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Figure 1. Our method efficiently preserves the original image’s features during multi-turn image reconstruction. Additionally, it enables
flexible editing capabilities in multi-turn editing tasks, providing the user with an iterative editing framework.

Abstract

Many real-world applications, such as interactive photo re-
touching, artistic content creation, and product design, re-
quire flexible and iterative image editing. However, exist-
ing image editing methods primarily focus on achieving the
desired modifications in a single step, which often strug-
gles with ambiguous user intent, complex transformations,
or the need for progressive refinements. As a result, these
methods frequently produce inconsistent outcomes or fail
to meet user expectations. To address these challenges, we
propose a multi-turn image editing framework that enables
users to iteratively refine their edits, progressively achiev-
ing more satisfactory results. Our approach leverages flow
matching for accurate image inversion and a dual-objective
Linear Quadratic Regulators (LQOR) for stable sampling,
effectively mitigating error accumulation. Additionally,
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by analyzing the layer-wise roles of transformers, we in-
troduce a adaptive attention highlighting method that en-
hances editability while preserving multi-turn coherence.
Extensive experiments demonstrate that our framework sig-
nificantly improves edit success rates and visual fidelity
compared to existing methods. The code is available at:
https://zhouzj—-dl.github.io/Multi-turn_
Consistent_Image_Editing/.

1. Introduction

Current image editing methodologies often strive for a
single-step editing solution that perfectly aligns with a given
textual prompt. This paradigm, however, proves inadequate
for practical applications like product design, where user
specifications are often inherently ambiguous and necessi-
tate progressive refinement. A more effective framework
should incorporate iterative editing capabilities, enabling
users to sequentially refine outputs through multiple edit-
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Figure 2. Multi-turn Reconstruction Results. This figure compares image reconstructions using our method and baseline methods across
1, 2, 4, and 8 reconstruction iterations. Our method effectively preserves color, background, structure, and semantic consistency across

multiple reconstruction rounds, outperforming the baseline methods.

ing cycles. Such an approach would provide enhanced con-
trol over the final result by allowing continuous adjustments
based on intermediate outcomes, as illustrated in Fig. 1.
Consequently, further exploration of multi-turn image edit-
ing frameworks is essential to unlock their potential for it-
erative image refinement.

An intuitive approach to multi-turn image editing in-
volves directly integrating existing single-step methods,
leveraging the significant advancements in diffusion-based
inversion [13, 16, 23, 24, 26, 32] and related editing tech-
niques. These single-step methods often employ techniques
such as attention map replacement [3, 4, 7, 11, 12, 19, 25,
33], mask application [3, 5, 14], and domain-specific pre-
trained models [15, 17, 35] to mitigate inversion inaccura-
cies and preserve image structure. However, this strategy
often lacks the robustness required for reliable multi-turn
editing, as these techniques are insufficient to prevent the
accumulation of errors across multiple iterations. Conse-
quently, edited results in multi-turn frameworks tend to ex-
hibit increasing artifacts and semantic biases, deviating sig-
nificantly from natural image characteristics.

Flow matching [10, 21, 22] has emerged as a power-
ful technique for image generation and editing. By di-
rectly estimating the transformation from noisy to clean
images, rather than predicting noise as in diffusion-based
methods, flow matching offers a more efficient and direct
framework. This results in simplified distribution transfer,
fewer inference steps, and ultimately, more precise editing
and reconstruction. This has led to its adoption in state-of-
the-art models like SD3 [10] and FLUX.1-dev [20]. Ex-
isting image editing research has explored flow matching
[1,2,10, 21, 22] as a method for accurate image inversion
in single-turn editing. Beyond single-turn editing, ReFlow-
based models have significant potential for multi-turn edit-
ing due to their efficiency in inference steps and accurate in-

version, which are crucial prerequisites for this task. How-
ever, as shown in Fig. 2, challenges such as accumulated
errors in multi-turn editing still need to be addressed. Addi-
tionally, the trade-off between preserving content and ensur-
ing sufficient editing flexibility in a multi-turn framework
remains unexplored.

