‘ﬁi o Mi, _ pioli-1) o M,

(&)

2

Acb f[jl OMZ _ Di*)(i*l) OM'ILJ

In addition to the consistency loss, we also incorporate the
regularization loss £,, enforcing that optimized depths are
similar to the generated depth map D*:

~ ~ . . . 112 ~ . 2
£,(D, D) = Na [ Do My = D o M| + 2 [ DT o My — Doyl (6)

The overall loss objective we optimize is given by:
argming Ls(D,N?) + L(D, Di-1, Fi, FY+£,.(D,0) (7)

Starting from the first frame, we iteratively refine the
depth map by optimizing the loss above, and initialize the
depth map at frame ¢ with the generated depth map Dy = D".
With refined depth maps D and RGB Images V, we can
reconstruct 4D point clouds representing the world that are
consistent over both space and time.

4.4. Embodied Action Planning with 4D Scenes

After generating 4D scenes, which encapsulate both spatial
and temporal information, we extract geometric details that
can significantly enhance downstream tasks in robotics. The
detailed geometry captured by these scenes plays a crucial
role in tasks including robotic grasping.

To achieve this, we employ an inverse dynamics model
built on the 4D point clouds, predicting the appropriate robot



Domain  Method RGB Depth Normal Point Cloud
FVD] SSIMT PSNRT | AbsRel| 6&; 1 021 | Mean] Median| 11.25°1 | Chamfer L; |

4D Point-E - - - - - - - - - 0.2211

Real OpenSora 23.67 71.31 19.25 31.41 60.39 79.97 | 41.82 32.15 13.58 0.3013
CogVideoX 20.64  79.38 22.39 26.17 64.82 81.62 | 19.53 10.09 22.70 0.2191
TesserAct (Ours) | 21.59 75.86 20.27 22.07 66.80 82.60 | 15.74 7.32 27.80 0.2030
4D Point-E - - - - - - - - - 0.1086

Synthetic OpenSora 54.11 65.90 19.28 18.40 65.02 91.20 | 12.94 7.58 25.02 0.2570
CogVideoX 41.23 76.60 20.87 19.81 60.07 80.16 | 20.36 10.47 26.04 0.2884
TesserAct (Ours) | 40.01 77.59 19.73 16.02 69.26 93.03 | 14.75 6.34 36.85 0.0811

Table 2. Main results on the 4D scene generation. All metrics are averaged over 10 runs for each of the samples. The best results are in
bold, and the second best are in underlined. TesserAct predicts the depth and normal maps most accurately without hurting RGB much and
thus achieves the best accuracy of reconstructed 4D point clouds across real and synthetic image domains.

action a; based on the current state s;, the predicted future
state s; 41 and the instruction 7. Mathematically, this re-
lationship is expressed as a; = ID(s;, $;41, T ), where s;
represents the scene at the time step 7. Specifically, we
use PointNet [48] to encode the point cloud and extract 3D
features. These features are then combined with the instruc-
tion text embeddings and further processed by an MLP to
generate the final 7-DoF action.

5. Experiments

We first evaluate the quality of 4D scene predictions from
our model across real and synthetic datasets in Sec. 5.1, then
conduct experiments in RLBench to demonstrate how the 4D
information helps the embodied tasks in Sec. 5.2. We provide
more qualitative results and videos in the Supplementary and
the website.

5.1. 4D Scene Prediction
5.1.1. Setup

Datasets. We conduct experiments on the real domain with
400 unseen samples in RT1 Fractal [5] and Bridage [59]
dataset where depth and normal are estimated as in Sec. 4.1,
and the synthetic domain with 200 unseen samples in RL-
Bench [26], where ground truth depth and normal maps are
directly accessible.

Metrics. We evaluate the video quality with FVD, SSIM,
and PSNR; depth quality with AbsRel, d1, and d>; normal
maps quality with Mean, Median, and 11.25°; reconstructed
point cloud quality with the L; Chamfer Distance. We gen-
erate 10 times per sample and report the average.
Baselines. We compare our method to two video diffusion
models and a 4D point cloud diffusion model.

* OpenSora [75], video diffusion model fine-tuned with
LoRA on the same dataset without depth and normal anno-
tations. To construct the full 4D scene, depth and normal
are additional estimated given the predicted video with
Rolling Depth and Marigold.

* CogVideoX [67], video diffusion model fine-tuned with
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LoRA on the same dataset without depth and normal anno-
tations. The 4D scene is obtained similarly to the above.
* 4D Point-E, since no prior work directly generates dy-
namic scenes from the first frame and text inputs, we
implemented a 4D point cloud diffusion model as the
baseline, where we modify the Point-E [44] model by con-
ditioning it on the mean of CLIP [49] features extracted
from both text and image inputs, outputting 7" point clouds
of size n, where T is set to 4 and n is set to 8192 due to
computational constraints.
Implementation Details. We train our model on the col-
lected 4D embodied video dataset using a multi-resolution
training approach, predicting 49 frames at a time. For more
details, please kindly refer to the Supplementary Materials.

5.1.2. Results and Analysis

TesserAct predicts high quality 4D scenes. As shown in
Table 2, our model accurately predicts the depth and nor-
mal maps compared to video diffusion models with post-
estimation, verifying the effectiveness of our learned model.
With better depth and normal maps, the 4D point clouds
reconstructed with our method achieve the lowest Chamfer
distances across real and synthetic datasets. The 4D Point-E
method performs better than video diffusion models, par-
ticularly on RLBench, but still lags behind our approach.
Additionally, training directly with point clouds is computa-
tionally expensive, restricting the number of frames used. In
contrast, our model leverages an efficient representation with
RGB-DN videos to generate more precise 4D scenes, par-
ticularly in capturing fine-grained details in dynamic scenes.
We also show qualitative results in Figure 4 (a).

