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Figure 1. BokehDiff bridges the gap between physics and diffusion priors, and is able to synthesize photorealistic lens blur effects even
when inaccurate depth estimation causes previous methods (BokehMe [37], MPIB [38], and Dr. Bokeh [46]) to fail, especially at the depth
discontinuities. The examples show previous methods over-blur the horse’s tail, the person’s hair, and the whiskers of the cat.

Abstract

We introduce BokehDiff, a novel lens blur rendering
method that achieves physically accurate and visually ap-
pealing outcomes, with the help of generative diffusion
prior. Previous methods are bounded by the accuracy of
depth estimation, generating artifacts in depth discontinu-
ities. Our method employs a physics-inspired self-attention
module that aligns with the image formation process, incor-
porating depth-dependent circle of confusion constraint and
self-occlusion effects. We adapt the diffusion model to the
one-step inference scheme without introducing additional
noise, and achieve results of high quality and fidelity. To ad-
dress the lack of scalable paired data, we propose to synthe-
size photorealistic foregrounds with transparency with dif-
fusion models, balancing authenticity and scene diversity.

†Work done during an internship at Vivo.
∗Corresponding authors.

1. Introduction
The bokeh effect is the out-of-focus blurriness observed in
photos, physically caused by using a lens with a large aper-
ture, and is often used in portrait photography to emphasize
the subject. Due to the cost of large aperture lenses, bokeh
rendering has become a hot topic in the computational
photography community. Previous works [28, 37, 38, 65]
mostly aim to simulate the blurriness accurately with a
pixel-level accurate depth estimation. However, since depth
prediction tends to fail on edges and intricate details, arti-
facts can often be observed on structures such as people’s
hair and animals’ fur, as shown in Fig. 1. As state-of-the-art
diffusion models (e.g., SDXL [41]) are already capable of
generating photorealistic lens blur effects from text instruc-
tions [60], can they be applied to render lens blur effects
from a given image?

The answer is frustrating, primarily due to diffusion
models’ inherent tendency to alter the content of the input
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image. The problem traces down to the iterative denois-
ing process of diffusion methods, where the input image
is injected into the model to guide the denoising process.
The original noise introduces much uncertainty and tends
to break the original structure of the input image. The de-
noising process is also too time-consuming to serve as a lens
blur rendering tool, making the rich generative priors diffi-
cult to exploit. BokehDiff proposes to denoise the input im-
age with only one denoising step, without adding any noise.
It simply treats the all-in-focus image as the combination of
the image with lens blur and unknown noise that needs to
be removed. The noise prediction network is finetuned to
learn the noise for transformation, and acquires the image
lens blur with only one forward pass. BokehDiff effectively
preserves the structures since no noise is added.

Another problem of diffusion models lies in the design
of self-attention module. To emphasize more important fea-
tures, self-attention may discard less important ones, even
contradicting the underlying physics. It performs well in
tasks like inpainting [1, 2, 27] and image super resolu-
tion [9, 32, 51, 61], where adjacent pixels are not influ-
enced by each other. But for the task of lens blur render-
ing where the blur is aggregated from neighboring pixels,
it is difficult for self-attention to control the results, due
to the global receptive field and the neglect of unimpor-
tant pixels. The proposed BokehDiff, features a physics-
inspired self-attention (PISA) module that is designed to
immitate the physics in the image formation process. For
the light sources in an image, the PISA module normalizes
their contribution in an energy-conserved way, limits their
impact by a physics-based circle-of-confusion (CoC) term,
and mask the self-occlusion in light propagation.

For learning-based methods, the scarcity of high-quality
paired data also poses a problem. Real-world paired
data [21, 33] tend to suffer from misalignment caused by
motion, lens breathing, or different exposure, with exam-
ples shown in the supplementary material. As for syn-
thetic data, applying 3D engines to render bokeh from user-
defined assets is constrained by the numbers of available
scenes [33, 37], and the CG rendering differs from the re-
ality. Another trend is to perform ray-tracing from sev-
eral image layers [37–39, 46, 59, 65], but the imperfect
matting contents make the final rendered results look fake,
especially for intricate structures such as hair and hands.
BokehDiff proposes a data synthesis paradigm to synthesize
paired and aligned high-quality data for training and evalu-
ation, by exploiting an off-the-shelf text-to-image model to
synthesize photorealistic foreground with transparency [62]
instead of segmenting the foreground from photos and build
a synthetic dataset for training and testing.

