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Abstract

The development of a generalist agent with adaptive mul-
tiple manipulation skills has been a long-standing goal in
the robotics community. In this paper, we explore a crucial
task, skill-incremental learning, in robotic manipulation,
which is to endow the robots with the ability to learn new
manipulation skills based on the previous learned knowl-
edge without re-training. First, we build a skill-incremental
environment based on the RLBench benchmark, and explore
how traditional incremental methods perform in this setting.
We find that they suffer from severe catastrophic forgetting
due to the previous methods on classification overlooking
the characteristics of temporality and action complexity in
robotic manipulation tasks. Towards this end, we propose
an incremental Manipulation framework, termed iManip,
to mitigate the above issues. We firstly design a temporal
replay strategy to maintain the integrity of old skills when
learning new skill. Moreover, we propose the Extendable
PerceiverIO, consisting of an action prompt with extendable
weight to adapt to new action primitives in new skill. Ex-
tensive experiments show that our framework performs well
in Skill-Incremental Learning.

1. Introduction
Imagine that we are in a household setting with a robot as-
sistant that already has basic functions like folding clothes
and fetching items. Now, as the owners, we want it to learn
new skills. For instance, today we’ve purchased a dish-
washer, and we’d like the robot to learn how to load dishes
into it. It could quickly acquire these new skills by observ-
ing and mimicking our demonstrations. This is an interest-
ing and challenging requirement for robotics manipulation,
which needs the robot to learn new skills based on previ-
ously learned knowledge without retraining. However, in
the area of robotic manipulation, previous research mainly
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Figure 1. (a) An overview of our skill-incremental learning for
robotic manipulation that requires the agent to learn skill se-
quences over time. (b) A comparison of model performance be-
tween the traditional incremental baseline (TIB) and our iManip.

focuses on how to acquire better manipulation performance
[6, 38, 47, 57, 69] or how to transfer the knowledge from the
pretrained large language or vision models [4, 10, 21, 30]
to learn robotics manipulations, rarely works explore how
to incrementally learn new skills. LIBERO [35] is a pre-
liminary benchmark to learn lifelong robotics control, but it
explores the incremental abilities in new objects or new spa-
tial positions, still limited in the characteristics of the same
skills, where different tasks share the same skill.

In this paper, we thoroughly explore this crucial task,
skill-incremental learning, in robotic manipulation, which
is to leverage the previous learned knowledge to enable
the robots to learn new manipulation skills without train-
ing from scratch. To begin with, we construct a skill-
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incremental environment based on the RLBench bench-
mark. It requires the agent to continuously acquire a se-
quence of 10 challenging language-conditioned manipula-
tion skills. Each skill consists of at least two variations en-
compassing several types, such as variations in shape and
color, totaling 166 variations. Then, we explore how the
traditional incremental learning methods work on this skill-
incremental environment. As seen in Figure 1, we discover
that after learning new manipulation skills, the agent’s per-
formance on prior skills significantly deteriorates. Thus, we
can conclude that traditional incremental learning methods
still suffer from catastrophic forgetting in this new setting,
which, we regard, is due to their neglect of the temporality
and action complexity in robotic manipulation tasks. The
temporal complexity arises from the dynamic changes in the
environment and in the robot states over time, resulting in
each action having an impact on subsequent actions. And
the complexity of actions requires the agent to learn new
action primitives for action planning in novel environments
and interactions, which is representative in 3D dimensions
with rotation and shift, and highly complex.

To mitigate the above problems, we propose a new skill
incremental Manipulation framework, termed iManip, for
this new setting. The key idea of our framework is to mod-
ify the traditional incremental learning methods to fully
consider the characteristics of temporality and action com-
plexity in robotic manipulation tasks. Two designs make
our framework nontrivial. First, to address temporal com-
plexity, we design the temporal replay strategy to maintain
the integrity of the temporal data and propose to replay a
fixed number of keyframe samples at different time points
for each manipulation skill, using the farthest-distance en-
tropy sampling strategy. Second, to address the complexity
of actions, we propose the Extendable PerceiverIO, consist-
ing of an action prompt with extendable weight to adapt to
new action primitives. When learning new skills, we freeze
the learned parameters of PerceiverIO while learning a new
small set of skill-specific action prompts and weight matri-
ces for new action primitives learning.

