
Stable Score Distillation

Haiming Zhu1, Yangyang Xu2*, Chenshu Xu1, Tingrui Shen3,
Wenxi Liu4, Yong Du5, Jun Yu2, Shengfeng He1*

1Singapore Management University 2Harbin Institute of Technology (Shenzhen)
3South China University of Technology 4Fuzhou University 5Ocean University of China

(a) Original Views (b) CSD[52] (c) DDS[10] (d) Ours

M
ustache

E
ye

M
ask

Figure 1. We propose Stable Score Distillation (SSD), a method that improves text-guided editing by preserving original content structure
and enhancing realism in edited results. The first column shows the original views, while the remaining columns display comparative results
with existing score distillation methods on the SD model. SSD demonstrates superior performance, maintaining the integrity of the original
content and producing more realistic edits.

Abstract

Text-guided image and 3D editing have advanced with
diffusion-based models, yet methods like Delta Denoising
Score often struggle with stability, spatial control, and edit-
ing strength. These limitations stem from reliance on com-
plex auxiliary structures, which introduce conflicting opti-
mization signals and restrict precise, localized edits. We
introduce Stable Score Distillation (SSD), a streamlined
framework that enhances stability and alignment in the edit-
ing process by anchoring a single classifier to the source
prompt. Specifically, SSD utilizes Classifier-Free Guidance
(CFG) equation to achieve cross-prompt alignment, and in-
troduces a constant term null-text branch to stabilize the
optimization process. This approach preserves the original
content’s structure and ensures that editing trajectories are
closely aligned with the source prompt, enabling smooth,
prompt-specific modifications while maintaining coherence
in surrounding regions. Additionally, SSD incorporates a
prompt enhancement branch to boost editing strength, par-
ticularly for style transformations. Our method achieves
state-of-the-art results in 2D and 3D editing tasks, includ-
ing NeRF and text-driven style edits, with faster conver-

*Corresponding authors: Yangyang Xu (xuyangyang@hit.edu.cn) and
Shengfeng He (shengfenghe@smu.edu.sg).

gence and reduced complexity, providing a robust and effi-
cient solution for text-guided editing. Code is available at:
https://github.com/Alex-Zhu1/SSD.

1. Introduction

Text-based image generation has achieved remarkable
progress, particularly with the advent of diffusion mod-
els [13, 28, 40, 41, 43, 56]. These models leverage strong
priors to produce high-quality images, facilitating significant
advances in text-to-3D generation [37, 47, 58]. Moreover,
text-guided 3D editing has enabled intricate modifications to
shape and texture [26, 31], supporting flexible and precise
3D scene manipulation.

Unlike generation tasks that create new content, editing
tasks aim to modify specific elements within an image while
preserving surrounding areas [51]. However, directly ap-
plying methods like Score Distillation Sampling (SDS) to
editing tasks can yield undesired effects, such as blurring
across the image. This arises because SDS optimizes glob-
ally to the prompt, affecting regions beyond the targeted
area [10, 20]. DDS [10] addresses this by introducing a
dual-branch architecture, pairing the source image with its
description to leverage the model’s inherent bias and iso-
late specific prompt changes. Further, CSD [52] achieved
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Figure 2. Illustration of three distillation-based approaches. Note that we assume a 2-step optimization process for illustration, where the
subscript  t represents the iteration number. DDS utilizes the source branch to obtain initial latent  Z_0^\ast 

 , while CSD employs two classifiers to
derive  Z_1' 

 and  Z_1'' 
 for cross-prompt editing. Our SSD method designs a CFG classifier to determine the cross-prompt editing, introduces the

null-text branch as the initial latent  Z_0^\ast 
 , and further constructs the cross-trajectory term (see Sec. 4.1) for stable optimization.
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Figure 3. The optimization process of DDS and our SSD. SSD
preserves the source structure effectively during optimization itera-
tions, while DDS cannot preserve it effectively.

scene editing by incorporating a classifier component within
Classifier-Free Guidance (CFG) [12] to refine the prediction
score by applying the classifier to both the source and target
prompts. NFSD [20] further decomposes the CFG score,
highlighting the classifier as the primary driver of prompt
direction.

