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3D-Edits (c) Region Refinement
precisely performs geometric edits while maintaining high fidelity and

avoiding artifacts. Besides, our training-free framework achieves impressive structural completion and background generation.

Abstract

We tackle the task of geometric image editing, where an
object within an image is repositioned, reoriented, or re-
shaped while preserving overall scene coherence. Previ-
ous diffusion-based editing methods often attempt to handle
all relevant subtasks in a single step, proving difficult when
transformations become large or structurally complex. We
address this by proposing a decoupled pipeline that sepa-
rates object transformation, source region inpainting, and
target region refinement. Both inpainting and refinement
are implemented using a training-free diffusion approach,
FreeFine. In experiments on our new GeoBench bench-
mark, which contains both 2D and 3D editing scenarios,
FreeFine outperforms state-of-the-art alternatives in im-
age fidelity, and edit precision, especially under demand-
ing transformations. Code and benchmark are available at:
https://github.com/Clawevy/FreeFine

*Equal contribution. Corresponding author.

1. Introduction

Image generation models have made remarkable progress in
producing photorealistic and detail-rich results [2, 43, 47,
48]. With these advancements, the community has shown
growing interest in controllable image editing to enable
users to manipulate existing images with both high fidelity
and accuracy. In this paper, we address the task of reposi-
tioning, reorienting, or reshaping an object within an image
(e.g., moving an object to a new location, rotating it in 3D,
or changing its proportions) while preserving overall scene
coherence, a task we refer to as geometric image editing.

This problem requires solving multiple interdependent
subtasks: (1) coarsely transforming the object to its desired
location, (2) inpainting the source region to avoid artifacts,
and (3) refining the relocated object to blend seamlessly
with the background. Recent methods that support drag-
based edits [8, 10, 33, 39, 50] typically address these goals
with a single, unified objective, yielding compelling results
for smaller or moderate transformations. However, they of-
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ten struggle with large or geometrically complex transfor-
mations, possibly because balancing multiple subtasks in
one optimization framework creates competing demands.
For instance, strictly preserving the background may con-
flict with generating newly exposed object surfaces. Al-
though it is challenging to pinpoint exactly how these ob-
jectives interact, the risk of artifacts in more extensive edits
motivates us to take a decoupled strategy. Concretely, we
separate geometric editing into three sequential steps, indi-
vidually handling object transformation, source region in-
painting, and target region refinement. This decomposition
avoids the pitfalls of fusing significant structural changes
and fine-grained touch-ups in a single loop, while allow-
ing us to incorporate specialized off-the-shelf components,
such as advanced depth estimators [64] or video mod-
els [61] for 3D transformations and dedicated inpainting
models [28, 57] for large-scale removals.

Within this pipeline, both inpainting and refinement can
be cast as selectively altering regions based on spatial masks
and generative priors. Instead of leveraging task-specific
models [22, 54, 57] that necessitate dedicated training, we
adopt a training-free diffusion-based strategy capable of
handling both tasks with minimal tweaks, which combines
three complementary modules: Temporally Contextual At-
tention to balance self-attention with mask-guided attention
over the course of diffusion steps, Local Perturbation for se-
lective noise injection that encourages substantial changes
in user-defined areas, and Content-specified Generation for
text-driven local refinements. These modules collectively
preserve global fidelity while generating plausible details in
newly exposed or structurally incomplete regions.

To systematically evaluate geometric editing, we intro-
duce GeoBench, a benchmark designed to test 2D and 3D
transformation editing scenarios in varied degrees of diffi-
culty. Each scenario includes a source image, one or more
geometric editing instructions, and optional structural com-
pletion masks. We adopt popular generative metrics such as
FID [16], as well as measures for subject/background con-
sistency [19] and edit precision [49].

Our contributions can be summarized as follows:

* We present a decoupled geometric image editing pipeline
that splits the editing process into object transformation,
source region inpainting, and target region refinement,
supporting both 2D and 3D transformations.

