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Abstract

Adversarial examples, crafted with imperceptible perturba-
tions, reveal a significant vulnerability of Deep Neural Net-
works (DNNs). More critically, the transferability of ad-
versarial examples allows attackers to induce unreasonable
predictions without requiring knowledge about the target
model. DNNs exhibit spatial invariance, meaning that the
position of an object does not affect the classification result.
However, existing input transformation-based adversarial
attacks solely focus on behavioral patterns at a singular po-
sition, failing to fully exploit the spatial invariance exhibited
by DNNs across multiple positions, thus constraining the
transferability of adversarial examples. To address this, we
propose a multi-scale, multi-position input transformation-
based attack called Spatial Invariance Diversity (SID).
Specifically, SID uses hybrid spatial-spectral fusion mecha-
nisms within localized receptive fields, followed by multi-
scale spatial downsampling and positional perturbations
via random transformations, thereby crafting an ensemble
of inputs to activate diverse behavioral patterns of DNNs
for effective adversarial perturbations. Extensive experi-
ments on the ImageNet dataset demonstrate that SID could
achieve better transferability than the current state-of-the-
art input transformation-based attacks. Additionally, SID
can be flexibly integrated with other input transformation-
based or gradient-based attacks, further enhancing the
transferability of adversarial examples. The code is avail-
able at https://github.com/TheMoss7/SID.

1. Introduction

With the continuous advancement of Deep Neural Networks
(DNNs) [8, 11, 12, 30], they have been successfully ap-
plied to various fields e.g., image classification [11], se-
mantic segmentation [4, 37], and face recognition [25, 31],
demonstrating remarkable performance. However, the vast
number of parameters within DNNs makes them difficult
to interpret, leading to a black-box nature. Recent studies
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(a) Raw image. (b) Heatmap of raw image.

(c) Rescaled image. (d) Heatmap of rescaled image.

Figure 1. The attention heatmaps of raw image, and rescaled im-
age generated on Inception-v3 model using Grad-CAM.

[9, 26] have shown that adding imperceptible perturbations
to the legitimate input can effectively mislead DNNs. The
emergence of adversarial examples has further heightened
concerns regarding the reliability of DNNs.

Adversarial attacks are typically divided into white-box
[9, 13, 20] and black-box attacks [1, 3]. In white-box at-
tacks, the architecture and parameters of the target model
are accessible. Therefore, attackers can easily launch at-
tacks on the white-box target model. However, the white-
box attack scenario is overly idealized, as the target model
is typically inaccessible. In contrast, black-box attacks are
more realistic, where the attacker has no knowledge of the
target model. Recently, many studies have found that adver-
sarial examples generated through white-box attacks exhibit
transferability [2, 32], allowing them to successfully attack
other models with different architectures and parameters.
It is entirely feasible to use a surrogate model to conduct
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black-box attacks. Therefore, improving the transferability
of adversarial examples has become an important issue.

Recently, many studies have explored different ap-
proaches to improve the adversarial transferability, includ-
ing input transformation [33, 43, 45], model ensemble
[18, 41], gradient manipulation [6, 17, 32], and improving
adversarial loss function [42]. Among these, input trans-
formation methods have shown great potential. By apply-
ing random transformation to input images before gradi-
ent calculation, this approach captures more diverse gradi-
ents, significantly enhancing the adversarial transferability.
DNNs exhibit spatial invariance [14], consistently achiev-
ing correct classification regardless of changes in object po-
sitions within the image. As illustrated in Figure 1, while
the pre-trained model’s attention heatmap [23] maintains
focus on the correct area, the target model demonstrates ro-
bust recognition capability by accurately identifying objects
even when images are reduced in size and randomly reposi-
tioned. This indicates that there are weights associated with
the relevant category in the different regions. However, we
observe that, when computing adversarial perturbations, ex-
isting methods usually keep the position of correct objects
unchanged and fail to activate the DNNs’ behavioral pat-
terns at multiple positions, leading to a lack of diversity in
the perturbations. We believe this oversight limits the diver-
sity of perturbations, which causes lower adversarial trans-
ferability.

Motivated by the spatial invariance of DNNs, we aim
to activate different behavioral patterns at different spa-
tial positions and scales. Therefore, in this work, we pro-
pose a novel input transformation-based attack, called Spa-
tial Invariance Diversity (SID). Specifically, we use hybrid
spatial-spectral fusion mechanisms within localized recep-
tive fields. The resulting image is then downsampled to
multiple scales, with the resampled images placed in ran-
dom positions via padding to craft transformed images for
gradient calculation. This approach preserves the overall
content of the image while fusing the local image blocks
with the global input image to activate more behavioral pat-
terns. In summary, our contributions are as follows:

• We design a new image transformation method that no
longer focuses on a single position or quantity of image
content. While ensuring the global semantics, spatial-
frequency domain self-enhancement is applied at multi-
ple scales and positions to generate more diverse images.