We propose the first neural lens blur rendering pipeline
based on pretrained diffusion priors, outperforming previ-
ous works in error-prone depth discontinuous areas. The

contributions are summarized as follows:
• a physics-inspired self-attention module that follows the

image formation model, considering the energy conserva-
tion laws, circle of confusion, and self-occlusion;

• an efficient one-step inference scheme with diffusion
models, exploiting the generative priors;

• a new scalable data synthesis paradigm as well as a
curated dataset for bokeh rendering, which solves the
dilemma of ground-truth accuracy and scene diversity.

2. Related Works
2.1. Bokeh Rendering
As a common technique in photography and 3D render-
ing, lens blur is caused by the wide aperture of the camera.
Mathematically, it equals the weighted sum of views from
the neighborhood of the principle point [25, 42, 54].

However, real-world cases lack the complete 3D model
or multiple view input. With the image as the only input, re-
searchers face two main challenges, namely the missing in-
formation about the hidden surface and the inaccurate depth
estimation. For the first problem, classical rendering extrap-
olate visible pixels to occluded ones [24–26] or performs
inpainting [6, 38, 46, 50] to hallucinate the missing infor-
mation. Either way, however, requires segmenting the scene
into multiple planes, which is error-prone on depth discon-
tinuous regions. Though efforts have been made to make
the operation smooth [6, 38] or differentiable [46], they are
outperformed by neural rendering methods when handling
scenes with complex geometry.

Neural rendering uses a neural network to mimic the im-
age formation model, and is often trained end-to-end on
synthetic data with ground truth depth map [13, 20, 28,
33, 37, 43, 52, 59]. As the network learns to add specific
amount of blur to the input image, the problem of inaccurate
depth estimation constitutes the major bottleneck of perfor-
mance, as seen in Fig. 1.

In this paper, we endow the diffusion priors to bokeh ren-
dering, and significantly improves photorealism in regions
where depth prediction methods fail.

2.2. Image Editing with Diffusion Models
As a powerful tool for image generation, diffusion mod-
els [17, 47] have caught much attention in the commu-
nity, especially about the possibility exploiting the diffu-
sion priors for controllable generation [7, 41, 56, 63] and
editing [1, 2, 5, 7, 14, 22, 34, 53]. However, the stochas-
tic nature of adding and removing noise makes it difficult
for previous diffusion models to retain the original struc-
ture. Some guide the generation with the original latent
map [7, 14, 29, 34, 53] or information injection [58, 63],
but cannot preserve the pixel-wise structure; Others propose
to blend the edited part with the original image [1, 2], but
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Figure 2. The framework of the proposed method. Given a paired synthetic data with disparity map, we optimize a LoRA of the U-Net
and the encoder E , while the decoder D remains frozen. A tailored PISA module (colored in green) is applied during downsampling, and
is detailed in the right column, which is introduced in Sec. 3.2.

is limited to image inpainting task where only a small part
should change.

Recently, researchers have found it more structure-
preserving if some initial denoising steps, when the coarse
structure is hallucinated from noise, are truncated [49]. The
diffusion process can even be removed completely [51],
with the low-quality image being the input to be denoised.
The multi-step is also found redundent as it introduces ac-
cumulating error [16].

Taking the idea one step further, we use the all-in-focus
input image as input, without adding noise to it, and adopt
the efficient inference scheme of one-step denoise for the
task of neural lens blur rendering.

3. Method

The task of lens blur rendering takes an all-in-focus image
If as input, and blurs it with respect to the disparity map d
and focus disparity df. The goal is to acquire the image with
the correct lens blur Ib. Classical rendering methods apply
a physics-based image formation model, such as the one
illustrated in Fig. 3, while neural rendering methods learn
the mapping from If to Ib directly. We aim to imitate the
image formation model in the diffusion model, and prove
that diffusion models can be adapted for the task. We first
introduce the one-step diffusion framework in Sec. 3.1, and
then detail the PISA module in Sec. 3.2, designed to make
the diffusion model aware of the physics-related constraints.
The framework of the proposed method is shown in Fig. 2.
We then describe the data synthesis paradigm in Sec. 3.3
and the supervision in Sec. 3.4.