* We propose FreeFine, a training-free, diffusion-based so-
lution powered by Temporal Contextual Attention, Local
Perturbation, and Content-specified Generation. This de-
sign provides fine-grained control over the editing regions
while maintaining global coherence.

* We introduce GeoBench, a benchmark specialized for
evaluation on geometric image editing with diverse in-
structions and metrics. Our method significantly outper-
forms existing approaches in both large and small trans-

formations.

2. Related Work

Diffusion models. Diffusion models [18, 53] synthesize im-
ages by iteratively denoising noisy inputs, with improve-
ments such as non-Markovian sampling [53] and latent dif-
fusion [47] greatly accelerating generation. Combined with
large-scale language modeling, they power state-of-the-art
text-to-image systems like DALL-E [2, 44, 45] and Ima-
gen [48]. Recent extensions include rectified flow mod-
els [32] for more efficient sampling. We refer readers to [65]
for broader coverage of research on diffusion models.

Geometric editing with generative models. Early meth-
ods for view manipulation and alignment [7, 20] lacked
the ability to perform direct image editing. Advances in
novel view synthesis and 3D representations [25, 31, 38, 61]
enable more expressive geometric changes by reconstruct-
ing scenes in 3D space [66]. However, these methods
typically require multi-view inputs or per-scene optimiza-
tion, making them less practical for single-image, real-
time editing. More recent work on single-image 3D re-
construction attempts to infer 3D shapes from sparse or
single-view data [31, 61], and can be seamlessly integrated
into our framework: for larger 3D transformations, the ob-
ject is temporarily “lifted” to 3D, manipulated, and repro-
jected back to 2D. Other approaches, such as pose trans-
fer [37, 52, 68, 69] or virtual try-on [5, 12, 62], focus on
human-centric transformations and cannot generalize be-
yond that domain without significant modification.

Given source and target locations or constraints, a de-
cent volume of research efforts focus on manipulating la-
tents to minimize feature discrepancies. They can be cat-
egorized by their guidance signals: (i) Point-based meth-
ods [6, 27, 30, 41, 50, 51] accept user-defined points or
anchors to indicate how parts of the object should move,
(ii) Region-based methods [8, 42, 49] operate on segmented
areas to apply object-level edits, and (iii) Combined or
more diverse signals [33, 39] fuse point and region infor-
mation. Further variations exploit flow fields [10], scene
layouts [21, 35, 46], or higher-level editable elements [40].
Our method can optionally work with single-image 3D lift-
ing [61] to handle substantial viewpoint changes. Mean-
while, our method remains compatible with diverse 2D edit-
ing operations without requiring multi-view data or special-
ized human-centric models.

Training-Free Inpainting and Restoration. While some
inpainting methods often rely on a specialized training pro-
cedure tailored to repair designated areas [22, 54], recent
works [9, 36, 56, 67] have exploited the strong genera-
tive priors of large diffusion models for image inpainting
and restoration without further training. For instance, Re-
Paint [34] iteratively refines an inpainted region through a
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Figure 2. Overview of our geometric image editing pipeline.

corruption-aware sampling loop, while DDRM [24] adapts
diffusion priors to tasks like denoising or super-resolution
by enforcing consistency with the degraded observations.
DreamClean [63] further extends unsupervised test-time
sampling to remove unknown corruption. Most of these
methods focus on local artifact correction or low-level en-
hancements. By contrast, our approach supports various
geometric transformations and can synthesize new content
guided by user prompts and masks.