Despite their success, we argue that current distillation-
based approaches face inherent limitations, such as low edit-
ing quality and loss of source content. As shown in Fig. 2,
DDS [10] relies on the source branch to remove model bias,
but lacks the explicit guidance to preserve the source con-
tent [24] during optimization. As shown in Fig. 1c, DDS
changes man’s clothe during editing his faces. Additionally,
although introducing source prompt components is intended
to improve prompt specificity [19], it can amplify noise and
introduce overlapping objectives that hinder stable conver-
gence. This results in artifacts or unintended variations, es-
pecially in the unedited regions. Correspondingly, CSD [52]
utilizes dual classifiers to refine the prompt editing direction
(see Fig. 2). However, it lacks the explicit source preserva-
tion to restrict edits precisely to the target areas. As shown in
Fig. 1b, this causes the structure deformation and annoying
artifacts in the edited regions.

Our insights into these limitations lead to two key obser-
vations: (1) Cross-prompt: a single classifier, providing

the editing direction from source prompt to target, and (2)
Cross-trajectory: stability in the editing process can be
achieved by aligning the editing direction closely with the
structure of the source content.

In this paper, we propose Stable Score Distillation (SSD),
a streamlined approach for stable and precise text-guided
editing. To achieve a smooth editing direction, we employ
the CFG equation for both the source and target prompts, en-
suring a gradual transition of the original contextual texture
as the model adapts to the specified changes. This approach
contrasts with DDS [10], as it eliminates the need for a aux-
iliary source branch, enabling our method to focus editing
gradients precisely within target regions while ensuring a
stable transition, as illustrated in Fig. 3. Moreover, for align-
ing the editing direction with the source prompt, facilitating
smoother and more controlled progression toward the tar-
get prompt, we design an cross-trajectory strategy to ensure
that edits respect the original structure, supporting subtle
and stable transformations within designated areas. While
NFSD [20] utilizes negative-branch and DDS utilizes source
branch to enhance output clarity, as shown in SSD in Fig. 2,
we introduce a null-text branch aligned with the “no-edit”
direction to integrate a “reconstruction” term to explicitly
enforce source content preservation, which enhances consis-
tency and produces reliable edits across diverse tasks. Based
on above designs, our framework remains streamlined and
efficient, achieving both precision and stability without the
complexity of additional components.

Our framework integrates seamlessly into existing DDS-
based editing pipelines and applications, such as text-driven
NeRF editing [22, 24, 36] and 2D image editing [35]. No-
tably, our approach’s “clear” editing direction preserves
source content, making a carefully designed identity regular-
ization [22] unnecessary. Moreover, standard DDS methods
often lack sufficient editing strength, resulting in minimal or
negligible changes in output, particularly in style editing [23].
Our approach, with its streamlined and stable framework,
allows for the seamless integration of a prompt enhancement
branch to amplify editing capability.

With these improvements, our method achieves faster and
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more effective edits during optimization, remains compati-
ble with the Stable Diffusion Model [40] without requiring
LoRA [14] or fine-tuning, and integrates effectively with
Instructpix2pix [2]. Additionally, by incorporating non-
increasing timestep sampling [15], we accelerate conver-
gence, reducing the required iterations to approximately
3,000 for NeRF [33] and 1,500 for Gaussian splatting [21].

In summary, our contributions are as follows:
• We introduce a novel editing framework, Stable Score

Distillation, that leverages a single, anchored classifier to
achieve targeted and stable edits in 3D scene editing.

• We introduce a prompt enhancement strategy, effectively
improve the prompt-alignment, especially style editing in
2D-image editing.

• We demonstrate the effectiveness of our approach across
NeRF-editing and image-editing tasks, achieving state-of-
the-art results with a streamlined and efficient framework.

2. Related Work

2.1. Diffusion Models
Diffusion models [13, 39, 43, 53] have made significant
advancements in generating diverse and high-fidelity images.
Starting form a gaussian noise, diffusion models can predict
the noise-less sample at each time step, until finally obtaining
clear samples. Commonly, the denoising process can utilize
U-net model to predict the noise. Some works [13, 44]
have observed that is proportional to the predicted score
function [17] of the smoothed density. Thus, intuitively,
taking steps in the direction of the score function gradually
moves the sample towards the data distribution.