• We propose SID, which leverages the spatial invariance of
DNNs to achieve improved transferability of adversarial
examples by activating the different behavioral patterns
of DNNs at different spatial scales and positions.

• Experiments conducted on the ImageNet dataset demon-
strate that our SID exhibits superior transferability com-
pared with the state-of-the-art input transformation-based
attacks.

2. Related Work

2.1. Adversarial Attacks
Since the discovery of adversarial examples by Szegedy et
al. [26], many studies [2, 6, 33] have been proposed, con-
tinuously highlighting the vulnerability of DNNs. Among
them, adversarial attacks based on Fast Gradient Sign
Method (FGSM) [9] have proven to be one of the most ef-
fective approaches. FGSM is a simple and fast white-box
attack method. Subsequently, Kurakin et al. introduce an
iterative version, I-FGSM [13], which improves the effec-
tiveness of adversarial examples in white-box attacks.

Gradient-based attack methods improve the transferabil-
ity of adversarial examples by operating on gradients. Dong
et al. [6] incorporate the concept of momentum from op-
timization algorithms into I-FGSM, proposing MI-FGSM,
successfully improve the transferability. Lin et al. [17] pro-
pose the use of Nesterov accelerated gradient to maintain
the gradient direction. Wang et al. [34] introduce variance
tuning, which adjusts the current gradient by considering
the gradient variance from previous iterations.

In addition to gradient-based methods, input
transformation-based attacks [19, 33, 35, 36, 43] can
also significantly enhance the transferability of adversarial
examples. Diverse Input Method (DIM) [40] randomly
pads the image before calculating gradients through the
model. Translation Invariant Method (TIM) [7] leverages
translation invariance by approximating the gradient of
the shifted image using pre-defined convolutional kernels.
Spectrum Simulation Attack (SSA) [19] applies Gaus-
sian noise in the spatial domain and random masks in
the frequency domain. Structure Invariant Attack (SIA)
[36] applies random augmentations to each image block,
creating more diverse images without compromising their
content. Block Shuffle and Rotation (BSR) [33] disrupts
the attention heatmap of the model through image block
shuffle and rotation, reducing variance in attention across
different models.

2.2. Adversarial Defenses
To address the threat posed by adversarial attacks, many de-
fense methods have been introduced to reduce model vul-
nerabilities to adversarial examples. Liao et al. [16] intro-
duce a High-level representation Guided Denoiser (HGD),
an adversarial purifier based on the U-Net architecture. Xie
et al. [39] employ random resizing and padding to coun-
teract the effects of adversarial examples. Guo et al. [10]
utilize multiple input image transformations, such as JPEG
compression, to counter adversarial examples. Nie et al.
[22] utilize a diffusion architecture model to remove adver-
sarial perturbations. Naseer et al. [21] use a self-supervised
mechanism to train a Neural Representation Purifier (NRP)
to reduce the impact of adversarial perturbations. Cohen et
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al. [5] propose that Randomized Smoothing (RS) enables
the training of a robust ImageNet classifier with a strong
robustness guarantee. In addition to pre-processing inputs,
enhancing model robustness is another effective strategy to
combat adversarial examples. One of the most effective
methods is adversarial training, which involves using ad-
versarial examples during the training process. Goodfellow
et al. [9] incorporate adversarial examples into the training
of classification models on MNIST. Tramèr et al. [29] intro-
duce ensemble adversarial training, using adversarial exam-
ples generated on several models, showing great robustness
against adversarial attack. Wong et al. [38] explore an effi-
cient approach to adversarial training by using a weaker and
cheaper adversary at a significantly reduced cost.

3. Methodology
3.1. Preliminaries
For a classification model f with parameters θ serving as the
victim model, and a clean input image x with the ground-
truth label y, the attacker’s goal is to craft an adversarial ex-
ample xadv = x+ δ that can mislead the victim model, i.e.,
f(xadv; θ) ̸= y, where δ represents the adversarial perturba-
tion. To ensure the stealth of the attack, the adversarial per-
turbation should satisfy the Lp-norm constraint ∥δ∥p ≤ ϵ.
We follow previous studies [33, 36, 40], employing the L∞-
norm for constraints. Therefore, adversarial attack can be
expressed as the following optimization problem:

argmax
xadv

J(xadv, y; θ), s.t.∥δ∥∞ ≤ ϵ, (1)