3. Method
3.1. Geometric Editing Pipeline

Our goal is to perform geometric editing on any object
within the image, manipulating its shape, orientation, or po-
sition while preserving the overall coherence and realism of
the scene. Our pipeline (Fig. 2) comprises three steps:

Step 1: Object Transformation. The pipeline takes a
source image [ containing an object to be edited, along
with a binary mask M indicating the source region for the
object. To reduce the burden of drawing precise masks, we
employ an interactive segmentation model [26] that gener-
ates M with just a few user clicks. Next, we convert user’s
editing instruction (e.g., “rotate the object along the z-axis
by 30°”) to a transformation function 7, with parameters
6. The transformation function receives I, and M, as in-
puts, and generates transformed M, that indicates the target
region for the object, and a coarse image I.:
IC7 Mt = 7;)(].97 Ms)

For purely 2D edits, 7y simply represents an affine trans-
formation. For more advanced 3D edits, we first estimate
scene depth using a depth estimator [64], then apply geo-
metric transformations in 3D space and re-project the trans-
formed object back into the image. For more demanding 3D
changes, we employ single-image 3D lifting methods such
as SV3D [13, 61] for a more complete 3D representation.

Step 2: Source Region Inpainting. With the object relo-
cated, the original source region often requires cleanup (see
1. in Fig. 2). This step aims to generate a clean background
image I,; by inpainting the source region of I,, ensuring

natural blending with surrounding pixels:
Ity = Inpaint (I, My).

Step 3: Target Region Refinement. Given the target mask
M} and the coarse image .. from Step 1, and I, with clean
background in the source object location obtained from Step
2, we can easily Blend them together to create a composite
image I.:

Io=M,-I,+(1—DM,)- I,

fc can be imperfect: as I. and I, are separately built,
the blended result may fall short in unnatural boundaries
around the target object regions. More critically, occlusion
or incompleteness of the original object can severely com-
promise the realism of the edited result. As an example
in Fig. 2, the tower in I is up in the air without realistic
structure in the base part. These limitations necessitate an
additional refinement step on I.. This step requires many
inputs obtained from previous steps:

Ig = Refine(I,, I,, My, My, [My)),

where M, is an optionally user-provided completion mask
for controlled content generation based on I..

Although Inpaint and Refine have different objec-
tives, both boil down to refining selected pixels using ex-
isting context from the available contexts. To that end, we
propose a training-free image refinement approach, Free-
Fine, to perform these steps in a unified manner. In what
follows, we detail the FreeFine framework and how it inte-
grates into Steps 2 and 3.

3.2. Training-Free Image Refinement

A widely adopted approach for diffusion-based editing is to
perform DDIM inversion on the input image and manipu-
late the latent at each denoising step. Here, we invert the
source image I; once and reuse its latent for both Step 2
(source region inpainting) and Step 3 (target region refine-
ment). Once the composite image I.is generated, we ad-
ditionally invert it to initialize the latent representation for
Step 3. Past studies [1, 4, 14, 15, 29, 60] demonstrate that
manipulating self-attention features can be highly effective,
given the rich semantic information learned by large-scale
pretrained models. However, it is crucial to manage where
and how such modifications occur. To this end, we intro-
duce three complementary modules:

e Temporal Contextual Attention (TCA) in Sec. 3.2.1,
which embodies the mechanism to smoothly transition
from mask-guided mutual attention to full self-attention
and preserve global structure during large edits.

e Local Perturbation (LP) in Sec. 3.2.2, a method that
selectively injects noise (via DDPM updates) into user-
defined regions to permit substantial content changes
without disturbing the rest of the image.
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Figure 3. Comparison of Context Aggregation Methods. This figure illustrates different approaches for context alignment in image editing
tasks: (a) MMSA [4] replaces Key-Value (KV) pairs and enforces explicit feature interaction between regions. (b) TCA (Step2) for source
region inpainting, and (c) TCA (Step3) for target region refinement, which smoothly transition from MMSA to full self-attention.

Content-specified Generation (CG) in Sec. 3.2.3, which
utilizes classifier-free guidance and cross-attention based
on user-provided prompts to steer newly generated con-
tent, ensuring desired details appear only where intended.
Together, these modules enable FreeFine to perform in-
painting and refinement in a training-free manner while pre-
serving the realism and coherence of the edited image.