To generate images aligned with a target prompt, guid-
ance is typically introduced to explicitly control the weight
assigned to the conditioning information. The popular guid-
ance methods include Classifier Guidance [8] and Class-free
Guidance (CFG) [12]. While the former rely on a separately
learned classifier, the latter directly introduces null-text sam-
ples to the model. CFG modifies the score function to steer
the process towards regions with a higher ratio of condi-
tional density to the unconditional one. However, it has been
observed that CFG trades sample fidelity for diversity [12].
Based on the insights gained from the decomposition of the
CFG equation, we propose a novel Stable Score Distillation
(SSD) method to guide the SDS optimization process.

2.2. Score Distillation Sampling (SDS)
Benefit from the data scale-law, diffusion model [38, 40, 41]
achieve high-quality image generation and text-to-image gen-
eration. Specifically, Score Distillation Sampling (SDS) [37]
leveraging the priors of pre-trained text-to-image models to
facilitate text-conditioned generation in 3D content gener-
ation. Specifically, SDS is an optimization approach that
updates the rendering parameter towards the image distribu-

tion of diffusion models by enforcing the noise prediction
on noisy rendered images to match sampled noise. While
SDS provides an elegant mechanism for leveraging pre-
trained text-to-image models, SDS-generated results often
suffer from oversaturation and lack of fine realistic details.
VSD [47] proposed a particle-based optimization framework
that treats the 3D parameter as a random variable of target
distribution. Furthermore, by regarding SDS as a reverse
diffusion process, decreasing timesteps sampling [15, 58] to
imitate the diffusion reverse sampling, which can improve
the quality of the generated 3D assets.

In image editing, Delta Denoising Score (DDS) [10]
found that Score Distillation Sampling (SDS) introduces
noticeable artifacts and over-smoothing in edited images
due to inherent bias. To mitigate this bias, DDS employs
a subtraction of two SDS scores of the source and target
images to obtain a delta score, which is then used to guide
the optimization process.

2.3. Text-Driven 3D-Scene Editing

Text-driven 3D scene editing has been a popular research
topic [18, 29, 56]. IN2N [9] proposed a Iterative Dataset
Update method that can edit 3D scenes from text descrip-
tions. By leveraging advancements in 2D diffusion editing
techniques, notably InstructP2P [2] and ControlNet [54],
GaussianEditor[6] and GaussCtrl [49] utilize edit multi-view
images latent to optimize the 3D scene. We consider uti-
lize score distillation to guide the 3D scene editing, which
is more flexible and efficient for the text-driven 3D scene
editing.

Building upon the foundational SDS loss introduced by
DreamFusion [37], some work has explore SDS loss in the
text-driven 3D scene editing. RePaint-NeRF [57] has ad-
vanced the application of SDS in 3D editing by integrating a
semantic mask to guide and constrain modifications within
the background elements. CSD [52] utilize two classifiers
to achieve editing. In a similar vein, ED-NeRF [36] has
introduced an enhanced loss function specifically designed
for 3D editing tasks. PDS [24] proposed a posterior distil-
lation sampling to match stochastic latent [16]. Piva [25]
fine-tuned the model while introducing a regularization term
to preserve identity. Unfortunately, these methods are still
limited to the long-time diffusion reverse sampling process,
which is not suboptimal for the text-driven 3D scene editing.
DreamCatalyst [22] extends the PDS optimization process-
ing to ID-preserving and edit-ability based on decreasing
timesteps sampling.

Different from the above methods, ours firstly improve the
DDS optimization process by introducing a single classifier,
and further introduce a null-text branch to achieve a more
stable and precise editing process.
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Figure 4. The overview of SSD. Given the parameter 3D-model or image, SSD provides effective editing gradient to guide the optimization
process. We utilize CFG equation between the predicted target noise  \epsilon _{\phi }(z_t, y, t)    and source noise  \epsilon _{\phi }(z_t, \hat {y}, t)  , which generate the gradual
editing direction. Furthermore, we introduce a null-text branch  \epsilon _{\phi }(\hat {z}_t, \varnothing , t)   to regularize the optimization process and achieve stable
optimization. We further analyzing and decompose ours design term into three parts: cross-prompt, cross-trajectory, and prompt-enhance.