Extensive experiments show that our iManip framework
maintains several excellent capabilities: (1) Effectiveness:
it performs well in the skill-incremental learning setting,
outperforming the traditional incremental baseline with an
increase of 9.4 points. (2) Robustness: it demonstrates ro-
bust performance in several different incremental settings.
(3) Lightweight: it only needs lightweight finetuning of the
policy decoder with fewer training steps, comparable with
full weights finetuning. (4) Extendability: it also has ex-
traordinary performance in real-world experiments.

2. Related Work
Robotic Manipulation. Learning robot manipulation con-
ditioned on both vision and language has gained increas-

ing attention [11, 16–18, 49, 50, 53, 58–60, 63, 65], with
robot imitation learning using scripted trajectories [23, 39]
or tele-operation data [12, 42, 62] gradually becoming a
mainstream approach. Previous work [5, 13, 24] has fo-
cused on using 2D images to predict actions, while more
recent studies have leveraged the rich spatial information
of 3D point clouds for motion planning. For instance, Per-
Act [51] feeds voxel tokens into a PerceiverIO [22]-based
transformer policy, achieving impressive results across var-
ious tasks. GNFactor [67] optimizes a generalizable neural
field for semantic extraction, while ManiGaussian [37] in-
troduces a dynamic Gaussian Splatting [27] framework for
semantic propagation. 3DDA [26] proposes a 3D denoising
transformer to predict noise in noised 3D robot pose tra-
jectories. However, these methods suffer from catastrophic
forgetting in skill-incremental learning and we propose our
iManip framework to continuously learn new skills and mit-
igate forgetting of learned knowledge.

Conventional Lifelong Learning Approaches. One of
the most commonly used methods is the rehearsal-based
method [2, 8, 9, 19, 20, 25, 33, 46, 54, 56]. iCaRL [46]
proposes a herding-based step for prioritized exemplar se-
lection to store old exemplars. RWalk [8] proposes a hard-
exemplar sampling strategy for replay. Distillation-based
methods [7, 14, 19, 31, 34, 52, 55, 68] propose distilling
old knowledge from the old network to the current net-
work or maintaining the old feature space during new tasks.
ABD [52] proposes distilling synthetic data for incremen-
tal learning and EEIL [7] proposes to distill the knowledge
from the classification layers of the old classes. Moreover,
there are dynamic-architecture-based methods [1, 32, 36,
43, 44, 66] that dynamically adjust the model’s represen-
tation ability to fit the evolving data stream. In this work,
we use the traditional rehearsal-based method [46] and the
distillation-based methods [7] for robotic skill-incremental
learning. We find that they also suffer from catastrophic
forgetting due to overlooking the temporal and action com-
plexities of robotic manipulation.

A Preliminary Lifelong Robot Learning Benchmark
LIBERO. Previous works [15, 28, 29, 40, 41, 61] explore
different strategies for incremental robotic learning based
on different testing environments. Recently, to promote
community development, LIBERO [35] proposed a bench-
mark, which explores incremental abilities with new ob-
jects, goals, or spatial positions, as shown in Figure 2. The
limitation of LIBERO lies in the fact that most tasks are
constrained by similar skill characteristics. For example,
it regards “Put the bowl on the plate” and “Put the bowl
on stove” as different tasks. In this paper, we explore a
more realistic and challenging task, skill-incremental learn-
ing, where the agent learns a sequence of skills over time,
each involving multiple poses and object variations in place-
ment, color, shape, size, and category.
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“Pick up the milk and 
place it in the basket”

“Pick up the orange juice 
and place it in the basket”

“Pick up the salad dressing 
and place it in the basket”

Object 1 Object 2 Object 3

Skill 1: Stack blocks Skill 2:  Put item in drawer Skill 3:  Sweep to dustpan of size

“Sweep dirt into the tall
dustpan on the left”

“Sweep dirt into the short
dustpan on the right”

“Sweep dirt into the short
dustpan on the left”

“put the item in 
the bottom drawer”

“put the item in 
the top drawer”