3.2.1. Temporal Contextual Attention

Diffusion-based editing aims to adjust latents in editable
regions while keeping other parts intact. As self-attention
layers capture feature dependencies, they enable diffusion
models to have “repairing abilities”: corrupting the regions
to be edited and then performing the denoising process can
harmonize corrupted regions and generate plausible results.
But it is difficult to control both where such “repairment”
occurs and its intensity. Mask-guided mutual self-attention
(MMSA) [4] (illustrated in Fig. 3 (a)) avoids this by restrict-
ing each query in the self-attention layers to attend only to
the corresponding masked features:

S, = SelfAttn(Qy, K, Vy; M),
Sy = SelfAttn(Qy, K, Vi; 1 — My),
fg="50-M; + Sy-(1— M),

M

where S, and S}, represent the self-attention outputs for ob-
jects and backgrounds, respectively, and f, is the final fea-
ture output of the whole module. While effective, this ap-
proach is limited in generating structural content if large
edits are desirable (shown in Sec. 4.3).

Our key observation (aligned with the literature [4, 11,
14]) is that major content changes tend to occur at the be-
ginning of the diffusion process, whereas later steps natu-
rally refine local details. Hence, we seek a balanced ap-
proach that starts with MMSA to preserve global structure
and then gradually incorporates self-attention as denoising
progresses, enabling local adjustments without compromis-
ing the larger transformation.
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To implement this idea, we propose a Temporal Con-
textual Attention (TCA) mechanism shown in Fig. 3 (c)
that dynamically blends MMSA with self-attention from
the target over the diffusion steps. Formally, let S; =
SelfAttn(Qy, K¢, V;) be the self-attention output capturing
global context from the current image latent. We then define
the final attention output f at step T as

fi = (1=a7) S, + az|[So- My + S, (1= My)],
where
T — T
ar =
T1 — T0

is a temporally changing blend weight that smoothly transi-
tions from relying on MMSA at early steps (for large con-
tent edits) to incorporating self-attention at later steps (for
fine details and completion). Concretely, o, linearly de-
creases from 1 when 7 = 7 to 0 when 7 = 71, where 7 is
the initial denoising step, and 7 is the final denoising step.
A straightforward alternative is to define a single threshold:
for steps it, use MMSA from the source; once past it, switch
entirely to self-attention. This approach is highly dependent
on threshold choice and incurs varied performance for dif-
ferent thresholds (see Appendix for details). Our approach
is free from this concern and thus more robust.

TCA can be applied to both Step 2 (Fig. 3(b)) and Step 3
(Fig. 3(c)), depending on the masks and the values of 7g
and 7;. For Step 2, we maintain background self-attention
and combine it with full self-attention through a.;, ensuring
that source regions query only the background of I, while
leveraging self-dependency for self-remedy. For Step 3,
when structure completion is required, we extend the target
mask M; by incorporating the user-defined mask M, form-
ing the full target mask M; = M; U M . This allows the
completion region to focus on the foreground region of I
while smoothly combining self-attention for coherent con-
tent completion.



3.2.2. Local Perturbation

While DDIM [53] provides deterministic denoising up-
dates, in many editing scenarios there is a need to unfreeze
certain regions to allow more dramatic changes, such as
inpainting large occlusions or fixing problematic artifacts.
To accomplish this, we introduce Local Perturbation (LP),
which injects controlled stochasticity only within a speci-
fied region M. Formally, we selectively apply a DDPM-
like update in M while retaining DDIM updates elsewhere:

_ [DDPM(z,), ifze M,

Tt—1 = .
{DDIM(xt), otherwise.