where J(·) represents the loss function. We use
cross-entropy loss function consistent with other input
transformation-based methods [19, 33, 36]. For the one-
step adversarial attack FGSM, it can be expressed using the
following formula:

xadv = x+ ϵ · sign(∇xJ(xadv, y; θ)), (2)

where sign(·) is the sign function, which represents the di-
rection of the gradient used as the adversarial perturbation.
Furthermore, for the iterative version of FGSM, known as
I-FGSM, with a step size denoted as α, the middle iteration
can be expressed as follows:

xt
adv = clipx,ϵ(x

t−1
adv + α · sign(∇xt−1

adv
J(xt−1

adv , y; θ))),

(3)
where clip(·) represents the pixel clip function, which con-
strains the perturbation. MI-FGSM, combined with input
transformation-based attack method, can be expressed us-
ing the following formula:

gt = µ · gt−1 +
∇xt−1

adv
J(T (xt−1

adv ), y; θ)

∥∇xt−1
adv

J(T (xt−1
adv ), y; θ)∥1

,

xt
adv = clipx,ϵ(x

t−1
adv + α · sign(gt)),

(4)

where g0 = 0, µ is the decay factor, and T (·) is the trans-
formation operator from input transformation-based attack.
In MI-FGSM, T (·) is the identity mapping. Given that MI-
FGSM effectively escapes local optima [6], the proposed
method will be integrated into this framework.

3.2. Motivation
For the image classification task, the models exhibit spatial
invariance [14], allowing a well-trained model to classify
objects correctly regardless of their position in the image.
This is the same as human perception. Considering that
the end of DNNs typically consists of fully connected lay-
ers, features extracted from inputs in different positions are
likely to be similar. Some work [24, 44] have proven that
even though the structures and parameters of different mod-
els are not the same, the features extracted by the models
often possess the same characteristics.

From this premise, we assert that, in a well-trained
model, the weights associated with the input image class
also exhibit spatial invariance. This means that there are
diverse behavioral patterns of DNNs at different positions.
However, existing work overlook this point. Most of the
work do not change the position of the correct object in the
image. Therefore, in the input space, the behavioral pat-
terns at many positions have not been activated. This means
that the adversarial perturbations obtained only contain the
behavioral pattern of a single position, while ignoring the
behavior patterns at other positions.

In this work, we aim to activate diverse behavioral pat-
terns of a single model across spatial positions. Specifically,
we achieve this through image transformation. With a spe-
cific image transformation method, we hope that the adver-
sarial perturbations can contain various behavioral patterns
at different spatial positions to enhance the effectiveness.
Meanwhile, some work [19, 33] on adversarial attacks have
also demonstrated that the remarkable common character-
istics extracted from different models have a greater impact
on the transferability of adversarial examples. Based on the
analysis, we activate diverse behavioral patterns at different
positions to find as many common characteristics as possi-
ble, so as to enhance the adversarial transferability.

3.3. Spatial Invariance Diversity
When designing the method of image transformation, the
semantic information of the image should be ensured to
remain unchanged. For instance, the four limbs of a cat
should be positioned below its body. This is also consis-
tent with human perception. Therefore, when utilizing the
spatial invariance of the models, the basic structure of the
image should not be altered. On this basis, we choose
two methods to change the position of the content of the
image category. One is random image padding, and the
other is image flipping. In this paper, we do not consider
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(a) Raw image. (b) Linear fusion image.

(c) Frequency fusion image. (d) Transformed image.

Figure 2. The raw and transformed images using proposed input
transformation method SID.

changing the size of the image because the size of the in-
put image for some models is fixed. Therefore, we perform
downsampling on the image and then conduct random im-
age padding. To make use of the multi-scale information,
we correlate the downsampling ratio of the image with the
number of intermediate iterations.

Assuming the image is randomly transformed N times,
the downsampling ratio for the transformation can be ex-
pressed as (1 − β · n

N ), where n represents the current it-
eration number, and the range of β is restricted to between
0 and 1. As the number of iterations increases, the ratio
gradually decreases, meaning that the image size also de-
creases. During the middle iterations, the transformed im-
age exhibits multi-scale features. This approach helps to
activate the different types of behavioral patterns of the sur-
rogate model in different scales and positions.