“put the item in 
the middle drawer”

“Stack three 
blue blocks”

“Stack four 
black blocks”

“Stack three 
violet blocks”

“Put the bowl on 
the plate”

“Put the bowl on 
the stove”

“Put the bowl on 
top of the cabinet”

“Pick up the black bowl between 
the plate and the ramekin”

“Pick up the black bowl 
from the table center”

“Pick up the black bowl 
next to the cookie box”

Goal 1 Goal 2 Goal 3 Spatial 1 Spatial 2 Spatial 3

Figure 2. Overview of robotic incremental learning. Previous works focus on incremental abilities in new objects, goals, or spatial
positions, where different tasks may share the same skill. The iManip focuses on skill-incremental learning which better captures the true
adaptability and flexibility required for real-world robotic learning.

3. Skill-incremental Learning for Robotic Ma-
nipulation

3.1. Challenges

While robotic manipulation has received increasing atten-
tion, few previous studies explore how to incrementally
learn new skills. In this paper, we focus on skill-incremental
learning for robotic manipulation, a challenging setting that
requires agents to continuously acquire new skills without
training from scratch.

In this new setting, we find that applying traditional in-
cremental learning methods [7, 8, 37, 46, 51] still suffers
from catastrophic forgetting of previously learned skills, as
seen in Figure 1 (b). There are two key challenges when ap-
plying previous methods of visual classification to robotic
skill-incremental learning: 1) Previous methods overlook
the temporal complexity inherent in robotic manipulation
tasks, where dynamic changes in the environment and the
robot states over time cause actions to impact subsequent
ones. For example, classical replay algorithms focus on
sampling the most representative samples per class, directly
storing representative samples from demonstrations may re-
sult in temporal imbalance of the trajectory, leading to in-
stability during task execution. 2) Previous methods focus
primarily on general visual features while neglecting the ac-
tions complexity in robotic manipulation. Robotic manip-
ulation involves action planning through interactions with
the physical environment, such as visual and language in-
put. When a new manipulation skill arises, the agent learns
new visual-language interactions and quickly acquires new
action primitives based on prior knowledge.

3.2. Overall Pipeline

To tackle the two challenges, we propose the temporal re-
play strategy and the extendable PerceiverIO architecture
in our iManip framework. Specifically, as shown in Fig-
ure 3, we present the overall framework for robotic skill-
incremental learning, which can sequentially learn robotic
manipulation skills while mitigating catastrophic forgetting
of learned skills. Specifically, the agent learns a sequence of
manipulation skills with a stream of training data denoted as
D = {Di}Ti=1, where Di = {(o(1)i , a

(1)
i ), (o

(2)
i , a

(2)
i ), . . .}

represents the demonstration trajectories of skill i. The
visual input o(t)i = (I

(t)
i , D

(t)
i , P

(t)
i ) consists of the t-th

single-view images I
(t)
i , depth images D

(t)
i , and proprio-

ception matrix P
(t)
i ∈ R4 that includes the openness, end-

effector position, and the current timestep. After learn-
ing skill i, a compact memory M stores a fixed number
of demonstration replays for skills up to i − 1. Follow-
ing [37, 51, 67], the agent combines the visual input o(t)i

and language instructions li to generates the optimal ac-
tion a

(t)
i = (a

(t)
i,trans, a

(t)
i,rot, a

(t)
i,open, a

(t)
i,col), which respectively

demonstrates the target translation in voxel a(t)i,trans ∈ R1003 ,

rotation a
(t)
i,rot ∈ R(360/5)×3, openness a

(t)
i,open ∈ [0, 1] and

collision avoidance a
(t)
i,col ∈ [0, 1].

Our framework consists of a voxel encoder for learning
3D scene features, a latent transformer (the extendable Per-
ceiverIO), and a policy decoder to predict optimal robot ac-
tions. Specifically, our approach employs a temporal re-
play strategy, maximizing the information entropy of replay
demos to effectively address the first challenges caused by
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Samples with different 
entropy of keyframe K

…

…

Replay buffer for keyframe K
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Keyframes of 
demonstrations

Temporal Replay Strategy

Figure 3. The overall framework of iManip, which primarily consists of a temporal replay strategy to store the samples with the farthest
distance entropy for each keyframe of old demonstrations and an extendable PerceiverIO consisting of action prompts with extendable
weights to adapt to new action primitives.

classic replay methods. Additionally, we introduce the ex-
tendable PerceiverIO, consisting of action prompts with ex-
tendable weights to adapt to new action primitives, while
preserving knowledge of previous skills to prevent catas-
trophic forgetting.