By applying stochasticity only in M, LP provides extra
flexibility to rearrange or complete local structures within
the region without disrupting content outside it. For Step 2,
M typically corresponds to the source mask Mg, while in
Step 3, M is defined by the user-defined structure comple-
tion mask M, or other regions requiring substantial modi-
fication, such as areas containing inpainting artifacts or the
boundaries between objects and the background. More de-
tails can be found in the Appendix.

3.2.3. Content-specified Generation

Though LP encourages greater variety in how masked re-
gions evolve, it still relies on the model’s generative prior to
fill in missing details, which can be arbitrary if the desired
content is not specified. To address this, we introduce a tex-
tual conditional input C (e.g., “add a missing foot”, “make
an empty scene”) and define two regions: M for local-
ized cross-attention and M5 to guide classifier-free guid-
ance [17].

Within M, we replace the source key—value pairs with
those projected from the textual embeddings (K¢, Ve):

ft = CrossAttn(Q, K¢, Ve) - My +
CrossAttn(Qy, Kg, V) - (1 — M),

where @), is the target query and (K4, V) are text embed-
dings from null texts. This ensures cross-attention is locally
focused on M, enabling precise, user-specified generation
within the region while preserving external content.

Furthermore, we apply classifier-free guidance exclu-
sively Ms:

2

éo(x,C) = €o(v4,9) + w [eg(xt,C) — eg(wy, )| - Ma, (3)

where w is the guidance scale. This confines semantic
directives in C to My, preventing unintended changes to
well-established parts of the image. For Step 2, M; =
My = M, where M is the source region mask. For
Step 3, My = M, while My = M. By combining LP’s
controlled stochasticity with CG’s text-driven conditioning,
users can refine or synthesize content exactly where needed
while preserving overall image coherence.

4. Experiments

4.1. Experimental Settings

Additional implementation details of our method, compared
approaches, dataset, and metric calculations are provided in
the Appendix.

Implementation Details. We adopt Stable Diffusion v1-
5 [47] as our base model, with an image resolution of
512 x 512, consistent with previous methods. The num-
ber of the denoising steps 7 is set to 50. TCA is applied at
all timesteps, starting from the tenth U-Net layer, following
[4]. For Step 2, we set 7y to 1, minimizing the influence
of residual object features on background reconstruction.
For Step 3, 79 is set to 13 to balance structural comple-
tion and detail preservation. For general refinement without
structural completion, 7y is set to 25 for fine-grained ad-
justments. CG is applied in both Step 2 and Step 3 with a
default guidance scale w = 7.5.

Datasets. To evaluate on geometric editing, we con-
struct a comprehensive benchmark, GeoBench, by com-
bining source images from PIE-Bench [23] and Sub-
jects200K [58], which contain a mix of real and synthetic
images with apparent objects suitable for this task. For
each source image, we provide multiple geometric edit-
ing instructions, including object-centric operations such
as move, rotate, and resize, each with varying directions
and three intensity levels (i.e., easy, medium, hard). The
GeoBench dataset comprises 811 source images and 5,988
editing instructions in total, offering a robust foundation for
evaluating geometric editing methods. Our benchmark in-
cludes diverse editing scenarios and a challenging subset
requiring structural completion. Additionally, we provide
detailed captions and object category labels for all images,
as well as annotated regions for structural completion tasks.

Metrics. We employed seven metrics to quantitatively eval-
uate the generated results from three different perspectives.
(1) Image Quality. FID [16] is computed to comprehen-
sively evaluate the quality of the generated images. We ran-
domly sample 2k images from PIE-Bench [23] and Sub-
jects200K [58] as data from the target. In addition, we
separately use Kernel distances [3] (KD) and DINOv2 [55]
feature distance (DINOV2) to improve the FID and obtain
more comprehensive results. (2) Consistency. Inspired by
VBench [19], we adopt Subject Consistency (SUBC) and
Background Consistency (BC) to assess the fidelity of the
generated image to the input source images. After sepa-
rating the subject from the background using M, and M,
we calculate the cosine similarity between their foregrounds
and between their backgrounds in the feature space. (3)
Editing Effectiveness. In image editing tasks, it is crucial
to evaluate whether the generated images adhere to the input
editing instructions. We employ the same Warp Error (WE)

19134



Table 1. Comparison on 2D Edits, 3D Edits, and Structure Completion (SC) tasks. Best results are in bold, second best in underlined.

