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Abstract

Panoptic segmentation in 3D is a fundamental problem
in scene understanding. Existing approaches typically rely
on costly test-time optimizations (often based on NeRF) to
consolidate 2D predictions of off-the-shelf panoptic seg-
mentation methods into 3D. Instead, in this work, we pro-
pose a unified and integrated approach PanSt3R, which
eliminates the need for test-time optimization by jointly
predicting 3D geometry and multi-view-consistent panop-
tic segmentation in a single forward pass. Our approach
harnesses the 3D representations of MUSt3R, a recent scal-
able multi-view version of DUSt3R, and 2D representa-
tions of DINOv2, then performs joint multi-view panoptic
prediction via a mask transformer architecture. We ad-
ditionally revisit the standard post-processing mask merg-
ing procedure and introduce a more principled approach
for multi-view segmentation. We also introduce a simple
method for generating novel-view predictions based on the
predictions of PanSt3R and vanilla 3DGS. Overall, the pro-
posed PanSt3R is conceptually simple yet fast and scal-
able, and achieves state-of-the-art performance on several
benchmarks, while being orders of magnitude faster. More
information and examples available on our project page.

1. Introduction
Robust understanding of the semantics of 3D scenes is key
to many applications like virtual reality, robot navigation,
or autonomous driving. Such use cases require an accurate
decomposition of the 3D environment into separate object
instances of known classes. In 2D vision, this joint task
of semantic and instance segmentation, denoted as panop-
tic image segmentation [24], consists of instance segmen-
tation of things classes (i.e. countable objects such as cars)
and semantic segmentation of stuff classes (i.e. uncountable
classes such as road or sky). Following [24], a large num-
ber of solutions have been proposed for 2D panoptic seg-
mentation, based on CNNs [8, 30, 33, 37, 64], Transform-
ers [14, 15, 29, 43, 67, 79], or more recently diffusion mod-

Figure 1. PanSt3R jointly predicts 3D geometry and panoptic seg-
mentation of a scene in a single forward pass.

els [6, 56, 60, 65].
Several recent works [21, 27, 45, 51, 66] have extended

panoptic segmentation to 3D scenes represented as point
clouds, meshes or voxels. These methods typically take a
3D representation (e.g. a point cloud) as input and label it
using neural networks, such as PointNet [41, 42], designed
for direct operation on such data. However, acquiring dense
and accurate point clouds requires dedicated sensors and
recent models [26, 49, 55, 58, 61] struggle with noisy or
sparse point clouds derived from unposed images.

Instead, in this work, we propose to jointly perform 3D
reconstruction and panoptic segmentation given an uncon-
strained set of unposed images or video frames. In this
sense our method is closer to NeRF-based [2, 16, 25, 50,
57, 75] or 3DGS-based methods [62] that start from a col-
lection of images. These approaches typically rely on posed
images and off-the-shelf 2D panoptic segmentation mod-
els [15], followed by lifting and fusing the 2D panoptic pre-
dictions to 3D via NeRFs [36] or 3DGS [22].

While this allows for aggregation of potentially incon-
sistent and noisy 2D panoptic labels from multiple images
into consistent 3D labels, these methods have several limi-
tations: (1) they depend on accurate camera poses, (2) they
require costly test-time optimization to align 2D segmen-
tations with 3D geometry, and (3) they inherently separate
the 2D segmentation and 3D reconstruction pipelines, po-
tentially sacrificing efficiency and accuracy.

We argue that 3D reconstruction and 3D panoptic seg-
mentation are two intrinsically connected tasks, both in-
volving reasoning in terms of 3D geometry of the scene
and its instance decomposition. Therefore, we propose to
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model the 3D geometry and its panoptic segmentation in a
unified, end-to-end framework that performs directly multi-
view consistent panoptic segmentation. Existing works for
such panoptic 3D reconstruction usually focus on single-
image inputs [11, 74] or require posed video inputs [63].

Instead, building on top of the recent 3D reconstruc-
tion network MUSt3R [61], we propose PanSt3R (Panoptic
MUSt3R) which jointly predicts the 3D scene geometry and
its panoptics from an unconstrained collection of unposed
images in a single forward pass. PanSt3R leverages two
pre-trained feature extractors to encode frames in both se-
mantic (2D) and 3D-aware information, then directly re-
gresses 3D geometry via a 3D head, and performs multi-
view instance mask prediction via a Mask2Former-like de-
coder. These mask predictions are finally filtered using a
lightweight novel quadratic binary optimization framework
(QUBO). This turns out to be a crucial step in our method,
as we show that the standard filtering technique is poorly
suited for multi-view predictions. Finally, we demonstrate
that it is straightforward to generate novel view panoptic
predictions based on the outputs of our method via simple
test-time uplifting of labels to 3DGS [35].