3.3. The iManip Framework

Temporal Replay Strategy. Rehearsal-based methods [8,
19, 46] are classic algorithms in incremental vision clas-
sification tasks while overlooking the temporal complexity
inherent in robotic manipulation. Apart from random sam-
pling, popular methods such as herding sampling [46] and
hard-exemplar sampling [3, 8] effectively select the most
representative samples from each class. However, robotic
manipulation data consists of temporal samples from entire
expert episodes. Directly storing representative samples can
lead to temporal imbalance of episodes, resulting in insta-
bility during task execution.

Therefore, we propose a temporal replay strategy to bal-
ance the sampling of different keyframes of episodes for
each skill. Keyframes [51] are the samples from episodes
when the end-effector changes state (e.g., gripper closing)
or when its velocity approaches zero, representing critical
temporal landmarks within the trajectory.

Furthermore, to sample a greater variety of variants, we

propose the farthest-distance entropy sampling to store an
equal number of each keyframe. It requires the buffer to
contain the replays that exhibit the largest entropy diver-
gence as

S = argmax
S∈E,|S|=K

∑
i∈S

∑
j∈S

A[i][j], (1)

where S is the sampled set with size K, E is the demo set of
a specific keyframe with size N , and A is the distance array
of the demos’ action prediction entropy Lact. Specifically,
we propose to store the demo j to the replay buffer that has
the farthest distance of sampled demos in S as

j = argmax
j∈E

∑
k∈S

A[j][k]. (2)

This ensures the storage of temporally balanced,
information-rich samples from previous episodes, helping
to mitigate catastrophic forgetting of learned skills.

Based on the above analysis, the pseudocode for the tem-
poral replay strategy is shown in Algorithm 1. The algo-
rithm can get the optimal solution for the objective 1, with
time complexity of O(N2), which is the size of a specific
keyframe and not relevant to the size of the previous data,
suitable for incremental skill learning.
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Algorithm 1 Farthest-distance Entropy Sampling

Require: Entropy set corresponding to the keyframe sam-
ples E = {e1, e2, . . . , eN}, sampling size K

Ensure: Sampled set S = {s1, s2, . . . , sK}
1: Calculate the distance array A, where A[i][j] =

distance(ei, ej)
2: Select the sample i and add to S, where i =

argmax
1≤i≤N

∑N
j=1 A[i][j]

3: for k = 2 to K do
4: Find the value in E that has the largest difference

with the values in S,
j = argmax

j∈E

∑
k∈S A[j][k]

5: Add sample j to S as the k-th sample
6: end for
7: return Sampled set S

Extendable PerceiverIO. Unlike traditional vision classi-
fication tasks, robotic manipulation requires the integration
of multiple modalities to enable complex decision-making
and long-term action planning through interactions with the
physical environment. Classic methods [7, 8, 19, 46] for
lifelong classification overlook the complexities of action
in robotic manipulation tasks that require the agent to learn
various action primitives for different skills. In our iManip
framework, we propose an extendable PerceiverIO, which
learns skill-specific action prompts with extendable weights
to adapt to new action primitives.