3.1. One-Step Diffusion for Bokeh Rendering

To save memory, diffusion models perform on latent space
nowadays [17], with a pretrained encoder E to compress the
images into latents and another decoder D to revert latents
back to image space. Given a noisy latent zt at timestep t,
the denoised latent ẑ0 is estimated by

ẑ0 =
zt − βt · ϵθ(zt; ctxt)

αt
, (1)

Self-occlusion Mask

Circle-of-confusion
Spatial Constraint

Light source

Figure 3. An illustration of the image formation model, and the
three physics-related aspects considered in the PISA module.

where ctxt is the encoded text embedding as condition, and
ϵθ stands for the U-Net predicting the noise. It’s worth not-
ing that the nature of Eq. (1) is only a transformation from
zt to ẑ0, and the generative priors lie in the seeming om-
nipotence of ϵθ, as it is pre-trained on massive amount of
data for noise prediction. In this sense, the pretraining of
latent diffusion models is to map the Gaussian distribution
into a desired output distribution. To exploit the rich gener-
ative priors of diffusion models, we base our generation on
finetuning an off-the-shelf SDXL [41] text-to-image model.

While diffusion models are originally trained to remove
noise, it is recently found that diffusion models can also be
trained to invert other imposed degradation such as blur-
ring, masking, or downsampling [3]. This motivates us to
take one step further and ponder the possibility of implicitly
defining the image quality as the amount of lens blur effect,
and learn the transformation from If to Ib with physically
correct lens blur effects.

As found by previous works, diffusion models tend to
perform better in the timesteps they are trained on [15],
implying the possibility of a one-step inference diffusion
model [36, 51], which is trained on that particular timestep.
In this paper, as the all-in-focus image is already close to
the target domain, we fix the timestep as T = 499, and fin-
tunes the LoRA [18] of the U-Net and the encoder E , to fit
the altered latent distribution.

3.2. Physics-Inspired Self-Attention Module
The Achilles’s heel of applying the noise prediction net-
work for neural lens rendering lies in the self-attention mod-
ule, because it is ignorant of the 3D formulation of lens blur.
We design the PISA module that follows the three physics-
related aspects as illustrated in Fig. 3.
Energy-Conserved Normalization. In the vanilla self-
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attention formulation, the output equals the product of the
value vectors and the normalized similarity between query
vectors and key vectors, namely

Attn(Q,K, V ) = A(K)V,where A(K)
qk =

exp(Aqk)∑
s exp(Aqs)

. (2)

Here Q, K, and V represent the query, key and value ma-
trix, with each row representing a point in the latent map.
A = d

− 1
2

key QK⊤ is the similarity matrix, and dkey is the size
of the key matrix. For convenience of notation, we use the
subscript q and k to refer to the row of query point and the
column of key point. d is the number of pixels, placed in
the denominator for numerical stability. As previous works
suggest, the normalized similarity A(K) between Q and K
contains the structural information [19], while V possess
the appearance information in the context of vision tasks.
Thus, the result is a structurally weighted sum of appear-
ance. Note that the normalization operation, Softmax(·) is
applied on the channel of key, which guarantees that each
row in the output is a normalized linear combination of the
rows in V , with the weights summed up as 1. Since the la-
tent pixels corresponds to the image pixels spatially, and Vk

stands for the appearance feature at pixel k, the contribu-
tion of pixel k towards pixel q in the attention output can be
measured by Aqk. In most cases, the formulation enables
neural networks to focus on important appearance features,
without the concern that the rows in V can contribute very
differently to the output.

We first redesign the normalization scheme, so that the
energy of light does not increase or diminish as it spreads
to neighboring pixels. As self-attention is originally de-
signed to emphasize important features while discarding
trivial ones, the total contribution of any given row Vk to-
wards the output matrix varies drastically. Based on the
physical inspiration, we propose to modify the softmax op-
eration to normalize on query dimension, simply by

A(Q)
qk =

exp(Aqk)∑
s exp(Ask)

, (3)

in which the energy conservative law holds, and the total
contribution from any row in V to the output matrix is 1,
with

