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Abstract

Mirror neurons are a class of neurons that activate both
when an individual observes an action and when they per-
form the same action. This mechanism reveals a fundamen-
tal interplay between action understanding and embodied
execution, suggesting that these two abilities are inherently
connected. Nonetheless, existing machine learning meth-
ods largely overlook this interplay, treating these abilities
as separate tasks. In this study, we provide a unified per-
spective in modeling them through the lens of representation
learning. We first observe that their intermediate represen-
tations spontaneously align. Inspired by mirror neurons, we
further introduce an approach that explicitly aligns the rep-
resentations of observed and executed actions. Specifically,
we employ two linear layers to map the representations to
a shared latent space, where contrastive learning enforces
the alignment of corresponding representations, effectively
maximizing their mutual information. Experiments demon-
strate that this simple approach fosters mutual synergy be-
tween the two tasks, effectively improving representation
quality and generalization.

1. Introduction

“The body is our general medium for having a world.”
— Maurice Merleau-Ponty

Neuroscience research has uncovered a fascinating
mechanism behind multiple cognitive abilities: mirror neu-
rons. First identified in macaque monkeys, these neurons
fire both when an individual observes an action and when
they perform it themselves [4, 9, 32]. In essence, the neural
representations of observed and executed actions are inher-
ently aligned. Subsequent studies confirm similar systems
in the human brain, where observing others’ actions acti-
vates corresponding motor regions, as if the observer were
performing them [7, 23]. This suggests that action under-
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Figure 1. Conceptual demonstration of mirror neurons. These
neurons activate both when observing an action and when per-
forming it oneself, illustrating the shared neural representations
that link perceptual and motor systems.

standing arises from neural simulations of observed behav-
iors, not merely abstract reasoning [33]. By mapping ex-
ternal movements onto its own motor repertoire, the brain
internally “experiences” the action, enabling an intuitive
grasp of others’ intentions [21].

This neural mechanism highlights the tight bond be-
tween two fundamental cognitive abilities: action under-
standing and embodied execution. Concretely, action un-
derstanding enables agents to interpret the meaning and in-
tent behind others’ actions, while embodied execution al-
lows them to physically interact with the environment to
achieve goals. Crucially, these two abilities are deeply in-
terconnected: action understanding supports embodied ex-
ecution by guiding imitation learning and skill acquisition,
while in turn, embodied execution provides firsthand sen-
sorimotor experience that refines and deepens action under-
standing [6, 26]. The biological foundation of this interplay
is exemplified by mirror neurons, which also demonstrates
the core idea of embodied cognition [1, 3, 8, 36, 40]—the
notion that cognitive processes are not merely functions of
the brain or abstract activities of the mind, but are deeply
rooted in the body’s sensorimotor interactions with the
world. Despite this biological synergy, current machine
learning approaches typically address action understanding
and embodied execution independently, overlooking their
potential to inform and enhance each other [12, 41, 46].
This separation impedes the learning of generalizable and
comprehensive action representations, which in turn limits
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performance on downstream tasks.

In light of this, this work proposes to unify action under-
standing and embodied execution through the lens of rep-
resentation learning. We begin by examining the relation-
ship between the neural representations learned by models
for these two tasks. Specifically, we investigate whether
the representations align when observing and executing the
same actions, how this alignment evolves during training,
and its correlation with task success (Sec. 2). Building on
these insights, we propose a paradigm that jointly trains
both models, bridging the gap between action understand-
ing and embodied execution. The core idea is to project
the agent’s representations of observed and executed ac-
tions into a shared latent space, where contrastive learning
enforces their alignment (Sec. 3). This approach explicitly
aligns the representations of observed and executed actions,
which is exactly what biological mirror neurons do. From
the viewpoint of information theory, it is equivalent to maxi-
mizing the mutual information between the neural represen-
tations of the same semantic actions in action understanding
and embodied execution. We evaluate our method on ac-
tion recognition and multi-task object manipulation bench-
marks, demonstrating that the proposed framework enables
the two tasks to reinforce each other (Sec. 4). Our results
show that the learned representations are more disentan-
gled and robust, leading to improved generalization. Fur-
thermore, we investigate the impact of different alignment
strategies, exploring the appropriate granularity for align-
ment. We summarize the key contributions of this paper
below:

* We conceptualize action understanding and embodied ex-
ecution as a unified system, grounded in neuroscience and
cognitive insights.