Specifically, as illustrated in Figure 3, the input to the ex-
tendable PerceiverIO consists of multimodal patches, X =
[Xvoxel, Xlanguage, Xaction], where Xvoxel and Xlanguage repre-
sent the input sequences of voxel and language encodings,
respectively, and Xaction = [Xold

action, X
new
action] is the skill-

specific action prompt that concatenates both the old and
new action prompts. The notation [·, ·] denotes the concate-
nation operation along the token dimension. Subsequently,
X undergoes a cross-attention computation between the in-
put and a much smaller set of latent vectors through the la-
tent encoder, producing Xlatent. Then Xlatent is encoded with
weight-extendable self-attention layers as

Q = Xlatent ·W scale
Q , K = Xlatent ·W scale

K ,

V = Xlatent ·WV ,
(3)

Xatt = softmax[
Q ·K⊤
√
d

] · V, (4)

where Xlatent, Xatt ∈ RT×d are respectively a set of
T input and output tokens with channel dimension d,
W scale

Q ,W scale
K ∈ Rd×d′

,WV ∈ Rd×d are learnable weight
matrices. Notably, W scale

Q ,W scale
K are extendable by append-

ing newly weight matrices W new
Q ,W new

K ∈ Rd×dnew as

W scale
Q =

[
W old

Q ,W new
Q

]
, W scale

K =
[
W old

K ,W new
K

]
, (5)

where W old
Q ,W old

K ∈ Rd×dold are the old weight matrices
and the expanded dimension d′ = dold + dnew. Finally,
these encoded latents are cross-attended with the input once
again through the latent decoder to ensure alignment with
the input size. In our iManip framework, we freeze the old
PerceiverIO while learning the action prompts Xnew

action and
a small set of newly weight matrices W new

Q ,W new
K of new

skills. This enables the agent to quickly adapt to new action
primitives while preventing the forgetting of previous skills.
Knowledge distillation between the old and new agents.
To better preserve the knowledge of previous skills while
learning new ones, we employ knowledge distillation [7,
64], where the output probability distribution of the old
model is used to train the new model. This enables the trans-
fer of knowledge from the old to the new agent, as defined
by the following objective:

Ldis = L2(Qold
trans,Qnew

trans) + L2(Qold
rot ,Qnew

rot )+

|Qold
open −Qnew

open|+ |Qold
collide −Qnew

collide|,
(6)

where L2 is the MSE loss, [Qold
trans,Qold

rot ,Qold
open,Qold

collide] and
[Qnew

trans,Qnew
rot ,Qnew

open,Qnew
collide] denote the probabilities of the

ground truth actions in expert demonstrations for transla-
tion, rotation, gripper openness, and collision avoidance for
the old and new robots, respectively.

3.4. Learning Objectives
Our approach is to address the problem of skill-incremental
learning for robotic manipulation from multiple aspects.
First, for each manipulation skill, there is an action loss to
facilitate robot imitation learning. Following [37, 51, 67],
we employ cross-entropy loss (CE) to ensure accurate ac-
tion prediction:

Lact = −EYtrans [logVtrans ]− EYrot [logVrot ]

−EYopen [logVopen ]− EYcollide [logVcollide ] ,

(7)

where Vi = softmax(Qi) for Qi ∈ [Qtrans,Qopen,Qrot,
Qcollide] and Yi ∈ [Ytrans, Yrot, Yopen, Ycollide] is the
ground truth one-hot encoding.

Furthermore, when learning new skills, we propose the
temporal replay strategy to preserve a fixed number of rep-
resentative samples from old demonstrations. The cached
memory M will be used in conjunction with the new skill
demos Dnew for learning new skills. Additionally, our ex-
tendable PerceiverIO will dynamically expand new learn-
able weights for the new skill. We find that training only the
skill-specific action prompts Xnew

action with newly appended
weights W new

Q ,W new
K and the policy decoder effectively pre-

vents catastrophic forgetting, more analysis can be seen in
the 3rd experiments in Section 4.2. Finally, we employ
knowledge distillation loss Ldis to help the agent retain the
knowledge of previous skills. Overall, in skill-incremental
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Methods Base Step 1 Step 2 Step 3 Step 4 Step 5 Average
Old All Old All Old All Old All Old All Old All

multi-task methods
PerAct [51] 44.0 4.0 7.3 2.7 5.1 1.1 9.0 2.5 6.7 1.3 1.6 2.3 5.9

ManiGaussian [37] 55.2 12.0 20.7 6.7 12.0 5.7 15.5 3.0 9.3 5.3 5.2 6.5 12.5
skill-incremental methods
P-TIB [7, 46, 51] 44.0 33.6 34.7 26.0 25.1 22.3 26.0 17.0 16.4 11.6 10.4 22.1 22.5
M-TIB [7, 37, 46] 55.2 42.4 45.3 36.7 37.1 34.3 39.5 31.0 31.6 29.8 26.8 34.8 36.1