3. Preliminary
In this section, we first discuss existing optimization-based
approaches to handle parametric images. Then, we will
introduce our novel parametric image editing method in
Section 4.

3.1. Score Distillation Sampling
Score Distillation Sampling (SDS) [37] is proposed to gen-
erate parametric images by leveraging the 2D prior of pre-
trained text-to-image diffusion models. Specifically, given
a pretrained diffusion model \epsilon _{\phi }, SDS optimizes a set of pa-
rameters \theta of a differentiable parametric image generator g,
using the gradient of the loss L_{\text {SDS}} with respect to \theta :

  \nabla _{\theta } L_{\text {SDS}} = w(t) \left ( \epsilon _{\phi }(z_t(x); y, t) - \epsilon \right ) \frac {\partial x}{\partial \theta }, \label {eq:sds}      



 (1)

where x = g(\theta )   is an image rendered by \theta , z_t(x) is obtained
by adding a Gaussian noise \epsilon to x corresponding to the t-
th timestep of the diffusion process, and y is a condition
to the diffusion model. As Noise-Free Score Distillation
(NFSD) [20] has shown, the score \epsilon _{\phi }(z_t(x); y, t)   provides
the direction in which this noised version of x should be
moved towards a denser region in the distribution of real
images.

3.2. Delta Distillation Sampling
Although SDS get excellent generation ability, for editing
task, an undesired component from the pretrained model,
\delta _{\text {bias}}, interferes with the process and causes the image to
become smooth and blurry in some parts [10]. Based on
the observations that a matched source prompt  \hat {y}  and source

latent \protect \hat  {z}_t can estimate the noisy direction \delta _{\text {bias}}, thus, the
DDS method aims to remove the \delta _{\text {bias}} by introducing source
branch, as shown in Eq. 2:

  \nabla _{\theta } L_{\text {DDS}} = \left ( \epsilon ^c_{\phi }(z_t, y, t) - \epsilon ^c_{\phi }(\hat {z}_t,\hat {y}, t) \right ) \frac {\partial z}{\partial \theta }, \label {eq:dds-2} 

    




 (2)

where \epsilon ^c_{\phi }(z_t, y, t)   and \epsilon ^c_{\phi }(\hat {z}_t, \hat {y}, t)   are pretrained model pre-
dictions \epsilon , with the superscript c indicating the CFG results.
Thus, DDS pushes the optimized image into the direction
of the target prompt without the interference of the noise
component, namely, \nabla _{\theta } L_{\text {DDS}} \approx \delta _{\text {text}}  . Obviously, \nabla _{ \delta _{\text {text}}} is
contingent on classifier part from  \epsilon ^c_{\phi }(z_t, y, t)    as discussed
in CSD [52] and NFSD [20]. Note that in the following
manuscript, we decompose the CFG results without the su-
perscript c and and omit the timestep t for simplicity.

Further exploring prompt editing direction, CSD [52]
method proposed a dual-classifier to refine the editing score
and achieve more precise editing, as shown in Eq. 3:

  \begin {split} \nabla _{\theta } L_{\text {CSD}} = & ( \, w_a \left ( \epsilon _{\phi }(z_t, y) - \epsilon _{\phi }(z_t, \varnothing ) \right ) \\ & - w_b \left ( \epsilon _{\phi }(z_t, \hat {y}) - \epsilon _{\phi }(z_t, \varnothing ) \right ) ) \frac {\partial z}{\partial \theta } , \end {split} \label {eq:csd}    

   





(3)

while the \epsilon _{\phi }(z_t, y, t)   and \epsilon _{\phi }(z_t,\hat {y}, t)   are current latent  z_t 
predictions for the target prompt  y and source prompt  \hat {y} ,
respectively.  w_a  and  w_b are weights of classifiers. Simply
put, CSD aims to refine the prompt editing direction by
determining the difference between two classifiers, which
can be regarded as a cross-prompt term.