For the image flipping, there are two situations depend-
ing on the content of the image. One situation is that the
content of the image is not in the central position. In this
case, the image flipping operation will change the position
of the image, which is consistent with our starting point.
The other situation is that the content is right in the center of
the image. In this case, although the image flipping does not
change the position of the content, it still activates different
behavioral patterns of the model. According to the experi-
ment, we find that the improvement of the transferability of
adversarial examples by vertical flipping is not as good as
that by horizontal flipping. The experiments in work [36]

also prove this point. Therefore, in the implementation, we
choose horizontal flipping. As shown in Figure 2, we ran-
domly flip the image and image blocks for more behavioral
patterns.

3.4. Local Image Fusion
We find that, in previous work, the adversarial perturbations
obtained usually contain only one behavioral pattern of the
model, because the image contains only an object of the
correct class. We consider this approach to be inefficient.
To further utilize the property of spatial invariance to obtain
more effective adversarial perturbations, we propose local
image fusion to make the perturbations contain more be-
havioral patterns. As shown in Figure 2b and Figure 2c, we
fuse the image itself, through the designed method, at ran-
dom positions of the original image. This approach has two
advantages. Firstly, a single image contains the content of
the correct class in multiple positions, so that the adversar-
ial perturbation obtained by enhancing the image contains
multiple behavioral patterns. Secondly, the local image fu-
sion does not destroy the original structure of the image,
ensuring that the semantic information remains unchanged
and guaranteeing the usability of the perturbation. Specifi-
cally, we design two types of local image fusion methods:
linear fusion and frequency fusion.

To ensure the use of two different fusion methods in a
single image, we adopt the image block strategy. Specifi-
cally, the image is divided into k×k blocks. For each block,
there exists a probability 1−p of retaining its original state,
while with a probability of p, one of the two fusion meth-
ods is randomly selected and applied. For linear fusion, we
downsample the input image to match the dimensions of the
local image block and then perform a linear combination of
the local image block and the rescaled image:

xlinear =ω · xrescale + (1− ω) · xblock,

s.t.0 ≤ ω ≤ 1,
(5)

where ω is the weight for the linear fusion, xrescale is
the rescaled input image, xblock is the local image block,
xlinear is the linear fusion image block. The linear fusion
image is shown in Figure 2b. For frequency fusion, we also
rescale the input image to match the dimensions of the im-
age blocks. Then we combine the low-frequency content
of the image block with the high-frequency content of the
rescaled image:

xfrequency = IDCT (HP (DCT (xrescale))

+LP (DCT (xblock))),
(6)

where DCT (·) is discrete cosine transform, IDCT (·) is in-
verse discrete cosine transform, HP (·) is the high-pass fil-
ter, LP (·) is the low-pass filter, xfrequency is the frequency
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Algorithm 1 Spatial Invariance Diversity

Input: A classifier f with parameters θ; a clean input im-
age x with ground-truth label y; the number of iteration
T ; the maximum range of the perturbation ϵ; the num-
ber of image transformation N ; the decay factor µ; the
weight of downsampling factor β; the number of image
blocks k; the probabilities of image block fusion p; the
weight of linear fusion ω.

Output: The adversarial example xadv;
1: α = ϵ/T, g0 = 0, x0

adv = x;
2: for t = 1 → T do
3: for n = 1 → N do
4: Get transformation output:

x′
i = T (xt

adv, β, n, k, p, ω)

5: Calculate gradient: g′i = ∇xt
adv

J(x
′

i, y; θ)
6: end for
7: Calculate average gradient: g′ = 1

N

∑N
i=1 g

′
i

8: Update the momentum: gt = µ · gt−1 +
g′

∥g′∥1

9: Update the adversarial example:
xt
adv = clipx,ϵ(x

t−1
adv + α · sign(gt))

10: end for
11: return xT

adv .

fusion image block. The frequency fusion image is shown
in Figure 2c.

By fusing global information with the local image
blocks, the enhanced images activate as many behavioral
patterns of the surrogate model related to the input images
as possible. Furthermore, regardless of the fusion method
used, we strive to retain the consistency of the global image
while embedding information, ensuring that its semantic
content remains unchanged. For simplicity, we denote the
transformation methods introduced in Sec. 3.3 and Sec. 3.4
with the following notation:

xaug = T(x, β, n, k, p, ω), (7)

where xaug is the transformed image, and T (·) is the final
transformation method. The transformed image is shown in
Figure 2d. We integrate Equation (7) into MI-FGSM and
summarize the algorithm in Algorithm 1.

4. Experiment
4.1. Setup
Dataset. Following previous work [19, 36], we perform
evaluation experiments on the ImageNet-compatible dataset
containing 1,000 images sampled from ImageNet.