In this paper, we present a novel framework that lever-
ages FLUX models to facilitate robust and controllable
multi-turn image editing. To ensure long-term coherence
and restrict the distribution of edited images in multi-turn
tasks, we integrate a dual-objective Linear Quadratic Regu-
lator (LQR) control mechanism into our framework. This
LQR mechanism considers both the outputs of preced-
ing turns and the initial input image, establishing a long-
term dependency in the editing process. Although dual-
objective LQR’s stabilization capability is essential for re-
liable multi-turn editing, the method’s stringent regulariza-
tion constraints may inadvertently reduce editing flexibility.
To achieve a balance between stability and flexibility during
the editing process, we propose an adaptive attention guid-
ance method aimed at directing the editing focus toward
salient regions. This adaptive attention mechanism utilizes
medium-to-low activated regions as spatial guidance signals
to generate a probabilistic editing mask. By employing at-
tention reweighting, this approach selectively concentrates
on target areas while preserving non-target regions.

The key contributions are summarized as follows:

* A dual-objective Linear Quadratic Regulator (LQR) ap-
proach that builds upon the flow matching inversion pro-
cess to ensure stable image distribution across multiple
editing turns.

* An adaptive attention mechanism, guided by analysis of
intermediate attention layers within the DiT architecture,
to enhance the precision and localization of edits.

* A multi-turn interactive image editing framework that
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empowers users to iteratively refine images with consis-
tent and predictable results.

2. Preliminary

Rectified Flow: Liu et al. [22] proposed an ordinary dif-
ferential equation (ODE) model to describe the distribution
transfer from xg ~ 7y to x1 ~ 1. They defined this trans-
fer as a straight-line path, given by x; = ta; + (1 — )z,
where ¢ € [0,1]. This can be expressed as the following
differential equation:

E = X1 — Xg- (1)
To model this continuous process, they sought a velocity
field v that minimizes the objective:

1
mvin/o E [l —20) —v@n)F]dt. @
In practice, this continuous ODE is approximated using a
discrete process, where the velocity field v(zy, t) is param-
eterized by a neural network. Typically, 1 ~ m; is assumed
to be Gaussian noise, and xy ~ 7y represents the target im-
age. The discrete inversion process is then formulated as:

Xivar = X +v(0,1)At, €)]

where v(6) denotes the neural network with parameters 6.

High-order Solver: To enhance the precision of this
discretization, RF-Solver [34] and FireFlow [8] employ
second-order ODE solvers, which reduce the approximation
error from O(At?) to O(At3) for the same step size At as
used in standard ODE methods. This improvement enables
comparable results with fewer sampling steps. In practice,
these methods implement the standard midpoint method, in-
creasing accuracy by evaluating the velocity field at an in-
termediate point. In the discrete setting, for time ¢ € [0, 1]
and a positive time increment At > 0, the inversion process
updates the state forward in time according to:

At
Xirar =X +v(0,t+ 7)At. 4)

Additionally, FireFlow [8] introduces an acceleration tech-
nique by caching intermediate velocity field results, reduc-
ing the required sampling steps to eight with the same trun-
cation error as midpoint method.

Linear Quadratic Regulator (LQR) Control: RF-
Inversion [31] introduces the Linear Quadratic Regulator
(LQR) method to effectively guide image generation. When
dealing with images or noise originating from atypical dis-
tributions, an explicit guidance term is incorporated. This

ensures that images from atypical distributions can be in-
verted into typical noise, and likewise, atypical noise can be
transformed back into typical images. Assuming x1 ~ 7
represents the Gaussian noise space and xg ~ m( represents
the image space, the discrete inversion process over time
t € [0, 1] is described by:

Xivar = X+ (Xe)+n(ve( Xy | X1)—ve(Xy))| AL (5)

This process guides the inversion toward typical noise. In
this equation, v;(x; | 1) is derived by solving an LQR
problem, resulting in vy (z; | 21) = S=F*.