* We discover that these two models exhibit representation
alignment spontaneously, which correlates to some extent
with task success.

* We introduce a representation learning approach inspired
by mirror neurons, which directly aligns the neural rep-
resentations of observing and executing corresponding
tasks, thereby effectively maximizing their mutual infor-
mation.

» Experiments demonstrate that our method is simple and
effective, enhancing the generalization and representation
learning quality for both tasks.

2. Probing Representation Alignment

First, we aim to investigate whether action understanding
and embodied execution models, when trained separately,
exhibit neural representation alignment similar to mirror
neurons. If such alignment exists, we further seek to un-
derstand the factors that influence it.
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Figure 2. Alignment probing of off-the-shelf model represen-
tations. We extract internal neural representations from an Ac-
tion Understanding (AU) model and an Embodied Execution (EE)
model and train two linear transformations, 7, and 7e, to align
them. Both models are pretrained separately and remain frozen
during this process.

2.1. Problem Formulation

Given an action understanding model Z(-; 6,,) and an em-
bodied execution model £(-; 6, ), we aim to extract their in-
termediate neural representations and study their alignment.
Specifically, the action understanding model U/ takes a per-
ceptual sequence V, such as a video, and produces an in-
ternal representation w, from which it predicts the seman-
tic label § = U(V'). Meanwhile, the embodied execution
model £ takes the environment state S and an instruction /
(e.g., a natural language command) as input, generating the
representation e, which is then decoded to the next action
a=E(S,I).

The neural representations of observed and executed
actions, u and e, originally reside in different high-
dimensional representation spaces. In principle, they share
some common information, such as the semantic concepts
and spatial relationships of the scene. Meanwhile, they
would also capture unique aspects specific to the task. For
instance, u may emphasize high-level action semantics and
visual patterns essential for understanding, whereas e is
more attuned to physical constraints and feasibility, which
are crucial for execution.

Therefore, to effectively measure their alignment, we
aim to learn a pair of linear transformations, 7, (+; ¢,,) and
Te(; de), that map u and e onto a shared latent space Z and

align them. Formally:
zy=Tu(u) €Z, z.=T.(e) EZ, (1)

where z,, and z. denote the aligned action understanding
and embodied execution representations, respectively.

2.2. Probing

We employ alignment probing [43] to align the represen-
tations and evaluate the alignment. Figure 2 provides an
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overview of the pipeline. Given off-the-shelf 2/(-) and £(-),
we use contrastive learning to align the corresponding ac-
tion pairs in the shared latent space Z. Specifically, we op-
timize the following bidirectional InfoNCE loss:

ﬁaln—_
R Z f p(sim(z?, 29%) /7)

exp s1m(zu 28 )/T)

2
exp(mm(zu , ze )/T)
B

Z:exp(sun(ze ,zu )/T)

+ log

where B is the batch size, and 7 is a temperature scaling pa-
rameter. Each pair (sz), z.gi)) consists of feature represen-
tations derived from observing and executing actions that
share the same intent. The similarity function sim(-,-) is

defined as the cosine similarity:

T
Z, Ze

1Zullllzell”

sim(z,,, z.) = 3)
We optimize the parameters of the linear transformations to
minimize the alignment loss:

(o3, ¢r) = arg min Lyjign. 4
Susde

From an information-theoretic perspective, this opti-
mization objective is equivalent to optimizing a lower
bound to estimate the mutual information between the ac-
tion understanding representation v and the embodied ex-
ecution representation e. The theoretical derivation can be
found in Appendix A and Theorem 1. In practice, we adopt
ViCLIP [41], a video-text representation learning model, as
the action understanding model ¢/. We take the output fea-
ture of the video encoder as uw. Furthermore, we utilize
ARP [44], a pretrained language-conditioned robotic ma-
nipulation model, as the embodied execution model £. We
take the output feature from the last block of the policy net-
work (a chunking causal transformer) as e. For more imple-
mentation details, please refer to Sec. 4.1 and Appendix C.
To measure the degree of alignment, we compute the aver-
age Recall@1 of bidirectional nearest neighbor retrieval on
a held-out test set after training 7, (-; ¢.,) and To(+; de)-

2.3. Observations

We explore whether models of action understanding and
embodied execution, though trained in isolation, converge
spontaneously—like dancers finding harmony without re-
hearsal—in their neural representations. To this end, we
measure the representation alignment of the two models at
different stages of the training process. Figure 3 (L) shows
that the alignment between the two models increases rapidly
in the early stages of training and reaches a high level. In
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Figure 3. Alignment probing results. Left: Alignment scores
tracked over the model training progress. Right: Alignment scores
computed separately for task success and failure subsets from two
pretrained models. We use the average retrieval accuracy (%) on
the test set as a measure of representation alignment. Alignment
is trained and tested under four different settings while ensuring
equal sample sizes.

particular, training only two linear transformations achieves
more than 60% accuracy in determining whether the repre-
sentations correspond to the same underlying action. This
phenomenon may arise because the action understanding
model and the embodied execution model, despite being
trained for different tasks, both require effective modeling
and abstraction of the underlying principles and structured
patterns of object interactions. This observation also aligns
with the Platonic Representation Hypothesis [15], which
states that neural networks, trained with different objectives
on different datasets and modalities, converge to a shared
statistical model of reality in their representation spaces.

Observation #1: Independently trained action un-
derstanding and embodied execution models exhibit a
swift emergence of meaningful neural alignment, sug-
gesting a convergence towards representations of the
common underlying reality.

Furthermore, we aim to investigate whether there exists
a relationship between the degree of representation align-
ment and task success. To this end, we conduct two sets
of experiments: (1) We compute the representation align-
ment for correctly and incorrectly recognized samples in
action understanding with respect to embodied execution.
(2) Similarly, we compute the alignment for successfully
and unsuccessfully completed tasks in embodied execution
with respect to action understanding. In all experiments, we
control for the same number of training and testing samples
in alignment probing and train separate probes for each set-
ting.

As shown in Figure 3 (R), we observe that the alignment
score for the subset of task-successful samples is signifi-
cantly higher than that for the subset of task-failed samples.
We hypothesize that this may be because task-successful
samples are associated with higher-quality representations
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of the underlying reality, leading to more robust alignment.

Observation #2: Task-successful samples exhibit
significantly higher representation alignment, poten-
tially due to their higher-quality representations of the
underlying reality.

This observation further motivates us to consider
whether a causal relationship exists. Specifically, is repre-
sentation alignment merely a byproduct of better represen-
tations, or can it also actively contribute to their formation?
Could promoting neural representation alignment improve
representation quality and, in turn, benefit the task perfor-
mance of both models?

3. Aligning Representations with Mirror Neu-
rons

Inspired by the observations above, we further explore ex-
plicitly aligning the neural representations of action under-
standing and embodied execution during model training.
Structurally, this approach establishes a shared representa-
tional space by directly linking perceptual and motor path-
ways, reflecting the anatomical organization of sensorimo-
tor circuits in biological systems. Functionally, these struc-
tural principles promote bidirectional information flow, en-
abling seamless sensorimotor integration, akin to the role of
mirror neurons in action recognition and execution.