Models. To evaluate the adversarial performance,
we utilize nine victim models, which include normally
trained models i.e., Inception-v3 [27] (IncV3), Inception-
v4 (IncV4), Inception-ResNet-v2 [28] (IncResV2), ResNet-
v2-50 (Res50), ResNet-v2-152 (Res152) [11], Vision

Transformer (ViT-B) [8], and adversarially trained models
(IncV3ens3, IncV3ens3, and IncResV2ens) [29]. To further
evaluate the adversarial performance, we select several de-
fense methods, including HGD [16], NRP [21], R&P [39],
RS [5], AT [38], DiffPure [22], JPEG [10], and Res-De [15].

Competitors. We select five input transformation-based
attack methods as baselines for comparison to demonstrate
the effectiveness of the proposed method. We compare SID
with two similar methods, DIM [40] and TIM [7]. Addition-
ally, we select the state-of-the-art attack methods in the past
three years, including SSA [19], SIA [36], and BSR [33],
for comparison. Furthermore, we combine different meth-
ods for comparison, e.g., SI-NI-TIM (the combined version
of SI-NI-FGSM [17] and TI-FGSM). In the experiments,
we combine all methods with MI-FGSM to ensure that all
approaches are evaluated on the same baseline.

Parameters Settings. We follow the parameters set-
tings in MI-FGSM, the number of iteration T = 10, the
maximum perturbation boundary ϵ = 16, the step size
α = ϵ/T = 1.6, and the decay factor µ = 1. For TIM,
we choose the Gaussian kernel and set the kernel size to
7 × 7. The transformation probability of DIM [40] is 0.5.
For SI-NI-FGSM, the number of copies is set to m1 = 5.
For SSA, the tuning factor of the spectrum mask ρ = 0.5,
and the standard deviation of the spatial noise σ = 1.6. For
SIA, the number of blocks s = 3. For BSR, the number of
blocks n = 2, and the maximum rotation angle τ = 24◦.
For our SID, the downsampling factor β = 0.1, the num-
ber of blocks k = 2, the probabilities of image block fusion
p = 0.5, the weight of linear fusion ω = 0.5. For SSA, SIA,
BSR, and SID, the input image is transformed for N = 20
times. The parameters of all compared methods are the de-
fault parameters from papers.

4.2. Evaluation on Trained Models

In this section, we evaluate the adversarial performance of
various attack methods on six popular models and three ad-
versarially trained models. The adversarial examples are
generated using four models, normally trained on ImageNet
and provided by PyTorch. Here, we use the attack success
rate to evaluate the effectiveness of adversarial examples.

The results are shown in Table 1. For DIM and TIM,
DIM demonstrates better transferability on normally trained
models, while TIM performs better on adversarially trained
models. Compared with them, SSA shows improvements
in performance for both white-box and black-box attacks.
As the state-of-the-art methods, SIA and BSR demonstrate
significant transferability. It can be observed that our SID
achieves performance comparable to SIA and BSR on nor-
mally trained models, with an average improvement of
3.5% and 4.0%. Notably, our method shows significant im-
provements on adversarially trained models, achieving an
average improvement of 16.8% over SIA and 13.7% over
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Model Attack IncV3 IncV4 Res50 Res152 IncResV2 ViT-B IncV3ens3 IncV3ens4 IncResV2ens
DIM 99.8∗ 71.5 63.3 59.7 65.5 23.8 31.6 31.0 17.5
TIM 100.0∗ 52.5 46.6 40.7 45.7 25.6 30.0 29.8 19.7
SSA 99.5∗ 88.1 82.3 81.0 85.7 39.2 56.8 56.2 35.7
SIA 100.0∗ 95.2 92.4 88.9 95.2 46.4 61.6 59.9 36.9
BSR 100.0∗ 96.2 91.5 87.1 94.7 47.0 55.0 51.6 29.3IncV3
SID 100.0∗ 97.3 93.9 92.0 95.7 58.1 77.3 73.6 52.8
DIM 76.8 99.0∗ 61.2 56.1 66.0 23.7 28.5 26.0 16.1
TIM 60.8 99.8∗ 45.6 41.5 47.9 25.5 28.4 27.3 20.5
SSA 90.7 99.5∗ 83.4 82.3 86.5 43.0 58.6 53.4 36.9
SIA 97.0 99.9∗ 90.1 87.1 94.0 44.9 56.9 53.8 35.3
BSR 96.1 99.9∗ 85.6 82.3 93.4 34.7 57.6 52.1 34.3IncV4
SID 96.8 99.9∗ 92.1 90.5 94.5 58.4 71.7 68.1 52.4
DIM 73.9 72.3 64.0 59.5 97.0∗ 24.2 32.7 30.5 22.1
TIM 62.5 58.1 54.8 49.3 98.6∗ 26.9 34.9 31.2 26.4
SSA 89.9 89.3 86.0 85.0 98.1∗ 48.7 69.0 63.3 55.4
SIA 96.5 95.8 92.9 90.4 99.7∗ 48.6 69.7 64.8 51.2
BSR 94.6 93.8 92.4 90.7 98.5∗ 51.9 71.4 63.1 51.0IncResV2
SID 96.1 95.7 94.0 92.9 99.7∗ 65.4 84.0 79.4 68.9
DIM 79.0 76.4 79.1∗ 73.6 68.2 23.8 28.3 28.2 16.1
TIM 60.9 53.2 61.5∗ 53.4 45.6 27.1 28.7 30.2 20.4
SSA 88.2 86.3 92.2∗ 87.1 81.1 38.5 48.3 46.5 31.8
SIA 94.8 95.6 95.7∗ 93.8 90.4 38.5 50.3 45.1 27.2
BSR 96.8 97.6 96.6∗ 95.3 94.2 50.0 69.6 63.9 46.3Res50
SID 97.2 97.6 97.3∗ 97.2 94.9 62.9 78.3 72.4 54.0
DIM 49.3 43.4 47.5 44.0 36.1 99.8∗ 47.0 51.5 23.8
TIM 42.1 34.9 37.9 34.7 27.2 100.0∗ 39.1 41.0 27.1
SSA 66.4 62.2 67.9 63.9 55.6 99.8∗ 62.5 63.1 38.5
SIA 80.1 75.9 79.5 76.9 69.3 100.0∗ 79.5 81.1 38.5
BSR 78.1 73.9 75.6 73.6 68.3 99.0∗ 80.2 82.6 50.0ViT-B
SID 81.0 76.5 82.4 78.2 73.0 99.8∗ 81.9 86.5 62.9