4. Method
In 3D scene editing process, which requires consideration
of both the target prompt and the original source content,
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we consider two key aspects: (1) smooth editing direction
towards the target prompt (2) and editing results respect the
original structure. Based on these, in this section, we intro-
duce our novel editing framework Stable Score Distillation.

4.1. Stable Score Distillation
Firstly, we introduce the design of a cross-prompt editing di-
rection. As discussed about CSD method in Sec. 3.2, the key
role in cross-prompt editing is to provide a smooth transition
from the source prompt to the target. As the CFG guid-
ance [12] steers the process towards regions with a higher
ratio of conditional density to the unconditional one, ac-
cordingly, we can modify the SDS score function, as shown
below:

  Grad = \epsilon _{\phi }(z_t, \hat {y}) + s \left ( \epsilon _{\phi }(z_t, y) - \epsilon _{\phi }(z_t, \hat {y}) \right ), \label {eq:ours_cfg}            (4)

where \epsilon _{\phi }(z_t, y)  and \epsilon _{\phi }(z_t, \hat {y})  are pretrained model predic-
tions. The scale factor  s is equal to control weight.

Although the cross-prompt term provides a smooth tex-
ture transition in the edited region, we observed that the op-
timization process leads to abrupt structural changes, often
resulting in artifacts and unappealing outcomes, similar to
CSD in Fig. 1b. To address this, we introduce an additional
regularization term to constrain the structural transition. In-
terestingly, as shown in Fig. 1c, DDS achieves better results
than CSD by incorporating a source branch. However, DDS
still lacks a mechanism to ensure the original structure re-
mains intact, leading to modification on unedited regions.
To address this, we introduce a null-text branch  \epsilon _{\phi }(\hat {z}_t, \varnothing )  to
regularize the optimization process, as shown in Eq. 5:

  L_\text {ssd} = \epsilon _{\phi }(z_t, \hat {y}) + s ( \epsilon _{\phi }(z_t, y) - \epsilon _{\phi }(z_t, \hat {y}) ) - \epsilon _{\phi }(\hat {z}_t, \varnothing ). \label {eq:our_full}       (5)

Eq. 5 is ours Stable Score Distillation, and we can further
decompose above equation into two parts, and the latter is
regarded as a cross-trajectory term.

  L_\text {ssd} = \underbrace {w_p \left ( \epsilon _{\phi }(z_t, y) - \epsilon _{\phi }(z_t, \hat {y}) \right )}_{\text {cross-prompt}} + \underbrace { w_t \left ( \epsilon _{\phi }(z_t, \hat {y}) - \epsilon _{\phi }(\hat {z}_t, \varnothing ) \right )}_{\text {cross-trajectory}}, \label {eq:our_ssd}        


    




(6)
where the  w_t  and  w_p  control the strength of the cross-
trajectory and cross-prompt, respectively.

The cross-trajectory term can be interpreted as the dis-
tance between the transitions of two latents, ensuring that
the original structure remains smooth and does not change
abruptly (more details are provided in the supplementary
material). In Fig. 5, we can see that the cross-trajectory term
can provide a strong structure constraint ability, guiding the
optimization process to preserve the source image structure.
Specifically, when set  w_t = 0   , the optimization process be-
haves similarly to the CSD[52] method, which fails to retain
the original image structure.
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Figure 5. The effect of increasing the strength of the prompt en-
hancement term (we) and cross-trajectory term (wt), with the cross-
prompt term fixed at 7.5. Both terms contribute to prompt-aligned
results, while setting (wt = 0) leads to saturation and discard
source content.

4.2. Improving Prompt Alignment
Although Eq. 5 can achieve gradual editing results, we found
Eq. 5 have similar limitation with DDS [7], which have
insufficient editing strength. The editing results neither get
successful editing nor retain the source image structure, often
leads to little or no change in the final. Benefit from the cross-
prompt editing design as Eq. 5, we can add a target prompt
enhancement branch to guide the optimization process. The
target prompt alignment branch will provide the direction of
the target prompt, as shown in Eq. 7:

  L_\text {align} = {w_e} \left ( \epsilon _{\phi }(z_t, y) - \epsilon _{\phi }(z_t, \varnothing ) \right ) , \label {eq:style_branch}        (7)

where  w_e  is the prompt enhancement scale. As shown in
Fig. 5, the synchronous scaling of both the cross-trajectory
and prompt-enhancement terms results in effective visual
editing outcomes.