To achieve this, we simultaneously train the action un-
derstanding model U(-;6,), and the embodied execution
model £(+;6.), in a coupled structure, as shown in Fig. 4.
We adopt a minimal modification approach, where, on
top of the original training objectives of both models, we
only introduce two linear transformations 7, (+; ¢,) and
Te(+; ¢e) to align their internal representations throughout
this process. Specifically, we denote the training objec-
tive of the action understanding model as Lay(6,,) and that
of the embodied execution model as Lgg(f.). We define
these two task-specific training objectives following previ-
ous work [41, 44], as they are not the primary focus of this
study. Notably, we simply introduce a bidirectional con-
trastive loss Lajign, as defined in Eq. (2). The first term en-
courages each sample’s representation in the action under-
standing model to align closely with its paired counterpart
in the embodied execution model while distinguishing it
from other samples in the batch. The second term symmet-
rically enforces the same constraint for the embodied execu-
tion model relative to the action understanding model. This
bidirectional alignment objective helps regularize the latent
spaces robustly, effectively bringing the representations of
observing and executing similar actions closer while push-
ing apart those of different actions.

Our final training objective can be formulated as:
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Figure 4. Aligning action understanding and embodied execu-
tion with mirror neurons. We employ two linear layers to align
intermediate representations between the Action Understanding
(AU) model and the Embodied Execution (EE) model. The two
models are jointly trained to align their representations while si-
multaneously optimizing for their respective task objectives.

Liinal = Lavu + A LeE + Aalign Lalign, &)

where Agg and Ayjigq are hyperparameters to balance the loss
scales. We jointly optimize parameters of all models end-
to-end:

(or, 05, 07%,0%) =arg  min Ly (6)
In this process, the optimization objective of representation
alignment effectively regularizes the training of U(-;6,)
and &£(+;0.) simultaneously. This objective is consistent
with the mechanism of mirror neurons, which map ob-
served and executed similar actions to shared neural repre-
sentations. From an information-theoretic perspective, this
optimization objective is equivalent to optimizing a lower
bound to maximize the mutual information between w and
e. Please refer to Appendix A and Theorem 2 for the theo-
retical derivation.

4. Experiments

In this section, we aim to investigate the impact of the pro-
posed mirror framework on model training. Specifically,
we design experiments to address the following questions:
(1) How does it affect the performance of models for action
understanding and embodied execution, respectively? (2)
What influence does it have on the representations of these
two tasks? (3) Which representations should be aligned,
and what are the effects of this strategy?

4.1. Implementation details

Action Understanding We adopt ViCLIP [41], a generic
video-language model, consisting of a video encoder (a
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Close Drag Insert Meatoff Open Place Place Push

Put in

Putin Putin Screw Slide Sort Stack Stack Sweep Turn

Method Jar  Stick Peg Grill Drawer Cup Wine Btn. Cpd. Drawer Safe Bulb Block Shape Block Cup Dust Tap Ave.
ViCLIP [41]t | 0.0 0.0 0.0 48.0 0.0 00 00 00 00 0.0 0.0 0.0 0.0 160 8.0 40 520 60.0| 104
VIiCLIP [41] | 69.3 96.0 21.3 90.7 1000 830 56.0 76.0 147 1000 427 787 80.0 773 387 693 1000 893|716
MN (Ours) 72.0 96.0 333 96.0 1000 893 560 76.0 173 1000 493 840 827 853 373 80.0 100.0 93.3 | 749

Table 1. Performance comparison of action recognition across 18 diverse tasks. T indicates results obtained without task-specific fine-

tuning (zero-shot).

standard ViT [5] with spatiotemporal attention) and a text
encoder (identical to that of CLIP [31]). We employ the
model weights pretrained on InternVid [41] and fine-tune
it in the object manipulation domain. Specifically, we use
demonstration trajectories from RLBench [18, 37], where
RGB videos rendered from a front-facing perspective are
paired with language instructions, to fine-tune both the
video encoder and the text encoder. The learning rate of
the video encoder is 1 x 102, and that of the text encoder
is 5% of it. Subsequently, we evaluate action recognition
accuracy on a test set by selecting the language instruction
with the highest similarity for each test video and comput-
ing the accuracy accordingly.