Table 1. The attack success rates (%) on nine pre-trained models. The adversarial examples are crafted on IncV3, IncV4, IncResV2, and
Res50, respectively. ∗ indicates white-box attacks.

Attack IncV4 Res50 Res152 IncResV2 ViT-B IncV3ens3 IncV3ens4 IncResV2ens AVG.
SSA-NI 84.3 80.5 76.0 82.8 36.0 36.5 35.3 19.0 56.3
SIA-NI 94.9 89.3 87.4 93.5 38.9 51.3 49.0 28.2 66.5
BSR-NI 91.9 86.1 81.9 89.1 41.3 55.3 54.3 33.8 66.7
SID-NI 94.8 90.3 87.4 92.8 53.5 67.0 63.2 41.6 73.8
TI-DIM 71.3 60.4 55.5 64.8 29.9 42.7 42.0 29.0 49.4
SSA-TI-DIM 92.1 87.6 87.0 90.6 59.8 81.8 81.6 69.8 81.2
SIA-TI-DIM 97.1 92.4 90.3 94.9 61.3 82.5 78.8 65.9 82.9
BSR-TI-DIM 95.2 86.6 82.3 92.9 52.7 74.2 70.7 50.0 75.6
SID-TIM 95.8 89.9 87.6 92.4 64.3 83.9 81.7 70.1 83.2
SID-SI-TIM 96.3 93.6 92.1 95.8 75.5 90.9 89.6 80.3 89.2

Table 2. The attack success rates (%) of black-box attacks on eight pre-trained models. The adversarial examples are crafted on IncV3
with the gradient-based method and various input transformations.

BSR. This demonstrates the effectiveness of SID.

4.3. Evaluation on Ensemble Attacks
FGSM-based adversarial attacks can be flexibly combined,
and we show the results of different combinations in Ta-
ble 2. The momentum method is replaced with Nesterov
accelerated gradient, denoted as SSA-NI, SIA-NI, BSR-NI,
and SID-NI. Additionally, we combine SID with TIM and
SIM, denoted as SID-TIM and SID-SI-TIM, to compare TI-
DIM, SSA-TI-DIM, SIA-TI-DIM, and BSR-TI-DIM.