Methods | External Model | Editing Type | FID DINOv2 KD SUBC BC WE MD
Self-Guidance [8] SAM [26] 49.15 64756 0438 0.575 0.759 0.268 116.89
RegionDrag [33] SAM [26] 4021 50450 0241 0796 0970 0.120 3250
DragonDiffusion [39] | SAM [26] 37.09  507.67 0.144 0.840 0.968 0.158 32.36
MotionGuidance [10] | SAM [26], RAFT [59] 106.39 1189.23 3.871 0521 0.736 0.186 90.03
DragDiffusion [50] SAM [26] 2D 36.58  455.68 0.142 0758 0966 0.199 41.31

Diffusion Handles [42]
GeoDiffuser [49]

SAM [26], LaMa [57], DepthAnything [64]
SAM [26], DepthAnything [64]

44.81 549.69 0.618 0.725 0.852 0.180 40.27
33.89 43775 0.173 0.762 0938 0.166 34.88

DesignEdit [21] SAM [26] 3522 48091 0.179 0.874 0.959 0.098 10.15
FreeFine SAM [26] 3472  478.18 0.144 0907 0971 0.055 9.25
DragDiffusion [50] SAM [26] 157.42 1867.02 0.348 0.603 0.958 0.199 61.97
Diffusion Handles [42] | SAM [26], LaMa [57], DepthAnything [64] D 156.90 1882.66 0.523 0.705 0.882 0.128 26.10
GeoDiffuser [49] SAM [26], DepthAnything [64] 152.06 1894.26 0.351 0.749 0941 0.097 34.34
FreeFine SAM [26], DepthAnything [64] 150.89 1879.69 0.310 0.786 0.956 0.079 20.32
BrushNet [22] SAM [26] 186.93 2516.52 0.971 0.925 0948 0.060 11.31
SD-inpainting [54] SAM [26] SC 19371 2556.44 1.047 0913 0.928 0.064 14.43
FreeFine SAM [26] 184.84 2526.38 0.982 0.928 0952 0.056 9.56

and Mean Distance(MD) as GeoDiffuser [49] to measure
editing effectiveness, which warps the source object to the
target location and then computes L1 error within masked
regions of the generated images.

Baselines. Our evaluation includes two main aspects:
(1) direct comparisons with state-of-the-art image editing
methods, and (2) comparisons with representative inpaint-
ing methods integrated into our framework to address Step 2
and Step 3. For (1), we compare with DragonDiffusion [39],
Self-Guidance [8], Motion-Guidance [10], and Region-
Drag [33], DragDiffusion [50], GeoDiffuser [49], Diffu-
sionHandles [42], and DesignEdit [21]. All methods are
implemented based on their official codebases, with mini-
mal adjustments to fit our benchmark (see Appendix). For
(2), we compare with BrushNet [22], Stable Diffusion In-
painting [54], LaMa [57], and MAT [28]. Since LaMa [57]
and MAT [28] learned to remove content (inpainting) rather
than performing target region refinement, they are excluded
from the main comparison but included in our user study
(see Section 4.2).

4.2. Comparison with Other Methods

Quantitative Results. We conduct a comprehensive quan-
titative evaluation of FreeFine against SotA methods across
2D edits, 3D edits, and structure completion tasks in Table
1. FreeFine demonstrates consistent superiority across all
scenarios and metrics: For 2D edits, FreeFine outperforms
all the counterparts, with SUBC, WE and MD significantly
better. Among compared methods, DesignEdit and GeoD-
iffuser stand out, where the former excels at edit precision
and the latter is better at image quality. For 3D edits, meth-
ods (e.g., DesignEdit [21], RegionDrag[33]) good at 2D
edits fail to support holistic object 3D rotation by design.
FreeFine undoubtedly achieves the best performance across
all evaluation dimensions under the same depth-based trans-
formation paradigm. For structure completion tasks, we
further benchmark against representative inpainting models

by integrating them into our editing pipeline. Our method
comprehensively outperforms training-based methods like
BrushNet, with no additional training needed.