∑
i A(Q)

ik = 1.
Circle-of-Confusion Spatial Constraint. For a light
source k that is off the focal plane, the CoC is formed on
the camera sensor. Its radius rc(k) describes the extent of
blurriness, and is proportionate to the disparity difference
between the point and the focal plane [25, 26], given by

rc(k) = |df − dis(Pk)| ·A, (4)

where A is the camera parameters of the aperture diameter,
and df is the disparity of the focal plane. k is any point
light source in the context of self-attention, while Pk is the

pixel location of point light source k. Let dis(Pk) denote the
disparity (the reciprocal of depth) of k, shortened as dk for
convenience. For a practical application as lens blur render-
ing, the lens can be assumed as thin lens model [24, 25, 46],
and thus Eq. (4) holds. In practice, rc(k) marks the theo-
retical limit of how far k can influence, by casting a cone
of light through space. Without the spatial constraint, ev-
ery feature can have an unlimited global effect, making it
difficult for the network to neglect irrelevant pixels.

To consider the spatial constraint into the self-attention
design, we propose to mask it at the softmax module. In this
way, the conservation of energy still holds inside the circle-
of-confusion, while the impact from outside is discarded by
design, formulated as

A(QC)
qk =

exp(Aqk)⊙ Cqk∑
s exp(Ask)⊙ Cqk

, (5)

and the mask Cqk is computed via

Cqk = Soft[rc(k)− ci · ∥Pq − Pq∥2]. (6)

For easier optimization, we apply a differentiable soft edge
function Soft(·), which becomes sharper as the training
goes, following previous works [46]. The detailed imple-
mentation is given in the supplementary material.
Self-Occlusion Mask. So far, the attention module has
been modified to focus on the neighborhood with a given
radius calculated from per-pixel disparity. We then consider
the self-occlusion, caused by other pixels blocking the light
propagation in 3D space. Different from previous methods
that builds upon multi-plane images [38, 46], we calculate
the pixel-wise occlusion map with sampling.

In practice, if a light source s is visible to Pq on the cam-
era sensor, for any sampling point with disparity d̃ that lies
between the light source s and Pq , it should not be blocked
by the scene. Through the collinear relationship, the pixel
location of the sampling point P̃ can be computed as

P̃ =
(1− d̃)ds

(1− ds)d̃
(Ps − Pq) + Pq. (7)

Assuming a simple geometry of the scene, any sampling
point should be closer to the camera so as to be not oc-
cluded. Therefore the visibility mask Mvis is given by

Mvis =
∧

d̃∈(ds,1)

[
dis

(
(1− d̃)ds

(1− ds)d̃
(Ps − Pq) + Pq

)
<d̃

]
. (8)

For a more accurate rendering of the light source’s impact,
we super-sample k in the ϵs neighborhood of point light
source s, and the PISA module is formulated as

Attn(Q,K, V )qk = (A(QC)
qk ⊙ Es∼N (Pk,ϵs)[Mvis])V (9)
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3.3. Data Synthesis Pipeline

To learn the mapping of If → Ib, high-quality paired data
is needed for fine-tuning the noise prediction network. As
depicted in Fig. 4, the data synthesis pipeline follows pre-
vious works [11, 37, 38] by using a ray tracing pipeline
to synthesize images with various defocus amount and fo-
cus distances, given multiple layers of all-in-focus images.
The bottleneck of previous works lies in the fact that high-
quality foreground images are hard to acquire. Bounded by
the accuracy of object segmentation, separating foreground
objects from photos creates fake-looking photos [59], espe-
cially on regions like hair and fur. On the other hand, photos
with green screen background and 3D models are not suit-
able for synthesizing data at a large scale.

We propose to synthesize photorealistic foreground with
a state-of-the-art diffusion model [62], alleviating the
dilemma of scalability and data quality. Samples of the syn-
thetic dataset are demonstrated in the supplementary mate-
rial. As shown in Fig. 4, we use real-world photos captured
with a small aperture for background, and overlap it to syn-
thetic foreground with transparency. By randomly placing
the locations and facing angles of the layers, while con-
trolling the focus on the average disparity of background
or foreground, we are able to generate photorealistic syn-
thetic data with a simplified ray tracer, with known disparity
and focus distance, following the practice of previous meth-
ods [37, 40]. Note that the skewed facing angles makes it
possible to learn the progressive blurring caused by a con-
tinuously changing disparity map. In this way, the model
can learn to render the scene faithfully to the disparity map,
instead of to semantic information only.