Embodied Execution We use an Autoregressive Policy
(ARP) [44] with a Multi-View Transformer (MVT) [12, 13]
backbone. The model takes multi-view RGBD images (pro-
cessed into point clouds) and language instructions as in-
put, predicting the next target end-effector pose and gripper
states. We conduct experiments on a standard multi-task
manipulation benchmark from RLBench [18]. The bench-
mark includes 18 tasks, each defined by a language descrip-
tion and featuring 2 to 60 variations, such as different object
colors or locations. A Franka Panda robot with a parallel
jaw gripper is tasked with execution, simulated via Cop-
peliaSim [34]. We train and test on the same dataset as
prior works [12, 13, 37, 44], using 100 demonstrations per
task for training and 25 unseen demonstrations for testing.
Training settings and hyperparameters remain identical to
those in the baseline [44].

Representation Alignment We take the output features
of the video encoder and the last block of the policy net-
work and map them to Z C R'924, using two separate linear
layers. For contrastive learning training, we construct posi-
tive sample pairs based on language instruction consistency.
That is, observing and executing actions with the same lan-
guage instruction (e.g., “fake the steak off the grill”) are
encouraged to align in representation, even if they do not
come from the exact same episode (e.g., differing in object
layout or action sequence). We set the temperature param-
eter to 7 = 0.1 and the learning rate to 1 x 10~%. The loss
weights are set as Lgg = 1 and Lyjign = 0.5.

4.2. Action Understanding

First, we investigate the effect of the proposed mirror
neuron alignment framework on the action understanding
model. To this end, we compare the top-1 action recog-
nition accuracy with regard to language instruction among
the following models: the original ViCLIP model pretrained
on InternVid [41], tested in a zero-shot manner; the same
model fine-tuned on object interaction data; and one trained
jointly with the proposed mirror neuron alignment objec-
tive. For the latter two, all other training conditions remain
the same.

Table | shows that ViCLIP exhibits some level of zero-
shot action recognition capability, considering the total
number of 200+ possible fine-grained variants. However, its
performance on most action classes is suboptimal, as fine-
grained classification requires nuanced spatial (e.g., “stack
the wine bottle to the right of the rack”), temporal (e.g.,
“push the maroon button, then push the green button”),
and quantitative reasoning (e.g., “stack 2 maroon blocks”),
which is challenging and relatively scarce in large-scale
pretraining data. Fine-tuning on the corresponding dataset
significantly enhances the model performance. Notably,
our approach extensively outperforms the baseline in action
recognition accuracy.

We attribute this improvement to the intrinsic connection
and complementary nature between the embodied execution
task and action recognition. For example, action recogni-
tion must distinguish between commands such as “put the
ring on the azure spoke” and “put the ring on the yellow
spoke”, recognizing their nuances in relation to the corre-
sponding goal. Meanwhile, embodied execution not only
requires identifying the correct 3D interaction locations (af-
fordances) but also generating the appropriate motion tra-
jectory to complete the action. The feature interaction and
alignment mechanisms in the proposed framework facilitate
learning a more comprehensive task representation, which
in turn enhances the generalization ability of action recog-
nition. These results demonstrate the synergistic role of em-
bodied execution in improving action understanding, high-
lighting the effectiveness of our approach.