Qualitative Results. We present a qualitative evaluation of
our method against baseline approaches, focusing on both
geometric editing and structural completion tasks. As il-
lustrated in Fig. 4, our method achieves high-fidelity edit-
ing without noticeable artifacts and enables more accurate
and diverse transformations. All other methods have clear
artifacts: DragonDiffusion and RegionDrag leave residual
artifacts in the Teacup example and fail in the rotate and
resize examples; SelfGuidance, MotionGuidance and Dif-
fusionHandles change the image contents significantly, ex-
plaining their lower SUBC and BC in Tab. 1. GeoDiffuser
also faces residual artifacts and struggles in move example.
DesignEdit, though excels at precision, falls short in the re-
alism of edited results, corresponding to its relatively lower
image quality in Tab. 1. Our method is the most successful
approach in the 3D rotation example, while all other meth-
ods fail in this case.

We further compare our method with representative in-
painting models in two key aspects: (a) Source Region In-
painting and (b) Target Region Refinement, as shown in
Fig. 6. For (a), our method achieves less hallucination
compared to BrushNet and SD-inpainting, while produc-
ing more realistic textures and finer details than LaMa and
MAT. For (b), our method not only generates complex struc-
tures while maintaining contextual consistency with the ob-
ject (e.g., the bird and the horse) and producing more details
(e.g., dog’s shadow).

User Study. For a comprehensive quantitative evaluation,
we conducted a user study to assess the perceptual qual-
ity and editing effectiveness of our method. We recruited
35 participants with diverse backgrounds in computer vi-
sion and collected 2,622 valid votes. Each participant was
presented with 30 randomly selected editing samples from
different tasks (2D-edits, 3D-edits, region refinement and
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region inpainting). Each sample contained the original im-
age along with a series of corresponding edited results gen-
erated by our method and other comparative models. Partic-
ipants were asked to pick the best edited images based on:
1) Image Quality: How visually realistic and artifact-free
the edited image appears; 2) Consistency: How well the
edited image preserves the original subject and background;
3) Editing Effectiveness: How accurately the edited im-
age reflects the intended geometric transformations (e.g.,
move, rotate, or resize). In the Appendix, we show our
user study has close alignment with our quantitative met-
rics in Sec. 4.1.

As shown in Fig. 5 (a), our method performs well in all
editing tasks, especially 2D-edits (70.2% user preference)
and 3D-edits (88.8% user preference). Notably, while our
method leads in most tasks, it is second to LaMa [57] in
region inpainting, which is better at removing objects but
tends to leave a blurry mess. As for the evaluation criteria
in 2D-edits and 3D-edits (Fig. 5 (b)), our method is signifi-
cantly better: the voting rates are all more than three times
ahead. Despite DragonDiffusion [39]’s comparable FID
scores to ours in Tab. 1, it lags greatly in perceptual quality
assessments (20.8% vs. 71.1%). These findings further val-
idate the robustness and practicality of our method in real-
world geometric editing scenarios. More details about the
user study and the statistics are included in the Appendix.

4.3. Ablation Studies

We conduct ablation studies on TCA, LP, and CG to dis-
sect the impact of each component on the generated results.
While ablating one component, we make sure other tech-
niques are kept the same.