4.3. Source Latent Regularization
Empirically, we found that directly using latent-space loss
rather than pixel-level loss can lead to optimization difficul-
ties in local regions of 3DGS. For example, the bright spots
appearing in Fig. 5. To suppress the steep gradients in these
areas, we incorporate ID regularization to guide the stable
optimization process. Differ with PDS [24] use source latent
 \hat {x}_0 , we can use the noisy latent  \hat {x}_t  to avoid partial exploding
gradient, as shown in Eq. 8:

  L_\text {ID} = w(t) \cdot ( x_t - \hat {x}_t) , \label {eq:cross_traj}        (8)

where the  w(t)  is the iteration-dependent strength, designed
as a decreasing function of  t . Notably, the  w(t)  is not neces-
sary to well-designed in our design.Our final loss function
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as shown in Eq. 9:

  L_\text {final} = L_\text {ssd} + L_\text {align} + L_\text {ID} . \label {eq:final}        (9)

Based on the above design, we achieve a more prompt-
aligned editing method, which integrates seamlessly into the
Stable Diffusion Model [40] without requiring LoRA [14]
or fine-tuning. Moreover, we will further introduce our
method’s connection with InstructPix2Pix [2].

4.4. Connecting with IP2P
The final design of our method is shown in Eq 9. We found
that ours edit gard provide new angle to understand about
InstructP2P [2] one-step reverse sampling.

  \begin {split} \epsilon _{\theta }(z_t, c_I, c_T) &= \epsilon _{\theta }(z_t, \varnothing , \varnothing ) \\ &\quad + s_I \big (\epsilon _{\theta }(z_t, c_I, \varnothing ) - \epsilon _{\theta }(z_t, \varnothing , \varnothing ) \big ) \\ &\quad + s_T \big (\epsilon _{\theta }(z_t, c_I, c_T) - \epsilon _{\theta }(z_t, c_I, \varnothing ) \big ) , \end {split} && \label {eq:ip2p}     



  





      




(10)

where  c_I  and  c_T  are input-image and instruction prompt
separately, s_I  and  s_T  are the source image control and instruc-
tion prompt control strength. The Eq. 10 is the InstructP2P
one-step reverse sampling, which can provide the direction
of the target prompt. We can see that the InstructP2P is the
simple version of our method, the middle term of Eq. 10 is
cross-trajectory regularization, and the last term of Eq. 10
is ours cross-prompt term. Simply put, as analyzing the
Eq. 5, subtracting the constant correction term  \epsilon _{\theta }(\hat {z}_t; \varnothing ; \varnothing ) 
is edit grad. Ours method reveal that apply DDS loss in the
InstructP2P model can only editing branch, and don’t have
to provide the source branch.

5. Experiments
In this section, we conduct editing experiments across two
types of parameterized images. Section 5.1 evaluates the
effectiveness of our method on 3D Scenes Editing, and Sec-
tion 5.2 evaluates the effectiveness of our method on 2D
Image Editing. We also conduct ablation studies to analyze
the effectiveness of ours components in Section 5.3.

5.1. 3D Scenes Editing
Dataset. To evaluate the effectiveness of our method, we
conduct experiments on the scenes from IN2N [9] and
other real-world datasets, including LLFF [32] and Mip-
Nerf360 [1].
Baselines. We compare our method with several state-of-the-
art inversion methods. We use 3DGS [21] as the 3D represen-
tation, and compare our method with InstructNerf2Nerf [9],
DDS [10], GS-Edit [6], and DGE [5]. For fairness, we im-
plement the DDS version based on the official GS-Edit code.
PDS [24] is designed for addition of objects to unspecified