4.3. Embodied Execution

We investigate the impact of the proposed framework
on embodied execution tasks, specifically language-
conditioned multi-task object manipulation. Following
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Method Close Dljag Insert MeatA off Open Place Plz}ce Push  Putin Putin Put .in Screw  Slide Sort  Stack Stack Sweep Turn Ave.
Jar Stick Peg Grill Drawer Cup  Wine Btn. Cpd. Drawer Safe Bulb Block Shape Block Cup Dust Tap
BC-ZCNN [20]| 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 8.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 1.3
BC-Z ViT [20] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0 | 1.3
C2F-ARM [19] | 24.0 24.0 4.0 20.0 20.0 0.0 8.0 72.0 0.0 4.0 12.0 8.0 16.0 8.0 0.0 0.0 0.0 68.0 |20.1
HiveFormer [14]| 52.0 76.0 0.0 100.0  52.0 0.0 80.0 84.0 32.0 68.0 76.0 8.0 64.0 8.0 8.0 0.0 28.0 80.0 |45.3
PolarNet [2] 36.0 92.0 4.0 100.0  84.0 0.0 40.0 96.0 12.0 32.0 84.0 440 56.0 12.0 4.0 8.0 52.0 80.0 |46.4
PerAct [37] 55.2 147 89.6 £41 5.6 £41 70.4 120 88.0 57 2.4 32 44.8 175 92.8 £30 28.0 +44 51.2 £47 84.0 £36 17.6 £2074.0 1130 16.8 £4726.4 £32 2.4 120 52.0 00 88.0 +44|49.4
Act3D [11] 92.0 92.0 27.0 94.0 93.0 3.0 80.0 99.0 51.0 90.0 95.0 470 93.0 8.0 12.0 9.0 92.0 94.0 |65.0
RVT [12] 52.0 £25 99.2 16 11.2 £30 88.0 £25 71.2 £69 4.0 £25 91.0 £52 100.0 20049.6 +32 88.0 £57 91.2 £3048.0 57 81.6 £54 36.0 +2528.8 £3926.4 £52 72.0 00 93.6 £41|62.9
RVT-2 [13] 100.0+00 99.0+17 40.0+00 99.0+17 74.0+115 38.0+45 95.0+35 100.0£00 66.0+45 96.0+00 96.0+25 88.0+49 92.0+28 35.0+71 80.0+25 69.0+59 100.0-£00 99.0+17 |81.4
ARP [44] 100.0:£00 100.0-£00 93.3+25 92.0+00 90.7+23 49.3 461 93.3453 100.0+00 66.7+61 100.0+00 88.0+40 92.0440 86.7+61 493461 56.0+40 82.7+61 98.7423 97.3423(85.3
MN (Ours) 100.0:£00 100.0+00 94.7+46 93.3+23 93.3+23 53.3+122 97.3+25 100.0+00 70.7+25 100.0+00 93.3+25 88.0+00 82.7+23 66.7+101 72.0+69 93.3+46 100.0+00 100.0-+0088.8

Table 2. Performance comparison of embodied execution across 18 dive
criteria defined according to RLBench [18].
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Figure 5. Visualization comparison of embodied execution results. We compare our approach with a baseline model without the MN
design (i.e., ARP [44]). The visualization sequences are captured from rotating camera perspectives, with key details highlighted in boxes
for clarity. The proposed MN design helps learning affordances and fine-grained operations, leading to improved performance.

prior works, we evaluate the trained policy by performing
rollouts in unseen environments from RLBench [18] and
measuring the success rates for various tasks. We com-
pare our approach with various baselines, including sim-
ple image-to-action behavioral cloning baselines [20], 3D
object manipulation methods [12—14, 18, 37], as well as
the most directly comparable baseline, ARP [44]. All ap-
proaches are trained and tested using input images of size
128 x 128, except for Act3D, which uses images of size
256 x 256.

As shown in Table 2, our method achieves notable im-
provements over state-of-the-art approaches in most tasks,
with an average success rate increase of 3.5% compared to
the direct baseline. Furthermore, it demonstrates signifi-
cant gains in tasks requiring fine-grained affordance rea-
soning, such as Sort Shape and Stack Cup. To better under-
stand the reasons behind the improvements, we compare the
rollout trajectories of models with the MN design against
those without MN (which degenerates to ARP [44]). Fig-
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ure 5 presents several comparison results. Our proposed
MN method demonstrates enhanced understanding of affor-
dances, such as how to interact with different objects. It
also improves target accuracy and refines the precision of
fine-grained interactions. Additional details can be found in
the supplementary videos.