Ours (iManip) 56.0 57.6 56.7 50.7 48.0 45.1 47.5 42.0 39.1 38.7 36.0 46.8 45.5

Table 1. Performance comparison of different methods of B5-5N1 in Rlbench. We show the average success rate of old and all learned
skills, and the average performance of all new steps. The traditional incremental methods [7, 46] on baseline [37, 51] is termed TIB.

learning, our training loss is formulated as follows:

Ltotal = Lact + λdisLdis, (8)

where λdis is a hyperparameter that controls the importance
of the knowledge distillation loss Ldis during training.

4. Experiments
4.1. Experimental setup and details
Experimental setup. Following [37, 67], we select 10 rep-
resentative manipulation skills in RLBench[23] and 5 daily
manipulation skills in the real world for our experiments.
Each skill has at least two variations and 20 demonstrations
during training that cover multiple types, such as position,
shape, and color. To achieve a high success rate for these
skills, the manipulation policy needs to learn generalizable
knowledge rather than overfitting the limited given demon-
strations. For visual observation, we only use the front
RGB-D image with 128× 128 resolutions. To demonstrate
the performance of our method under different incremen-
tal settings, we define several configurations, represented as
Bn-kNm. This notation indicates that the policy is initially
trained on n base skills, followed by the addition of m new
skills in each step, with a total of k steps.
Evaluation Metric. We report the performance of the agent
on each learned skill by the average success rate. At each
incremental step, we present the average success rate for
old, new, and all (combined old and new) skills. In the sim-
ulation, we evaluate the agent with 25 episodes per skill,
whereas in the real world, we use 10 episodes per skill. Dur-
ing evaluation, the agent continues to take actions until an
oracle signals task completion or the agent reaches a maxi-
mum of 25 steps.
Implementation Details. For model design, we use dif-
ferent encoders to transform corresponding modality data
into tokens, which serve as the input for the Extendable
PerceiverIO. The RGB-D images are projected and trans-
formed into voxels, which are then encoded by a 3D con-
volutional encoder with a UNet architecture, while text in-
structions are encoded using CLIP RN50 [45], and the pro-
prioception data is encoded by a single-layer MLP. After

TRS EPIO DIS B5-1N1 B5-5N1
R1 20.7 5.2
R2 ✓ 49.3 27.6
R3 ✓ ✓ 54.0 32.4

Ours ✓ ✓ ✓ 56.7 36.0

Table 2. Ablation Study on two experiment setup. We report the
average success rate of all learned skills.

encoding, the tokens from all modalities have the same di-
mension of 512. The hyperparameter λdis is set as 0.01 and
the action prompt length is 16. We store 2 keyframe replays
of the total 20 demonstrations of learned skills and train the
agent on two NVIDIA RTX 4090 GPUs with a batch size of
1, a learning rate of 0.002, and 100k iterations. More stud-
ies about the hyperparameters are shown in the Appendix.

4.2. Simulation results
Performance comparison with different methods. We
conduct the skill-incremental learning experiment in the
B5-5N1 setting, where we first train the policy on five base
skills and then gradually learn a new skill at each subse-
quent step with a total of five steps.

To demonstrate the performance of our method in robotic
skill-incremental learning, we compare with two standard
multi-task manipulation policies, PerAct [51] and Mani-
Gaussian [37], by retraining the agent to learn new manipu-
lation skills. Furthermore, we apply two Traditional Incre-
mental Baselines (TIB) for visual classification to the above
policies for comparison, termed P-TIB and M-TIB respec-
tively. As shown in Table 1, the results demonstrate that
the performance of our method significantly outperforms
the others at each subsequent step. This demonstrates that
our method better facilitates the learning of new skills while
mitigating the forgetting of previous skills. More detailed
results of each learning skill at every step are shown in the
Appendix.
Ablation Study. We conduct the ablation study to validate
the effectiveness of each policy, as shown in Table 2. R1 is
the control group where the agent does not have any incre-
mental policy. When we add the Temporal Replay Strategy
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Frozen layer Convergence Trained Slide block Put in drawer Drag stick Push buttons Stack blocks
steps param Old New Old New Old New Old New Old New