3. Motivation

Single step error v.s. multi-round error. In image edit-
ing, flow matching acts as a discrete approximation of
a continuous ordinary differential equation (ODE). While
employing high-order solvers [8] or increasing the num-
ber of timesteps [34] reduces single-step errors—potentially
enhancing editing performance in theory—practical imple-
mentations encounter notable challenges under multi-round
constraints. When the forward and reverse processes are
performed multiple times, especially in iterative editing sce-
narios, multi-round truncation errors become a significant
concern as shown in Fig. 2.

Multi-round truncation error arises not just from indi-
vidual steps but from the accumulation of these errors over
a sequence of operations. High-order methods do mini-
mize local truncation errors, but when these methods are
applied iteratively, the cumulative error can become sub-
stantial, overshadowing initial gains in precision from re-
ducing single-step errors. The reversibility of the process
also introduces an additional layer of complexity. Numeri-
cal methods are typically not perfectly reversible; the path-
way through which errors propagate in the forward direction
may differ from that in the reverse direction. This asymme-
try can further exacerbate the accumulation of errors, espe-
cially over multiple editing cycles.

In practical applications of the ReFlow model, these con-
siderations highlight the limitations of reducing single-step
error alone, as shown in Fig. 3b. Instead, comprehensive
strategies are needed to address the cumulative nature of
global truncation errors and stability challenges in multi-
round editing processes.

Single step guidance v.s. multi-turn guidance. Another
group of methods [31] relies on the source image as a refer-
ence, performing precise single-step edits. However, these
methods falter in multi-round editing contexts where cumu-
lative error becomes a critical issue. The crux of the prob-
lem lies in the way the original LQR-based approach ref-
erences only the last edited image Y;, gradually diverging
from the source image Y over multiple iterations. While
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Figure 3. We visualize the differences in single-step and multi-round accumulative errors during inversion (+—) and editing (\) across
different ReFlow-based editing methods. (a) Vanilla ReFlow struggles with structure preservation during inversion due to the truncation
error of the Euler method. (b) While a second-order ODE solver reduces truncation error in a single step, the accumulated error over
multiple editing rounds remains significant. (c) Incorporating the source image as guidance (dotted /) via LQR improves performance in
a single step but becomes less effective as accumulated errors increase with more steps. (d) Our approach addresses this issue by integrating

both techniques, leveraging a dual-objective LQR coupled with a high-order solver to enhance stability and accuracy.
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Figure 4. Multi-turn editing pipeline. In each editing iteration, a
high-accuracy rectified flow inversion maps the image back to the
Gaussian noise space, followed by sampling to generate the edited
images. To better constrain the distribution of edits across multi-
ple turns, the original image and previous editing results serve as
guidance during subsequent sampling. Additionally, a highlighted
region in the attention mask further preserves the content structure

of the edited outputs.

well-suited for single-step optimization as Y; equals to Y,
this technique accumulates discrepancies across successive
rounds of edits due to its inability to realign with the origi-
nal image’s core characteristics, as shown in Fig. 3c. Multi-
ple condition generation addresses this shortcoming by in-
corporating both Yj and Y,, as simultaneous conditions for
transformation. This dual-reference approach ensures that
each round of editing remains anchored to the source im-
age’s foundational elements, thereby minimizing drift over
time, shown in Fig. 3d.

4. Method
4.1. Dual-objective LQR Guidance

We develop an optimal control strategy to efficiently trans-
form any image X (whether corrupted or not) into a state
that reflects multiple random noise conditions, represented

by samples X1 ~ p1, Xo ~ p2,..., Xn ~ pp.

1 n
1 Ai
V(e) = /0 3 lle (Ze, t)]]5 dt + E 5 121 — Xil5,

dZt =cC (Zt,t) dt, Zo = Xo.