Table 1. Quantitative evaluations under 3D editing scenes.
Method CLIP Sim. ↑ Sim Dir. ↑ User Study ↑
IN2N 0.1676 0.0707 14.54%
DDS 0.1780 0.0401 5.45%
GS-Editor 0.1758 0.0429 14.54%
DGE 0.1758 0.0563 23.63%
Ours 0.1846 0.0773 41.81%

regions, we will provide the comparison results in supple-
mentary material.
Evaluation Metrics. We follow common practice [5, 6, 9]
to evaluate the effectiveness of our method. CLIP Similar-
ity is to evaluate the alignment between the render images
and the target prompts, i.e., the cosine similarity between
the text and image embeddings encoded by CLIP. Specifi-
cally, follow DGE [5], randomly sample 20 camera poses
to evaluate. CLIP Directional Similarity is to measure the
editing effect, i.e., the cosine similarity between the image
and text editing directions (target embeddings minus source
embeddings). We evaluate all methods on 6 different scenes
and 10 different prompts.
Results. We begin by evaluating our method, starting with a
qualitative assessment. In Fig. 6, we present a comparison
of results with competing methods. Our approach generates
more visually appealing images that are better aligned with
the editing instructions. In contrast, methods based on the It-
erative Dataset Update (IDU) strategy, such as IN2N [9] and
GS-Editor [6], fail to produce the desired editing outcomes,
resulting in blurrier or lower-fidelity reconstructions and
noticeable artifacts. For example, in the scene of “Spider-
Man with a mask”, IN2N generates a mask with reduced
fidelity, while GS-Editor produces a low-detail mask. In
the multi-view consistency setup, DGE [5] performs well
on common attributes but is constrained to ”rainbow” edit-
ing and tends to generate artifacts outside the segmentation
mask. Our method works seamlessly with masks, producing
results with rich details.

In Tab. 1, We present a quantitative comparison. Our
method outperforms the baselines in terms of CLIP Similar-
ity and CLIP Directional Similarity. Notably, Dire Sim is
not sensitive with the editing quality, much focus on the in-
struction attributes. We conducted a user study with a survey
of 55 participants to evaluate the editing quality. The results
show that our method received the most popular votes.

5.2. 2D Image Editing
Dataset. To evaluate the effectiveness of our method, we
conduct experiments on the PIE-Bench dataset proposed by
PNPInv [19], which consists of 700 images with 9 editing
types. Each image is annotated with the source and target
prompts.
Baselines. We compare our method with several classical
editing methods based on DDIM [43] inversion, including
P2P [11], PNP [46] and MasaCtrl [3]. For optimization-
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A photo of a man → Spider man with a mask

A man wearing T-shirt with a pineapple pattern

Rainbow horn fossil

A tree stump with some leaves on fire

Input Views InstructN2N GaussianEditor DGE Ours
Figure 6. Qualitative comparisons with related works. SDS demonstrates outstanding performance in effectively preserve source structure in
the modified region.

based editing method, we compare with NT [34] and
StyleD [27]. Besides, we report the comparison with
DT [19]. Further, we compare with DDS [10] and its ex-
tended method CDS [35].
Evaluation Metrics. We follow DT [19] which uses several
metrics to evaluate our method. We use the Structure Dis-
tance assessed by DINO score [4] to evaluate the structure
distance between original and edited images. We also in-
troduce several metrics to evaluating the background preser-
vation, which includes LPIPS [55] and MSE. Besides, we
introduce CLIP Similarity [48] to evaluate the text-image
consistency between edited images and corresponding target
editing text prompts.
Results. We present a qualitative comparison of our method
with competitors in Fig. 7. Our method generates images
that are more aligned with the target prompts and preserve
the source structure. In “blue butterfly”, ours successfully
changes the color of the butterfly to blue, while DDS [10]
and CDS [35] generate similar color from source. Especially,
ours method successfully changes the style of the image and
generates appealing results, which is challenging for DDS-

Table 2. Quantitative evaluation in PIE-Bench dataset.
Method Distance×103 ↓LPIPS×103 ↓MSE×104 ↓CLIP ↑
DDIM + P2P 69.43 208.80 219.88 25.01
DDIM + PNP 28.22 113.46 83.64 25.41
DDIM + MasaCtrl 28.38 106.62 86.97 23.96
NT + P2P 13.44 60.67 35.86 24.75
StyleD + P2P 11.65 66.10 38.63 24.78
DT + P2P 11.65 54.55 32.86 25.02
DDS 14.74 50.58 45.09 25.86
DDS + CDS 7.15 33.14 25.29 24.96
Ours 28.13 82.43 86.64 26.94
Ours + CDS 6.90 32.15 24.21 25.12

based methods. Compared to optimization-based methods,
NT [34] preserves the general source structure during the in-
version process, but tends to discard some content as evident
in the distortion of the girl’s fingers in Fig. 7. Additionally,
due to limitations in the editing methods, the editing results
are unsuccessful.