TesserAct synthesizes novel views efficiently. Our method
could also perform monocular video to 4D tasks by pre-
dicting depth and normal sequences and generating point
clouds. We conduct experiments on the task of novel view
synthesis on RLBench and compare with Shape of Motion
[60], a state-of-the-art video reconstruction approach that
utilizes Gaussian splatting [33]. The input is a monocu-
lar front camera video, and we compare results from the



Methods close open open open put sweep to 1lid weighing water
box drawer jar microwave knife dustpan off off plants
Image-BC 53 4 0 5 0 0 12 21 0
UniPi* 81 67 38 72 66 49 70 68 35
4DWM (Ours) 88 80 44 70 70 56 73 62 41

Table 3. TesserAct boosts the performance of action planning. We report the success rate averaged over 100 episodes for each task here.

CLIP CLIP Time
Method PSNR  SSIM  LPIPS Score  Aesthetic Costs
SoM[60] 10.94 24.02 73.82 66.67 3.61 ~2 hours
Ours 1299 42.62 6051 83.02 3.73 ~ 1 mins

Table 4. Novel view synthesis results on RLBench.

overhead and left shoulder cameras. We report PSNR (re-
construction accuracy), SSIM (structural similarity), LPIPS
(perceptual difference), CLIP Score (semantic match) [76],
CLIP aesthetic (visual quality) [36], and Time costs in Ta-
ble 4. The results show our method can synthesize novel
views of higher visual quality and better alignment in signif-
icantly less time. A qualitative result on the Bridge dataset
is shown in Figure 4 (c).

Consistency and Regularization Loss are effective. We
conduct ablation experiments on our newly designed loss
terms in Sec. 4.3. The results are shown in Figure 3. The
first two rows demonstrate the effect of the consistency loss,
where we render frames from the same camera view at dif-
ferent time steps. The results show that the robot arm’s
movements are more coherent with the consistency loss ap-
plied. The last row highlights the role of the regularization
loss. We display images of the same frame from three dif-
ferent views, revealing that this loss term helps improve the
geometric accuracy of the reconstruction.

TesserAct shows generalization across scenes and em-
bodiments. Our model demonstrates strong generalization
capabilities. Benefiting from the knowledge of CogVideoX,
the model achieves good generation on unseen scenes and
unseen objects. Additionally, it performs well in cross-
embodiment scenarios, such as using the Bridge dataset
robotic arm in the RT-1 environment. Figure 4 (b) shows a
generalization result on unseen scenes and objects. More
results can be found in the Supplementary Materials.

5.2. Embodied Action Planning

Dataset. We select 9 challenging tasks from RLBench [26]
including tasks requiring high-precision grasping.
Metric. The success rate averaged over 100 episodes.
Baseline. We compare our method to a behavior cloning
agent and a video-based world model.
* Image-BC [27]: a behavior cloning agent that takes in an
image and task instruction and outputs the 7-DoF actions.
e UniPi* [14]: a method that takes the task instruction and
current image, predicts the future video, and uses a 2D-
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based inverse dynamic policy to predict actions. For this

baseline, we re-implement it by replacing the backbone

with fine-tuned CogVideoX [67] for fair comparison.
Implementation Details. We collected 500 samples for each
task to train the inverse dynamic model. Given an initial
state during inference, we first predict and record all future
keyframes. In subsequent actions, we only query the inverse
dynamic model to obtain the corresponding actions by the
current state and the predicted future state. We post-trained
the model from Sec. 5.1, allowing the model to predict only
the keyframes for each task in RLBench. Our maximum
frame length is 13, with a fixed resolution of 512 x 512.

5.2.1. Results and Analysis

The results are shown in Table 3, where our method outper-
forms video diffusion models and image behavior cloning
agents in most of the tasks. This is because, in most tasks,
4D point clouds can reveal the geometry of objects, provid-
ing better spatial guidance for robotics planning, as seen in
tasks like close box and open Jjar. At the same time,
3D information can assist with tool use, such as in tasks like
sweep to dustpan and water plants. However,
in the open microwave and weighing off tasks, the
performance is not as good as the baseline, possibly because
these tasks already have sufficient information in the 2D
front image. Overall, these results highlight the potential of
combining 4D scene prediction with inverse dynamic models
to improve robotics task execution.

6. Conclusion

We learn a 4D generative world model, TesserAct, using a
collected 4D video dataset, which consists of robotic manip-
ulation videos annotated with depth and normal information.
To ensure both temporal and spatial consistency in scene
reconstruction, we introduce two novel loss terms. Our
experiments across synthetic and real-world datasets demon-
strate that our model generates high-quality 4D scenes and
significantly enhances the performance of downstream em-
bodied tasks by leveraging 3D information. We believe that
such world models will become increasingly powerful and
essential, serving as a foundation for simulating the physical
world and advancing the development of intelligent embod-
ied agents. These models will enable fully offline policy
training in the real world and facilitate planning through
imagined rollouts within the learned world representation.



(a) In-domain 4D Generation Results
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Figure 4. Qualitative results of (a) In-domain 4D generation results. (b) Generalization over unseen scenes and objects. (c) Novel
view synthesis.
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