3.4. Supervision

Previous latent diffusion methods usually calculate the loss
function in latent space, but as this paper aims for detail
reconstruction, the loss are calculated in pixel space. For
a robust reconstruction of the shape, we first calculate the

Disparity

Off-the-shelf

T2I model

Large DOF photos Synthetic bokeh

Raytracing

Foreground w/ 
transparency

Defocus

Focal plane

Figure 4. The data synthesis pipeline. A pretrained text-to-image
model is applied to generate foreground with transparency [62],
and the large depth-of-field background is selected from real-
world images. With the layers randomly placed with various fac-
ing angles and various depths, a classical ray-tracing method is
applied to render the image with lens blur.

Mean Square Error (MSE) LMSE between the predicted im-
age Î and the ground truth Ib. But as MSE is insensitive
to blurriness, relying on MSE can lead to the trivial solu-
tion of returning the all-in-focus input, or the other extreme
of over-blurring. Therefore we consider the following loss
functions which should be more sensitive to the lens blur:
(i) Perceptual loss LVGG. We apply the LPIPS loss which
computes the distance between the image features extracted
by a pretrained VGG network [64].
(ii) Multi-scale edge loss. As a strong visual clue, an ob-
vious edge often indicates the image being in focus or not.
To overcome the shortcomings of MSE, which can lead to
blurry results, we follow previous works [8, 35, 44] and de-
sign the loss to focus more on the edges before and after the
lens blur effect is applied, given by

Ledge =

3∑
l=1

1

l2

∥∥∥∥(∇lÎ −∇lIb)⊙ max
I∈{Ib,If}

|∇lI|
∥∥∥∥
1

, (10)

where ∇l is the extended Sobel operator pair with the kernel
size of l, in both horizontal and vertical directions. The term
maxI∈{Ib,If} |∇I| basically neglects smooth regions, which
is already a easy target to be optimized with LMSE.
(iii) Adversarial loss Ladv. It employs a discriminator net-
work D with a pretrained ConvNext [30] backbone to dis-
tinguish real images with lens blur Ib and generated images
Î . The loss for the discriminator is given by

LD = EI [logD(Ib)] + EÎ [log(1−D(Î))], (11)

while Ladv = −EÎ [logD(Î)] is used for finetuning diffu-
sion model. In all, the finetuning loss is given by

L = λMSELMSE+λVGGLVGG+λedgeLedge+λadvLadv. (12)

4. Experiments
4.1. Experimental Settings
Baselines. We select the following open-source state-of-
the-art methods for baselines: DeepLens [28], an early end-
to-end neural rendering method trained on synthetic data;
MPIB [38], a physics-based method that considers the scene
in layers, which inpaints on each layer and then blends the
multi-layer by classical rendering; BokehMe [37], a hy-
brid rendering method that applies neural rendering in error-
prone depth discontinuous regions, complementing the rest
with a more controllable classical renderer; Dr.Bokeh [46],
a hybrid rendering method that uses neural network for
salient object segmentation and inpainting, and blends the
layers differentiably.

We finetune the off-the-shelf BokehMe [37] model with
the same synthetic data, input (disparity map and all-in-
focus image), and loss terms as BokehDiff, to further vali-
date the effectiveness of the model design, in addition to a
Restormer model [61] trained from scratch.
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Table 1. Quantitative comparison on the exposure-aligned EBB Val294 [21] dataset (left), and the user study results (right). The ratings
are for (i) accuracy, (ii) authenticity, and (iii) preference. ↑ (↓) indicates larger (smaller) values are better, and bold font indicates the best
results. ⋆ denotes that the method is trained or finetuned on the same dataset as BokehDiff.

Dataset EBB Val294 [21] (real) BLB Level 5 [37] (synthetic) Real (user study)

Method PSNR↑ SSIM↑ DISTS↓ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ (i)↑ (ii)↑ (iii)↑
DeepLens [28] 22.703 0.7623 0.1483 0.4191 20.301 0.6901 0.2976 1.55 1.68 1.96
MPIB [38] 23.334 0.7920 0.1581 0.4031 28.162 0.8997 0.2561 1.83 1.89 2.04
BokehMe [37] 24.014 0.8134 0.1460 0.3921 38.802 0.9870 0.1404 3.81 3.93 4.03
Dr.Bokeh [46] 23.479 0.8221 0.1225 0.3771 22.650 0.7452 0.4539 3.41 3.38 3.64
Restormer⋆ [61] 23.960 0.7961 0.1297 0.3778 16.781 0.6866 0.7802 2.85 3.02 2.92
BokehMe⋆ [37] 23.753 0.7919 0.1437 0.3967 30.044 0.9409 0.1660 3.67 3.80 3.48
BokehDiff 24.652 0.8357 0.1155 0.3737 36.798 0.9814 0.0888 4.42 4.37 4.56