(6)

This formulation is equivalent to leveraging a weighted
average approach in a d-dimensional vector space R? to
achieve a balanced transformation:

1
1 A A 112
V(e) ;:/ SleZu ) e+ 3 20— X
0 2

dZt = C(Zt,t) dt,

@)
Zy = Xo,

where X = %LT
the noise samples. The function V(c) quantifies the total
energy of the control ¢ : R? x [0, 1] — R?. By optimizing
V() over the set of permissible controls, denoted by C, we
address the multi-condition generation challenge through a

Linear Quadratic Regulator (LQR) framework.

represents the weighted synthesis of

PropOSItlon 1 Given Zy = X and the composite target

X = M the optimal control solution for the LOR

i= 1

problem (7), denoted by c* (-, t), aligns with the conditional
vector field u; (| X1, ..., Xy), guiding the transformation
along the interpolated path X; = tX + (1 — t) X,. Specifi-
— X*Zt

cally, this results in ¢* (zy,t) = uy (2| X Tt

Based on Proposition 1 of multi-objective LQR guid-
ance, we establish a framework for iterative image inversion
and sampling, constraining the distribution of edited images
per round to enable accurate editing. Additionally, we solve
the second-order ODE (Eq. (4)) using the FireFlow acceler-
ation algorithm [8], enhancing the speed of single-step sim-
ulations within the framework.
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In practice, we employ a single-objective LQR for the
inversion process. Let the clean image space be denoted
by x¢g ~ my and the Gaussian noise space by z; ~ 7.
For the k-th editing step, the inversion process employs a
single-objective LQR to map an image—whether corrupted
or uncorrupted—back to the Gaussian noise space 7y, using
a second-order ODE solver:

th+At =X+ [Ut+%(Xf)

®)
7 (g 30 (XF | XT) = v g (X)) ] A
For sampling, we apply dual-objective LQR control within
an invertible flow model, using both the initial image and
the previous edit result as guidance. Specifically, at the k-
th editing turn, the initial image is denoted as X} and the
result from the (k—1)-th editing turn as XY . Given a time
interval At > 0, the dual-objective LQR sampling process
is defined as follows:

th,m = Xf - [W—%(th)‘i‘
0 (v e (XF | X3 —v_ge (XD) AL )
X = X9+ MK - XD),

where 1 and A are parameters controlling the influence of
the guidance terms, v, (X[ | X§"") is intended to encapsu-
late the dual-objective influence.

4.2. Adaptive Attention Guidance

Our framework leverages flow reversal and LQR-based op-
timal control for distributional consistency across iterative
edits. While LQR ensures stability, its strong regularization
can limit editability. To balance stability and editability,
we introduce adaptive attention modulation, guiding edits
towards salient regions for precise, localized modifications
while preserving unaffected areas.

Unlike Stable Diffusion [28, 30], which processes im-
age and text information through cross-attention [3, 12, 19],
FLUX utilizes double blocks to jointly process text and im-
age embeddings. Xu et al. [36] found that FLUX’s lower-
left self-attention quadrant encodes text-to-image spatial in-
fluence. With each column representing a token’s mod-
ulation, we exploit this column-wise interaction for fine-
grained analysis of token activation dynamics.

As shown in Fig. 5, which illustrates a token mapping
column reshaped into a visualization attention map, differ-
ent FLUX double blocks exhibit distinct editing behaviors.
As shown in the top row, the first and third double blocks
primarily influence the entire image, while the second and
twelfth focus on the main object. Notably, the sixteenth and
eighteenth blocks precisely activate the region correspond-
ing to “monkey,” aligning with the desired editing area. This
analysis reveals a discernible trend: highly activated maps

tend to perform global editing, while lower activated maps
focus on finer details.

Given that maintaining coherence across multiple edit-
ing turns is essential for effective multi-turn image editing,
we emphasize the importance of performing finer and more
localized edits in each turn. To achieve this, we propose
adaptively identifying and using medium-to-low activated
maps as guidance in our framework. This process generates
a mask that highlights the focus area for editing, reducing
the impact on unaffected regions.