When combined with Nesterov accelerated gradient,
SIA-NI demonstrates competitive performance on the CNN
architecture models, closely matching that of our proposed

SID-NI. BSR-NI demonstrates superior performance rela-
tive to SIA-NI on ViT-B and adversarially trained models,
though it still falls short of SID-NI by 7.8% to 12.2%. On
average, our SID-NI achieves a performance improvement
of 7.1% and 7.3%, compared with BSR-NI and SIA-NI.
Given that DIM also manipulates image size similarly to
SID, we combine it with the comparative methods for fair-
ness. It is noteworthy that SIA-TI-DIM demonstrates strong
performance. However, in the case of adversarially trained
models, SID-TIM shows a consistent improvement. On av-
erage, SID-TIM without DIM outperforms SIA-TI-DIM by
0.3%. Furthermore, SID-SI-TIM, which incorporates SIM,
achieves a significant improvement of 6.3% in average.
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Attack IncV3 IncV4 Res50 Res152 IncResV2 ViT-B IncV3ens3 IncV3ens4 IncResV2ens

DIM 97.3∗ 93.5∗ 74.3∗ 71.2 88.9∗ 41.8 55.0 52.6 41.7
TIM 97.4∗ 95.7∗ 89.0∗ 86.3 94.1∗ 41.0 54.8 52.4 36.0
SSA 97.6∗ 97.5∗ 96.0∗ 94.8 96.0∗ 65.8 83.5 81.3 70.7
SIA 100.0∗ 99.9∗ 98.8∗ 98.6 99.7∗ 72.6 89.4 84.3 69.6
BSR 99.9∗ 100.0∗ 98.7∗ 98.1 99.8∗ 72.2 92.1 88.9 73.7
SID 99.9∗ 99.9∗ 98.9∗ 99.0 99.6∗ 86.5 95.8 93.8 86.1
SSA-TI-DIM 98.6∗ 98.6∗ 96.6∗ 96.2 97.6∗ 85.7 94.1 93.5 90.3
SIA-TI-DIM 99.9∗ 99.7∗ 98.5∗ 97.3 99.6∗ 85.5 96.1 95.2 91.6
BSR-TI-DIM 99.9∗ 99.9∗ 97.3∗ 97.3 99.8∗ 77.2 95.5 93.2 86.6
SID-TIM 99.9∗ 99.8∗ 98.0∗ 98.0 99.4∗ 89.6 96.8 96.3 93.9
SID-SI-TIM 100.0∗ 100.0∗ 98.5∗ 98.9 99.9∗ 93.1 98.6 97.6 95.9

Table 3. The attack success rates (%) on nine pre-trained models under ensemble model setting with various input transformations. The
adversarial examples are crafted on IncV3, IncV4, IncResV2, and Res50. ∗ indicates white-box attacks.

Method R&P NRP HGD AT Res-De DiffPure JPEG RS AVG.
SSA-TI-DIM 92.0 73.0 90.3 53.8 96.5 59.2 91.5 79.3 79.5
SIA-TI-DIM 93.9 53.4 96.3 52.3 99.3 48.4 92.4 77.4 76.7
BSR-TI-DIM 91.5 47.3 95.5 51.9 98.5 43.6 90.8 76.7 74.5
SID-TIM 94.5 63.9 96.5 54.4 98.4 59.4 92.7 79.9 80.0
SID-SI-TIM 96.7 78.9 97.3 57.2 98.4 70.6 93.8 82.2 84.3

Table 4. The attack success rates (%) on eight defense methods. The adversarial examples are crafted on IncV3, IncV4, IncResV2, and
Res50 simultaneously.

4.4. Evaluation on Ensemble Models
Ensemble model attack [18, 41] is an effective method to
enhance the adversarial transferability. We utilize IncV3,
IncV4, Res50, and IncResV2 to generate adversarial exam-
ples. Additionally, we discuss two situations: single input
transformation and ensemble input transformation.

As shown in Table 3, for the single input transforma-
tion, SIA and BSR exhibit comparable performance, with
our SID slightly outperforming both attack methods on nor-
mally trained CNN architecture models. However, on ViT-
B and adversarially trained models, our SID shows an im-
provement of 4.9% to 14.3% over the best-performing BSR.
On average, SID outperforms SIA and BSR by 5.2% and
4.0%, respectively. For the ensemble input transforma-
tion, SIA-TI-DIM performs excellently across all models,
with its average performance surpassing that of other attack
methods. In contrast, SID-TIM, which integrates only TIM,
still outperforms SIA-TI-DIM. Notably, SID-TIM shows
a 1.0% improvement on average. Besides, SID-SI-TIM
achieves a 98.1% attack success rate on average, showing
an improvement of over 2.2% compared with other attack
methods. This further demonstrates the significant effec-
tiveness of SID in improving the adversarial transferability.