Attention Mechanisms. Beside MMSA [4], we compare
TCA with two additional attention mechanisms: (a) Shared

Ours | DragonDiffusion ~ RegionDrag | Self-Guidance ' BrushNet | SD-inpaintv1.5 [fLaMa  MAT

2D-Edits  70.2% 22.7%

3D-Edits  88.8%

Region Refinement  55.1% 10.7% 19.0% 12.0%

Region Inpainting  24.7% 14.7% 14.0% 34.6% 12.0%

(a) Editing tasks

Image Quality 71.1% 208%

Consistency  70.8% 22.3%

Editing Effectiveness  81.3% 13.0%

(b) Criteria
Figure 5. Visualization results of the user study. Participants pre-
ferred our edited images both in the different editing tasks and
from three different criteria.

Self-Attention (SSA) [15], which shares a set of Key-Value
(KV) pairs encoded from different text prompts to encour-
age the model to align features implicitly across the entire
latent space (b) Subject-Driven Self-Attention (SDSA) [60],
which selectively applies this sharing selectively only on
the key and value vectors of foreground regions for object
alignment. In our context, the shared KV pairs are con-
structed by concatenating the keys from the source and tar-
get [K, K|, and similarly for the values to form [V, V}].
As shown in Fig. 7, for source region inpainting, SSA,
SDSA, and standard Self-Attention (removing TCA) pro-
duce similar results where undesired changes appear in the
source region, due to the non-constrained global feature
sharing. MMSA explicitly restricts attention between the
target region and the background region, achieving object
removal but introducing texture artifacts (e.g., stains on the
wall in the second row). In contrast, due to the repair of
the self-attention in larger denoisng timesteps, TCA gener-
ates better background. For target region refinement exam-
ples, standard Self-Attention alters details in regions where
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SD-inpaint-v1.5 BrushNet

(a) Source Region Inpainting

(a) TCA Ablation

Coarse result Mask SD-inpaint-v1.5 BrushNet

(b) Target Region Refinement

Figure 6. Qualitative comparison with state-of-the-art inpainting methods. Notably, our method is training-free, while all the compared

methods are training-based.
Source Region Inpainting
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Figure 7. Ablatlon studies on the impact of removing individual components from FreeFine and different 1nternal variations of each

component while keeping other techniques applied at the same scale.

changes are not desired. Both SSA and SDSA do not in-
corporate masks, therefore showing limited completion ca-
pabilities. MMSA struggles when M, contains semantics
not present in M (e.g., the penguin’s feet), whereas TCA
demonstrates smooth and robust completion performance,
ensuring contextual consistency.

Perturbation and Guidance. We study the impact of LP
and CG for both source region inpainting and target region
refinement. Removing LP is equivalent to using DDIM de-
terministic denoising, whereas the other option is to use
DDPM stochastic denoising, which we refer to as Global
Perturbation (GP). Removing CG is equivalent to setting
C = @ in Eq. (2) and Eq. (3). Setting M; = 1 in Eq. (2)
and My = 1 in Eq. (3) leads to Global Guidance (GG). As
illustrated in Fig. 7, for both source region inpainting and
target region refinement, removing LP reduces randomness
in results while using GP leads to undesired global changes.
Similarly, removing CG eliminates explicit context guid-
ance, hindering the generation of desired content. Replac-
ing CG with global attention also alters textures across the

entire image, reducing background and subject consistency.

5. Conclusion and Limitations

We present a principled framework for geometric image
editing that systematically addresses the subtasks of ob-
ject transformation, source region inpainting, and target re-
gion refinement. By decoupling these tasks, our approach
more effectively balances large structural changes against
fine-grained adjustments. The proposed FreeFine, equipped
with Temporally Contextual Attention, Local Perturbation,
and Content-specified Generation, demonstrates consistent
gains in both fidelity and edit precision on our proposed
GeoBench benchmark. A detailed discussion of limitations
is provided in the Appendix. We believe that continued
efforts in either addressing these limitations or developing
more powerful and intuitive geometric image editing meth-
ods could benefit both the research community and indus-
trial applications.
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