We employ the attention map at time-step ¢ and block [,

defined as:
KT
Q ) . (10)

Vd

Following prior work [6, 9], we rescale the attention values
to the interval [0, 1] via:

83, = 0 (10 * (normalize (s;,;) — 0.5)), 11

s¢,; = softmax (

where o (+) is the sigmoid function and normalize(-) applies
min-max normalization. Let S; = {s;1,5;2,---,5 19}
denote the set of 19 rescaled self-attention maps at step ¢.
To adaptively select medium-low activated maps for edit-
ing guidance, we define an activation magnitude function
activation(s,,;), where a,; = activation(sy;) = Y. i1
represents the sum of all elements in the attention map s; ;.
The maps in S} are then sorted in ascending order by acti-
vation level, resulting in the sequence:

Ay = Sort{as1,ae2,...,ar10} = {aj 1,0} 9,...,0; 19},
where a; ; < ... < aj .
(12)
Let A;.; = {a;,l |l € Z,i <1 < j} denote the subset of
maps indexed from i to j (1 <14 < j < 19), corresponding
to medium-low activation levels. The mask M, is generated
by averaging these selected maps:

] 1
Vizj = m ;a;,la (13)

and thresholding the result to amplify focused regions while
suppressing others:

Mt _ {hfactor

Tractor ~ Otherwise

ifv.; > 7 (14)

where htoctor and 7pqct0r control amplification/reduction,
and 7 is a predefined threshold. Finally, M; modulates the
attention computation at step ¢ + 1:

Q-K'
Vd
where ©® denotes element-wise multiplication. Since early

steps show weak correlations between noisy image and text
tokens, the attention guidance begins at t = 5.

St4+1, = softmax < > © My, (15)
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Figure 5. Self-attention map visualizations from selected FLUX double blocks (19 total) illustrate layer-specific roles in the editing
process (e.g., global, local, details). Top row: attention maps corresponding to the “monkey” text token. Bottom row: maps for the “moon”
token. The attention map highlighted by a red box denotes correctly activated maps.

5. Experiment

5.1. Implementation Details

Baselines: We compare our method against flow-based
inversion methods including RF-Inverison [31], Stable-
Flow [2], RF-Solver [34], FireFlow [8] and FlowEdit [18].
We also consider diffusion-based inversion methods includ-
ing MasaCtrl [3], and PnPInversion [33].

Datasets: Existing benchmarks lack support for evaluating
multi-turn image editing performance. To address this, we
extended PIE-Bench [16], a benchmark originally designed
for single-turn image editing, which provides images paired
with editing instructions. Using GPT-4 Turbo [27], we gen-
erated four additional rounds of editing instructions, con-
ditioned on the original prompt and prior editing prompts.
This augmented dataset facilitates robust benchmarking of
both single-turn and multi-turn image editing tasks.
Metrics: To demonstrate balance of our method between
content preservation and editability, we employ the fol-
lowing evaluation metrics: CLIP-T[29] measures prompt-
image consistency; CLIP-I measures the similarity between
the original and edited images; and FID [37] assesses the
overall generation quality.

Settings: Our method used 15 steps for both inversion
and sampling, with parameters n = 0.9 and A = 0.7 in
Eq. (9) for the initial 4 sampling steps, ¢ = 10 and j = 14
in Eq. (13), hactor = 2.0 and r¢4ct0r = 0.8 in Eq. (14).
Baseline methods were implemented using official code and
settings: StableFlow[2] (50 steps), FlowEdit[ 18] (28 steps).
FireFlow [8] (8 steps, both in its original form and without
the attention’s V replacement variant). RF-Solver[34] was
implemented with 25 steps, accounting for its second-order
ODE solver (50 effective steps totally) with V replacement.
MasaCtrl[3] and PnPInversion[16] used Stable Diffusion’s
standard 50-step inversion and sampling.