Datasets. Quantitative experiments are conducted on the
real-world EBB Val294 [33, 59] dataset, and the synthetic
datasets of BLB (Level 5) [37] and SYNBOKEH300 (syn-
thesized as described in Sec. 3.3). As EBB Val294 dataset
contains slight misalignments, we align the global mean
value of the input image to the ground truth bokeh image.
Please refer to the supplementary material for examples and
more descriptions about the quantitative datasets.

For qualitative comparison and user study, the input im-
ages are gathered from the Unsplash dataset [10], the Easy
Portrait dataset [23], and some photos taken by the authors
in the wild with an aperture of f/22. The disparity maps are
estimated by Depth Anything V2 [55, 57], and are shared
across all the methods for a fair comparison.
Metrics. Following previous works, we report Peak Signal-
to-Noise Ratio (PSNR) that focuses on pixel-wise accurate
estimation, and Structural Similarity (SSIM) that measures
structural similarity to the ground truth. As pointed by pre-
vious works [46, 64], PSNR is not sensitive to blurring.
To complement the insufficient metrics, we additionally in-
clude LPIPS [64] and DISTS [12] for perceptual similarity,
which mimics the response of human vision.
Implementation Details. The backbone model is a pre-
trained SDXL model [45], and only the LoRA [18] of the
downsampling layers in ϵθ and the middle block and output
layers of E are trained, and the rest of the diffusion network
is fixed. The AdamW [31] optimizer is used, with a cosine
annealing learning rate scheduler, starting from 10−4. The
finetuning takes about 12 hours on a single NVIDIA L40s
GPU, with a batch size of 2. The rank of LoRA module is
set at 8 empirically. For hyper-parameter settings, we have
λMSE = 1, λVGG = 5, λadv = 0.5, and λedge = 1.

4.2. Results and Comparisons

Quantitative Comparisons. Though the EBB Val294
dataset [21] involves aberration, camera motion, and other
uncontrollable factors, BokehDiff still surpasses all previ-
ous baselines, as shown in the left columns in Tab. 1. For a
more informed comparison, the comparison on the original

(not exposure-aligned) EBB Val294 dataset [21] is attached
in the supplementary material.

For the BLB dataset, the multi-layer based methods
(MPIB [38] and Dr. Bokeh [37]) fail due to the complex
scene layout, while the learning based DeepLens [28] and
Restormer [61] also fails due to the insufficient knowledge
of the underlying physics, as shown in the middle columns
of Tab. 1. Both BokehMe [37] and BokehDiff have a decent
performance, while the blur-sensitive LPIPS [64] indicates
that BokehDiff renders more realistic bokeh pattern.

To measure the robustness to depth prediction error,
we follow BokehMe [37] and conduct a test on SYN-
BOKEH300 dataset by eroding and dilating the disparity
map. Shown in Fig. 7, BokehDiff constantly outperforms
BokehMe [37] and Dr. Bokeh [46], with a less performance
drop as the degeneration level raises, and the narrower quar-
tiles further shows the stability of BokehDiff.
User Study. We conduct a user study, in which 50 vol-
unteers with at least 1 year of photography experience are
involved. Participants are shown with the all-in-focus im-
age and the rendered results, and are asked to rate the re-
sults from 1 to 5. For each case, participants are randomly
asked to focus on one of the following aspects: (i) accu-
racy, e.g., the edge should be the same blurry as the surface
on which it is located; (ii) authenticity, e.g., the blurriness
should change gradually with respect to the distance from
focal plane; or simply (iii) preference as users. The results
are listed on the rightmost columns in Tab. 1.
Qualitative Comparisons. According to Tab. 1, we only
show the methods with superior quantitative performance
here. In Fig. 5, three exemplar cases are shown, with more
shown in the supplementary material. BokehDiff man-
ages to maintain the intricate hair and fur details of the
focused foreground in every example, even when the erro-
neous depth estimation erodes or dilates the defocus map.
The transition from the focal plane to blurriness is smooth,
as shown from the grass in the first column and the car roof
in the second column. It can also blur the foreground off
focus, such as the hands of the teenager in the first example.
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As for the baselines, BokehMe [37] has the second best
quality, by being loyal to the defocus map. Thus it also fails