4.5. Evaluation on Defense Methods
We have demonstrated the significant effectiveness of our
SID against adversarially trained models in Secs. 4.2 to 4.4.
To further evaluate its effectiveness, we assess the attack
performance of SID against eight different defense meth-
ods. The results are shown in Table 4. In light of the previ-
ous results, we combine input transformations with ensem-

ble attacks to achieve better performance.
Our SID-SI-TIM achieves an average attack success rate

of 84.3% against various defense methods, surpassing SSA-
TI-DIM by 4.8%. Besides, our SID-TIM outperforms SSA-
TI-DIM by 0.5%. Notably, when facing the most effec-
tive defense AT, SID-SI-TIM and SID-TIM exceed SSA-
TI-DIM by 3.4% and 0.6%, respectively. Additionally, in
the case of the diffusion-based defense method, DiffPure,
SID-SI-TIM outperforms SSA-TI-DIM by 11.4%. These
results further demonstrate the effectiveness of SID.

4.6. Ablation Study

Here we use IncV3 to craft the adversarial examples.
Multi-scale Vs. Fixed-scale. DIM transforms images

by random padding. However, unlike DIM, we downsample
the image content before padding, ensuring that the dimen-
sions of the transformed images remain unchanged. Addi-
tionally, our method adjusts the size according to the num-
ber of transformations, generating multiple scaled trans-
formed images in a single iteration. For fairness, we ap-
ply N times transformations to DIM, denoted as DIM-n,
and SID does not employ the local image fusion. As shown
in Figure 3a, our multi-scale method outperforms DIM-n
across multiple models. This indicates that multi-scale ef-
fectively enhances the adversarial transferability.

The impact of Linear Fusion and Frequency Fusion.
In local image fusion, we propose two fusion methods that
integrate the global image from both spatial and frequency
domains. As shown in Figure 3b, we explore the impact
of two fusion methods. When using the two fusion meth-
ods individually, we set the probabilities to p = 0.5 and do
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(a) (b) (c) (d)

Figure 3. The black-box attack success rates (%) on six trained models with (a) DIM-n and our multi-scale method, (b) different local
fusion methods, (c) MI-FGSM and different parts of our SID, (d) various numbers of blocks.

not employ the multi-scale approach. It can be observed
that when using linear fusion, the transferability signifi-
cantly exceeds that of frequency fusion. Notably, when both
methods are employed simultaneously, the transferability
exceeds that of either fusion method used individually.

The impact of Multi-scale and Local Image Fusion.
From the perspective of spatial invariance, we design im-
age transformation at both the global and local levels. As
shown in Figure 3c, we further explore the effectiveness of
each component and compare them with MI-FGSM. It is
evident that in normally trained models, the local image
fusion contributes more significantly to enhancing trans-
ferability, while in adversarially trained models, the multi-
scale method has a greater impact. Consequently, our SID,
which combines the advantages of both methods, achieves
the best performance across different models.

The size of Local Image Fusion. As shown in Fig-
ure 3d, when k = 2, the transferability of adversarial ex-
amples reaches its maximum. Further increases in k result
in a decline in performance. The number of blocks deter-
mines the size of the local fusion. When the number of
blocks k = 1, it corresponds to the global image fusion. As
the number of blocks increases, the fusion size decreases.
When the fusion size becomes sufficiently small, the model
is unable to effectively recognize the fused local informa-
tion, leading to a decrease in transferability.

The magnitude of Local Image Fusion. To better
demonstrate the effects brought about by the image fusion
technology, we use two fusion methods separately and con-
trol the fusion magnitude. In linear fusion, the fusion mag-
nitude represents the value of ω. As shown in Figure 4a, the
change in the fusion magnitude does not bring about ob-
vious changes. In frequency fusion, the fusion magnitude
is the proportion of the low-pass part of the original im-
age block after two-dimensional DCT transformation. As
shown in Figure 4b, it can be significantly observed that the
value reaches the maximum when the low-pass proportion
is 0.6, which is also the parameter value we selected in the

(a) (b)

Figure 4. The black-box attack success rates (%) on six trained
models with (a) various magnitude of the linear fusion, (b) various
magnitude of the frequency fusion.

experiment. As the magnitude increases, the original image
block is modified, resulting in the loss of global semantics
and a decrease in the attack success rate.

5. Conclusion

We discover that adjusting the position of image content can
activate diverse behavioral patterns of DNNs regarding the
input image, and neglecting these patterns limits the trans-
ferability of adversarial examples. To address this, we pro-
pose a novel input transformation-based attack called Spa-
tial Invariance Diversity (SID). This approach activates di-
verse behavioral patterns of DNNs at different scales and
positions by randomly adjusting the global image content
position and employing local image fusion, resulting in
various adversarial perturbations. Extensive experiments
demonstrate that SID effectively improves the transferabil-
ity of adversarial examples. From the perspective of spatial
invariance, SID provides new insights into adversarial at-
tacks by activating diverse behavioral patterns to improve
the transferability of adversarial examples.
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