Several factors may contribute to these improvements.
First, the representation alignment with the action recog-
nition model enables learning a more comprehensive and
disentangled task representation, which helps improve ro-
bust generalization. Second, action recognition may pro-
vide higher-quality appearance and geometric representa-
tions, which, through alignment, enhance the representation
learning of embodied execution and improve its correspond-
ing task performance.

4.4. Representation Analysis

We aim to further analyze the impact of the proposed MN
module on learned neural representations to gain deeper in-
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Figure 6. Visualization comparison of latent representations. We align the representations of two models with the MN design and two
models without it into their respective shared latent spaces, followed by dimensionality reduction for visualization. Different shapes
represent representations from different models, while different colors indicate the corresponding language instructions.

sight. We align the representations of action understanding
and embodied execution to a shared latent space Z using
alignment probing and then visualize them via t-SNE [39]
dimensionality reduction. Specifically, we compare base-
line models that are trained separately without the MN mod-
ule to our proposed MN approach, which couples the train-
ing of both models.

Figure 6 shows that our proposed method not only facili-
tates the alignment of representations between action under-
standing and embodied execution, as indicated by shapes
of the same color clustering together, but also enhances
the ability to distinguish fine-grained nuances in instruc-
tions, with different colors forming distinct clusters. We
believe that this representation alignment and disentangle-
ment may be the cause of the improved generalization abil-
ity. Additionally, we find that the MN module exhibits a
similar disentanglement effect on representations before the
linear transformation (in higher-dimensional space). We
also illustrate the evolution of representations throughout
the training process; please see Appendix D for details.

4.5. Ablation Study

Additionally, we study how the implementation of the pro-
posed mirror neuron alignment module influences model
performance. We primarily explore two questions: (1)
What kind of action representations should be aligned?
(2) How strict should the alignment criterion be? These
questions correspond to fundamental aspects of contrastive
learning: positive sample construction and temperature.
In our experiments, we explore three different strategies
for constructing positive samples:
1. By Episode: Positive samples are drawn from the same
episode. This means that the action understanding and

Task Action Understanding Embodied Execution
Temp. (1) 0.02 0.1 0.2 0.02 0.1 0.2
By Episode 74.0 72.9 74.0 86.4 88.1 87.8
By Instruction 74.9 74.9 77.1 86.7 88.8 87.0
By Class 73.6 71.6 722 86.9 85.7 85.6

Table 3. Ablation study results. We analyze the impact of align-
ment strategies and contrastive learning temperatures (7). Model
performance is evaluated on both Action Understanding and Em-
bodied Execution tasks.

embodied execution models are aligned when learning
from the exact same episode, including object place-
ment, initial positions, and action progression, although
their input and prediction modalities are different. In
practice, we sample paired data from the same episode
for both models to construct positive sample pairs.

By Instruction: Positive samples need not originate
from the same episode. Even if scene layouts and ac-
tion sequences differ, as long as the underlying goal cor-
responds to the same language instruction (e.g., “open
the top drawer”), their representations are aligned. In
implementation, for each sample, we randomly sample a
paired positive sample from the subset corresponding to
the same instruction. This is the default setting used in
our other experiments.

By Task: This is the most relaxed criterion. Positive
samples do not even need to correspond to the same lan-
guage instruction (e.g., “open the top drawer” and “open
the bottom drawer”). As long as they belong to the same
action class (Open Drawer), we align their representa-
tions accordingly.

Since the choice of a reasonable temperature parameter
is closely related to the definition of positive samples, we
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evaluate each strategy using three different temperature val-
ues: 7 = 0.02, 0.1, 0.2. Based on the results in Table 3, we
derive the following observations:

» All strategies generally outperform the baseline, demon-
strating the effectiveness of aligning representations of
the two modules akin to MN.

* The optimal temperature varies depending on the positive
sample construction strategy. For example, by episode
benefits from a higher temperature, whereas by class per-
forms better with a lower temperature. This aligns with
the relationship between positive sample definitions and
intra-/inter-class distances.