when depth estimation is inaccurate, especially in intricate
depth discontinuities. In the zoomed patches of Fig. 5, it
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Figure 5. The qualitative comparisons of BokehDiff with BokehMe [37], MPIB [38], and Dr. Bokeh [46]. Calculated from disparity, the
defocus map is shared across the methods to be compared, and three patches are zoomed in for closer observation in each scene. Whiter
region in the defocus map indicates more lens blur should be added, but is prone to error caused by depth estimation.
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Figure 6. A synthetic focal stack of BokehDiff, given an all-in-focus image selected from the Unsplash [10] dataset.
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Figure 7. PSNR and LPIPS performance drop with respect to the
erosion or dilation to the disparity map, on SYNBOKEH300. The
semi-transparent area around each line is bounded by the quartiles.

over-blurs the hair and the cat’s whiskers that should be fo-
cused. MPIB [38] fails to piece together layers where the
complex scene cannot be easily separated into layers, such
as the obvious artifacts around the teenager’s arm and the
man in the back rank in the first example. Though it some-
times renders the hair streaks right, it cannot generate pro-
gressive blur as the more focused background in the sec-
ond and third examples show. Dr. Bokeh [46] does well in
cases with a clean separation between foreground and back-
ground, but is also limited to the accuracy of the depth esti-
mation, and the number of layers in question. It shows dark
tints on the woman in the back rank, and also fails due to
the inaccurate depth estimation.

In addition, we adjust the disparity of focal plane df , and
show a focal stack in Fig. 6, verifying the ability to focus on
any designated depth of BokehDiff.

4.3. Ablation Study
The results for the ablation study are listed in Tab. 2 We first
ablate the supervisions for the one-step diffusion scheme by
removing Ladv, LVGG, and Ledge. With the same training
iterations, these settings achieve an inferior performance,
especially when removing the multi-scale edge loss and
the perceptual loss. We then consider the PISA module,
namely the energy-conserved normalization (Eq. (3)), the
circle-of-confusion constraint (Eq. (5)), and the self occlu-
sion (Eq. (9)). The complete model excels in LPIPS and
visual effects (shown in the supplementary material), val-
idating the design of the PISA module. A fixed encoder

Table 2. The ablation study conducted on the exposure-aligned
EBB Val294 [21] dataset. The setting of “SoftmaxQ”, “CoC”, and
“occlusion” are short for the energy-conserved normalization, cir-
cle of confusion constraint, and self-occlusion respectively.

Setting PSNR↑ SSIM↑ LPIPS↓
w/o Ladv 24.623 0.8322 0.3768
w/o LVGG 24.285 0.8196 0.4218
w/o Ledge 24.628 0.8346 0.3785
fixed E 24.266 0.8286 0.3811

w/o CoC 22.217 0.6881 0.4280
w/o SoftmaxQ 24.468 0.8325 0.3800
w/o occlusion 24.399 0.8291 0.3808

T = 249 24.646 0.8335 0.3781
T = 749 24.481 0.8319 0.3838
Complete model 24.652 0.8357 0.3737

slightly decreases the performance, as the backbone needs
to modify the latent more in this setting. Different timestep
configurations are also tested, and the results indicate simi-
lar performance with T = 249 or T = 749. But in practice,
extremely large or low timestep can easily lead to gradient
explosion, and 499 is the choice of balance.

5. Conclusions

The paper proposes BokehDiff, a diffusion framework with
only one inference step that achieves outstanding qual-
ity compared with previous methods, especially in regions
where depth prediction fails. The diffusion priors, com-
bined with the PISA module which is specifically designed
for physics constraint, shed light on a new possibility for
neural lens blur rendering and physic-based deep learning.
Quantitative comparisons, visual results, and a user study
all validate that BokehDiff is able to synthesize photoreal-
istic lens blur, and robust against error in depth estimation.

Limitations. Though the finetuned diffusion network keeps
the majority of the structures from the all-in-focus image,
the decoder of the VAE still cause inevitable changes to
less noticeable structures. The issues can be addressed by
changing the diffusion backbone [4, 48] with less informa-
tion compression and better detail preservation.
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