5.2. Multi-turn Reconstruction

Figure 6 presents the MSE reconstruction results for long-
term performance (ten-turn reconstruction) of our method

MSE |
0.12 |~ Ours
RF-Inversion
0.10 | - RF-Solver
--------- FireFlow
0.08 | - StableFlow
0.06 - FlowEdit
. DDIM+MasaCtrl
0.04| ——' ?nplgversion v}
0.02
0.00

0 1 2 3 4 5 6 7 8 9 10
Reconstruction Turn

Figure 6. MSE error across ten reconstruction turns.

compared to the baselines. The results demonstrate that
our method remains stable and has fewer drift issues. The
qualitative results of multi-turn reconstruction can be seen
in Fig. 2. Flow matching shows great potential for multi-
turn reconstruction or editing. FireFlow [8] and RF-Solver
[34] perform exceptionally well in single-step reconstruc-
tion, indicating that solving second-order ODEs in flow
matching improves inversion accuracy. However, these
two methods still suffer from accumulated errors, caus-
ing the distribution drift in the reconstructed images. RF-
Inversion[3 1] maintains semantic consistency and distribu-
tion well but tends to enforce certain patterns in the images.
Our method preserves the distribution and produces natural-
looking results even across multiple editing rounds.

5.3. Multi-turn Editing

Figure 7 provides a qualitative comparison of multi-turn
editing results, illustrating the performance of our method
and several baselines. In our experiments, diffusion-based
methods, including MasaCtrl [3] and PnPInversion, per-
formed poorly in multi-turn editing, failing to preserve
the original image structure and generate accurate edits.
While RF-Inversion [31], RF-Solver[34], and StableFlow
[2] demonstrate accurate inversion by maintaining the orig-
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inal image structure, they often fail to produce the desired
edits. For example, RF-Solver and StableFlow are unable
to transform a “dog” into a “cat” (top subfigure) or add a
“scarf” (bottom subfigure). FireFlow [8] and FlowEdit [18]
successfully perform the edits specified by the text prompts,
but they compromise the original image structure to vary-
ing degrees, with FlowEdit exhibiting a tendency to gen-
erate images with increasing artifacts over multiple editing
rounds. Our method overcomes these limitations by achiev-
ing a more adaptable balance between structure preserva-
tion and successful editing, allowing for both accurate and
meaningful image manipulations.

Table | presents quantitative results for the fourth edit-
ing turn, highlighting our approach’s advantages in multi-

StableFlow FlowEdit

ﬁl\}:&z

RF-Solver

MasaCtrl

FireFlow PnPInv.

RF-Solver

& &

FireFlow  MasaCtrl PnPInv.

i
Figure 7. Qualitative comparison of multi-turn editing results against baseline methods. Note that our method effectlvely preserves
the original image structure while achieving high-quality edits.

turn scenarios. Our method achieves a relatively high CLIP-
T score, demonstrating successful alignment with the edit-
ing prompt, while simultaneously maintaining high CLIP-I
scores, indicating effective content preservation. Notably,
our method also achieves the best FID score, suggesting
that the generated images retain the characteristics of nat-
ural images and exhibit minimal distribution bias after mul-
tiple editing iterations.

5.4. Ablation Study

To evaluate the contribution of key components, we con-
ducted ablation studies on: (1) single-objective versus dual-
objective LQR (Sec. 4.1) in multi-turn editing; (2) attention
map activation levels (Sec. 4.2) for editing performance;
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Methods FID| CLIP-TT CLIP-IT  Steps
RF-Inv. 5740  24.094 0.904 28
StableFlow | 20.624  24.234 0.899 50
FlowEdit 14547  26.703 0.894 28
RF-Solver 11581 25516 0.906 25
FireFlow 7970  26.500 0.897 8
FireFlow—v | 12375  28.281 0.873 8
MasaCirl 10811  23.797 0.886 50
PnPlnv. 10262 25.765 0.872 50
Ours 5.553  26.831 0.894 15
Ours 5396  25.828 0.902 8

Table 1. Quantitative results of fourth-turn editing. Best re-
sults are highlighted in bold, and second-best are underlined. Our
method achieves the best FID score while balancing CLIP-I and
CLIP-T metrics effectively at the fourth editing step.