* Overall, by instruction proves to be a well-balanced strat-
egy, maintaining a good trade-off between variation and
semantic consistency, leading to the best generalization
performance. In contrast, by class exhibits slightly lower
performance, possibly because the two tasks still re-
quire distinguishing between fine-grained language de-
scriptions.

5. Related Work

5.1. Mirror Neurons

The discovery of mirror neurons (MNs) in macaques rep-
resents a pivotal advancement in understanding the neural
mechanisms underlying action perception and execution.
These neurons, primarily located in area F5 of the pre-
motor cortex and in the inferior parietal lobule (IPL), acti-
vates both when an individual performs a specific action and
when they observe another individual executing the same or
a similar action [4, 9, 32]. In humans, neuroimaging studies
provide evidence for a homologous mirror neuron system,
including motor-related regions such as the precentral gyrus
and the inferior frontal gyrus [10, 16, 23]. These areas are
activated during both action execution and observation, sug-
gesting their role in forming shared neural representations
of motor and sensory experiences. This shared representa-
tion is thought to facilitate action understanding, imitation,
and potentially social cognition [17, 38]. Inspired by the
functionality of MNs, several studies propose correspond-
ing computational models [25, 30, 35, 45]. Nonetheless,
existing approaches have yet to fully establish a unified rep-
resentation that integrates embodied action execution with
action understanding. Furthermore, the contribution of mir-
roring to these cognitive processes remains underexplored.

5.2. Representation Alignment

Representation alignment seeks to bridge the gap between
feature representations across different models, modalities,
or domains, emerging as a vital topic in machine learn-
ing. It has been shown to serve as a meaningful objec-
tive for improving model performance, enhancing train-
ing efficiency, and enabling generalization across diverse

tasks. For instance, prior studies have explored the similar-
ity of neural network representations, revealing that models
with different architectures and initializations tend to ex-
hibit a certain degree of alignment [24, 29]. In the con-
text of cross-modal alignment, researchers achieve robust
task generalization by aligning vision and language repre-
sentations [31], scaling this process with noisy text super-
vision [22], or leveraging pretrained unimodal models [43].
Moreover, recent studies have found that internal represen-
tations tend to align even within separately trained unimodal
models [15, 28, 43]. Specifically, The Platonic Represen-
tation Hypothesis [15] suggests that this convergence re-
flects the emergence of a shared statistical model of real-
ity, reminiscent of Plato’s concept of an idealized world.
In generative modeling, aligning with pretrained discrimi-
native representations has also been shown to significantly
enhance image generation quality and accelerate training
convergence [27, 42]. Our approach explores representa-
tion alignment from a novel perspective, integrating insights
from mirror neurons. Specifically, we investigate how neu-
ral representations for action understanding and embodied
execution align at both the task and functional levels in em-
bodied agents.

6. Conclusion

In this paper, we present a novel framework that unifies ac-
tion understanding and embodied execution through repre-
sentation learning, inspired by the biological mechanism of
mirror neurons. We first discover that models separately
trained for these two tasks exhibit spontaneous represen-
tation alignment, which is associated with task success.
Building on this insight, we introduce an approach that ex-
plicitly aligns the representations of observed and executed
actions within a shared latent space using contrastive learn-
ing. Experiments on action recognition and multi-task ob-
ject manipulation benchmarks show that this simple method
promotes synergy between the two tasks, enhancing repre-
sentation quality and generalization.

We hope our work offers a novel perspective by treat-
ing action understanding and embodied execution as in-
tertwined, rather than modeling them as isolated cognitive
processes. On a broader scale, it reflects how cognition
emerges from sensorimotor engagement with the environ-
ment, as emphasized by embodied cognition. Future work
could also adopt more sophisticated representation learn-
ing strategies, such as hierarchical alignment, and incorpo-
rate multisensory integration to better handle complex real-
world tasks. Finally, exploring aspects of social cognition
could further enrich the framework by capturing interactive
and cooperative dynamics.
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