In Tab. 2, we present a quantitative comparison. Our
method strikes a balance between structure distance and
editability. Notably, we observe that the distance is much
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A blue and white bird → butterfly sits on a branch

Kids crayon drawing of a man with a long beard and a long sword

Black and white sketch of a young girl with painted hands and face

A monkey → man wearing colorful goggles and a colorful scarf

Source DDS CDS NT+P2P Ours
Figure 7. Comparison of different editing methods on various
objects and styles.

lower when no editing occurs, which is particularly visible
in DDS-based methods applied to style editing. Our meth-
ods achieving better editing score but with a slightly higher
structure distance. In terms of precise structure preservation,
when combined with CDS [35], it achieves good preserva-
tion of the un-edited areas. Our full model achieves the
best performance in the CLIP Similarity metric, demonstrat-
ing the effectiveness of our prompt enhancement branch.
While CDS excels in preserving unedited regions, it suf-
fers from the inferior editability of DDS-based methods.
Optimization-based methods [27, 34] refine the inversion
process, achieving excellent performance in structure preser-
vation. However, they struggle with editing methods (like
P2P), resulting in limited editability.

5.3. Ablation Studies
In this section, we conduct an ablation experiment to analyze
different choices in our SSD. Due to space limitations, we
first present a qualitative evaluation in the main text. Please
refer to the Supp. for quantitative evaluation.
The effectiveness of cross-trajectory. In Sec. 4.1, we
have analyzed the necessity of cross-trajectory. This term
make the optimization process more stable and provide the
source content regularization in ours design, which is also
the key difference between ours and Classifier Score Dis-
tillation(CSD) [52]. In Fig. 1 and Fig. 5, we present the
comparison of the results with and without cross-trajectory.
The results show that the cross-trajectory term can provide
the direction of generating high-quality images. Please refer
to the supplement for more details.
The effectiveness of prompt-enhancement. The enhance-

w/o ID Regular ID Regular × 1.0 ID Regular × 2.0
Figure 8. Effect of source latent regularization. In most experi-
ments, the source ID term helps prevent partial gradient explosion.
In the left image, the yellow arrow highlights an irregular color.
As the weight of the ID term increases, the color becomes more
regular, however, the spider on the character’s chest is affected.

ment of the target prompt branch is another key component
in our method, which is designed to improve the editability
aligned with the target prompt in 2D-image task. In Fig. 7,
we observe a clear distinction from DDS in style editing. The
results show that the prompt-enhancement term effectively
overcomes the challenging from style editing.
The effectiveness of ID regularization. ID regularization is
designed to ensure stable optimization in 3DGS. In Fig. 8, we
compare results with and without ID regularization. The area
marked by the yellow arrow highlights its effect in 3D scene
editing. However, excessive ID regularization may constrain
editing quality by limiting certain attributes, presenting a
trade-off in our design.

6. Conclusions, Limitations, and Future Work
In this work, we propose a novel method for text-guided
image editing, capable of handling both 3D scenes and 2D
images. Our approach is built on a score distillation frame-
work that leverages the powerful priors of diffusion models.
For editing tasks, we design an effective optimization strat-
egy that produces high-quality results aligned with target
prompts while ensuring stable and consistent optimization.

Our method achieves state-of-the-art performance in both
3D scene and 2D image editing, delivering realistic edits
with excellent preservation of the original content. It demon-
strates strong adaptability to various editing tasks and target
prompts, making it a robust solution for complex scenar-
ios. However, while effective, the optimization process is
relatively time-intensive compared to recent one-step meth-
ods [50] or few-step approaches [7]. Future work could
explore integrating advanced techniques such as LCM [30]
or SD-Turbo [42], which show potential for accelerating the
optimization process [45].
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