Settings FID| CLIP-TT CLIP-IT Steps
Single-LOR 9886  26.484 0.892 15
High-attn 6.316  26.878 0.891 15
w/o atmn 6.678  26.760 0.889 15
A=0.5 5161  26.641 0.899 15
A=0.9 6.651  26.873 0.892 15
=0.8 6.677  26.831 0.890 15
n=1.0 5982  25.531 0.912 15
Oursy—o7.,—0.0| 5553  26.831 0.894 15

Table 2. Ablation study on fourth-turn editing reults.

and (3) parameters A and 1 (Eq. (9)).

Quantitative results for the fourth-turn editing are pre-
sented in Tab. 2. Relying solely on previous editing turn’s
output as single-objective LQR guidance introduces distri-
bution bias, resulting in a significantly faster increase in FID
compared to dual-objective LQR guidance, which incorpo-
rates the original image. Additionally, both highly activated
attention guidance and the absence of attention mask guid-
ance hinder content preservation. However, using highly
activated attention as guidance improves editability. From
Eq. (9), a smaller A places more emphasis on the original
image X{ and less on the previously edited image X(I)c -1
A larger n gives more weight to the historical informa-
tion Xd““!. The quantitative ablation results align with the
mathematical intuition from Eq. (9). Specifically, a smaller
A and larger 7 leads to reduced editability (CLIP-T) but im-
proved content structure preservation (CLIP-I). Due to our
method’s high-accuracy inversion and sampling, along with
its handling of historical information, it maintains strong
FID performance with A and 7 vary.

Figure 8 shows that single-objective LQR guidance:
LQR guidance based solely on the original image restricts
editability, while relying only on previous steps leads to ac-
cumulated artifacts. For the attention map ablation, we de-
fined “low”, “medium,” and “high” activation levels based

hat — [blue] hat

£ - e <
& ,&"”
o o "_’ Y Sy \’J“ e -/ -Y A
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source single-original single-previous dual

Figure 8. Ablation study on single-objective LQR guidance.
Guidance based only on the original image limits editability, while
relying only on the previous step leads to accumulated artifacts.

man — superhero

w/o attn low medium high

source

Figure 9. Ablation study of adaptive attention guidance. Re-
sults demonstrate that editing without attention guidance struggles
to affect salient areas, while increasing attention map activation
leads to structural damage overly aggressive edits.

on the 19 double blocks in FLUX.1-dev (Sec. 4.2), corre-
sponding to the 12~17th, 6~10th, and top 5 most highly
activated attention maps, respectively (Fig. 9). Results show
that attention guidance is essential for effective editing, as
its absence restricts edits to salient areas due to strong LQR
constraints. Higher activation levels often damage the orig-
inal image’s structure and background, while lower levels
enable precise edits, e.g., transforming a “man” into a “su-
perhero” by targeting glasses and cloak.

6. Conclusion

This paper investigated the workflow and necessities of
multi-turn image editing, explaining the limitations of ex-
isting approaches when adapted to this task. To overcome
these issues, we proposed a novel framework that integrates
accurate flow matching inversion with a dual-objective LQR
guidance method. Furthermore, we analyzed the roles of
different transformer blocks within the DiT architecture and
introduced an adaptive attention map selection mechanism
to improve editability while preserving unaffected areas.
Our experiments demonstrate the superior performance and
adaptability of our method in multi-turn editing scenarios.
Future Work: (1) We will expand our dataset with longer
editing rounds to enable a more robust evaluation of multi-
turn performance. (2) We plan to adapt temporal con-
sistency techniques from video editing to improve coher-
ence across multiple image editing turns. (3) We will ex-
plore inversion-free methods and geometric shape match-
ing to achieve higher precision in multi-turn image editing
tasks.
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