Non-frozen 100000 47M 43.2 60.0 44.8 16.0 40.8 92.0 44.0 28.0 45.6 12.0
Encoder 75000 37M 50.4 54.0 51.2 12.0 45.6 88.0 48.4 24.0 52..0 8.0

EPIO 70000 18M 52.0 52.0 52.8 16.0 46.4 84.0 50.4 24.0 49.6 8.0
Decoder 75000 39M 45.6 24.0 47.2 0.0 42.4 40.0 44.8 4.0 46.4 0.0

Encoder+EPIO 60000 8M 57.6 52.0 56.8 12.0 50.4 84.0 55.2 20.0 56.0 8.0

Table 3. Performance of five sets B5-1N1 experiments with the same base skills and different new skills, while freezing different network
layers. For each new skill, we train a total of 100k iterations and report the average success rate and the average model convergence steps.

Methods B5-1N5 B2-4N2 B3-2N3
ManiGaussian [37] 25.6 10.4 17.3
M-TIB [7, 37, 46] 30.8 28.4 33.3

Ours (iManip) 37.2 36.8 41.3

Table 4. Average success rate of all learned skills on different skill-
incremental setup.

(TRS) to the agent, the setup of B5-1N1 and B5-5N1 im-
prove by 28.6% and 22.4% in the success rate, respectively
(see R2). The significant performance improvement stems
from the success of our temporal replay strategy that main-
tains the integrity of the temporal data.

When we add Extendable PerceiverIO (EPIO) to the
agent, the success rates of B5-1N1 and B5-5N1 further im-
prove by 4.7% and 4.8%, respectively (see R3). The EPIO
design works because the skill-specific action prompts help
the agents incrementally learn action primitives for new
skills, and the extendable weights designed in transformer
blocks allow the model to preserve the old knowledge while
adapting to new skills. Our complete policy achieves the
best success rate, where the Distillation mechanism (DIS)
improves the performance by 2.7% and 3.6%, respectively.

Through the ablation study, we find that the replay pol-
icy has the greatest impact on overall performance. Without
old data for retraining, the agent is more likely to forget pre-
viously learned knowledge. This occurs because data plays
a crucial role in robotic manipulation, and without the sup-
port of previous data, the agent is prone to overfitting the
data of new skills.
Effect of parameter freezing on skill-incremental learn-
ing. The agent consists of three main components: the en-
coders, the extendable PerceiverIO, and the policy decoder.
we freeze each component individually to evaluate its ef-
fect. As shown in Table 3, five sets B5-1N1 experiments on
different new skills demonstrate the following: (1) Freez-
ing the encoders or the extendable PerceiverIO helps retain
knowledge from the old skills without significantly hinder-
ing the learning of the new skill (Lines 1,2,3). (2) The pol-
icy decoder is crucial for learning new skills (Lines 1,4). (3)
Freezing the above components helps decrease the number
of parameters and accelerate convergence.
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Figure 4. Average success rate on different replay methods.

Based on these findings, we freeze both the encoder and
the extendable PerceiverIO, leaving only the decoder with
newly appended action prompts and weights for new skill
training, achieving faster convergence, fewer parameters,
and better performance (Line 5)!
Experiments on different skill-incremental setup. We
implement different skill-incremental settings to validate
the generalizability of our method and report the average
success rate across all previously learned skills after the last
incremental step. As shown in Table 4, compared to Mani-
Gaussian and M-TIB, our method achieves higher success
rates in all incremental experimental settings. This shows
that our approach has stronger performance and better gen-
eralization capabilities.
Exploring data replay methods. We compare our tempo-
ral replay strategy with the classical rehearsal-based method
on the setup of B5-1N1, as shown in Figure 4. Herding [46]
and Hardsample [8] are two methods for selecting the most
representative samples from the data. Episode refers to re-
playing a complete trajectory. Random refers to random
sampling. The results show that classic herding sampling
and hard-exemplar sampling perform poorly on old skills
due to neglecting temporal integrity in robotic demonstra-
tions. In contrast, replaying complete trajectories or random
sampling better preserves the temporal integrity of the sam-
ples, leading to better performance. Our temporal replay
strategy, leveraging the farthest-distance entropy sampling
for each keyframe can sample more different variants and
achieves the best success rate.
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Manipulation skills Base Step 1 Step 2 Step 3 Step 4
BL Ours BL Ours BL Ours BL Ours BL Ours

Slide toy 90.0 90.0 10.0 80.0 0 80.0 0 60.0 0 60.0
Open drawer - - 70.0 60.0 0 60.0 0 50.0 0 40.0

Pick and place - - - - 60.0 60.0 0 60.0 0 50.0
Pour water - - - - - - 40.0 40.0 0 10.0
Close jar - - - - - - - - 50.0 40.0

Old manipulation skills 90.0 90.0 10.0 80.0 +70.0 0 70.0 +70.0 0 56.7 +56.7 0 40.0 +40.0
All manipulation skills 90.0 90.0 40.0 70.0 +30.0 20.0 66.7 +46.7 10.0 52.5 +42.5 10.0 40.0 +30.0

Table 5. Real world experiments. The table reports the success rate of BaseLine (BL) and Ours. +num is the improvement of our method
compared to the baseline.

maxvisual input next action 

“move down to the target”

action prompts

visual input next action 

“move down to the target”

action prompts

visual input next action 

“rotate the gripper to close the jar”

action prompts

action prompts

visual input next action 

“move the gripper to slide the block”

min

Figure 5. Visualization of skill-specific action prompts by Grad-
CAM as the agent executes two manipulation skills: close jar (the
first row) and slide block (the second row).

Visualization of the skill-specific action prompts. We
visualize our skill-specific action prompts by Grad-
CAM [48], as shown in Figure 5. Our experiments train
the agent in the B5-5N1 setting with totaling 10 action
prompts. We first compute the sum of the parameter gradi-
ents for each action prompt and then normalize these values
to calculate Grad-CAM weights, displayed in different col-
ors. We show the results across two different skills. When
the agent executes the same action, e.g. “move down to the
target”, the third action prompt weight is maximized (see
the first column). Furthermore, when performing different
actions, different weights of skill-specific action prompts
are maximized (see the second column). It demonstrates
that action prompts can learn skill-specific action primi-
tives. Freezing old action prompts while learning new ones
helps prevent forgetting and adapt to new action primitives.

4.3. Real world experiments
We conduct five manipulation skills in the real-world envi-
ronment to further validate the effectiveness of our method.
We use a Franka Panda robotic arm to execute the action
and a Realsense D455 camera to capture RGB-D images as

observations. For each training step, we collect 20 demon-
strations. The training setup is B1-4N1 where we first train
on a base skill, then incrementally add one new skill at a
time for training, with a total of four new skills added. Dur-
ing testing, we perform 10 test runs for each learned skill
and report the success rate of task execution. More details
about the real world experiments and videos are shown
in the supplementary material.

We compare our method with the baseline [37] without
any incremental policy. As shown in Table 5, it is evident
that without the incremental strategy, the knowledge of pre-
vious skills is rapidly forgotten when training on new skills.
After incorporating our incremental strategy, the success
rate on new skills is lower than the baseline. This occurs
because the baseline has overfitted to the new skill, while
our model, which is designed to retain knowledge from pre-
vious skills, experiences a slight decrease in its ability to
learn new skills. This trade-off is an inherent challenge in
incremental learning.

5. Conclusion

In this work, we focus on a new and challenging setting,
skill-incremental learning in robotic manipulation, which is
to continually learn new skills while maintaining the previ-
ously learned skills. We conduct experiments on the RL-
Bench benchmark and find that traditional methods suf-
fer from catastrophic forgetting because they overlook the
temporal and action complexities of robotic manipulation.
Our approach proposes a temporal replay strategy to ad-
dress the temporal complexities and an extendable Perceive-
rIO model with adaptive action prompts to address the ac-
tion complexities. Extensive experiments demonstrate that
our iManip framework excels in effectiveness, robustness,
lightweight design, and extendability.
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