In summary, our main contributions are as follows. We
introduce a method for joint 3D reconstruction and panop-
tic segmentation, which tackles the problem with a single
forward pass. The approach is simple, fast, and operates
on hundreds of images without requiring any camera pa-
rameters or test-time optimization. Second, we propose a
novel and mathematically grounded mask prediction merg-
ing strategy to further improve the quality of multi-view
panoptic predictions. Third, we introduce two distinct and
simple approaches for novel-view synthesis with panoptic
segmentation, leveraging our framework and 3D Gaussian
Splatting. Finally, we conduct extensive evaluation and
ablative studies on several datasets, obtaining state-of-the-
art results, both in terms of panoptic quality and inference
speed.

2. Related work

2D Panoptic Segmentation is a unification of semantic and
instance segmentation tasks. Its goal is to decompose an
image into different regions, each region corresponding to
an individual object (denoted as thing) or uncountable con-
cepts like ‘sky’ or ‘ground’ (denoted as stuff ). The first
panoptic methods extended Mask R-CNN [19] to design a
deformable-convolution-based semantic segmentation head
and solve the two subtasks simultaneously [13, 23, 24, 37,
64]. Another set of models [8, 40, 59, 68] build upon
the DeepLab architecture [31]. Instead, [30] combines a
proposal attention module with a mask attention module,
[33] proposes an end-to-end occlusion-aware pipeline, and
[52] introduces a fully differentiable end-to-end network for

class-agnostic instance segmentation jointly trained with a
semantic segmentation branch. Gao et al. [17] jointly trains
semantic class labeling with a pixel-pair affinity pyramid,
and Yuan et al. [71] generalizes object-contextual represen-
tations to panoptic segmentation.

With the success of Vision Transformers,
Mask2Former [15], inspired by DETR [4], adopted a
more unified approach to directly produce panoptic output,
posing the task as a mask prediction and classification
problem. Several recent extensions also aim for open-
vocabulary segmentation capabilities (e.g. using a CLIP
text encoder) [7, 14, 18, 20, 29, 43, 67, 70]. Recently,
several diffusion-based methods were also proposed for
this task [6, 56, 60, 65].

3D Panoptic Segmentation is a direct extension of 2D
panoptic segmentation for 3D scenes. We can distinguish
between several categories of approaches. First, methods
that directly process an input 3D point cloud, typically ob-
tained by dedicated sensors (ToF or LIDAR), thereby as-
suming prior knowledge of the 3D scene geometry [21, 27,
45, 51, 66].

The second category of methods, closer to our approach,
requires only a set of input images and respective camera
parameters (if not provided directly, the latter is usually
obtained via standard SfM techniques [48]). Existing ap-
proaches in this category are either based on NeRF [36],
or Gaussian Splatting [22], with implicit or explicit labeled
3D representations as output, respectively. These methods
typically perform 3D panoptic segmentation by lifting 2D
segmentation masks obtained with pre-trained 2D panoptic
segmentation models (e.g. Mask2Former [15]) to 3D. Zhi
et al. [75] showed that noisy 2D semantic segmentations
can be fused into a consistent volumetric model by a NeRF,
and their model was extended to instance and panoptic seg-
mentation in [16, 25, 57].

Panoptic NeRF [16] starts from a set of sparse images,
coarse 3D bounding primitives and noisy 2D predictions to
generate panoptic labels via volumetric rendering. Panoptic
Neural Fields (PNF) [25] learns a panoptic radiance field
with a separate instance MLP and a semantic MLP by ex-
plicitly decomposing the scene into a set of objects and
amorphous background. These MLPs collectively define
the panoptic-radiance field describing 3D point color, se-
mantic and instance labels. DM-NeRF [57] introduced an
object field component to learn unique codes for all indi-
vidual objects in 3D space from 2D supervision and panop-
tic segmentation with an extra semantic branch parallel to
object code branch. Panoptic Lifting (PanLift) [50] relies
on TensoRF [5] on top of which they introduce lightweight
output heads for learning semantic and instance fields. The
core idea of Contrastive Lift [2] is a slow-fast clustering ob-
jective function well suited for scenes with a large number
of objects. They lift 2D segments to 3D fusing them by
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means of a neural field representation, which encourages
multi-view consistency across frames.

On the Gaussian Spatting side, PLGS [62] learns to em-
bed an additional semantic and instance probability vectors
for each Gaussian, which can be rendered on novel views
in parallel to RGB. To handle noisy panoptic predictions,
they rely on Scaffold-GS architecture [34] where additional
depth maps are provided as input and 3D Gaussians are ini-
tialized with semantic anchor points used for smooth regu-
larization during training. Instead, PCF-Lift [78] addressed
the degradation of performance in complex scenes caused
by noisy and error-prone 2D segmentations by introducing
Probabilistic Contrastive Fusion (PCF), which learns to em-
bed probabilistic features to robustly handle inaccurate seg-
mentations and inconsistent instance IDs.

Alternatively, a category of methods explores joint pre-
diction of 3D geometry and panoptics of the scene. How-
ever, these approaches are either limited to single-image in-
puts [10, 11, 74], or rely on posed and ordered collection of
input frames [63, 77].

In contrast to all these methods, our approach works on
collections of unordered and unposed input images without
camera parameters or depth maps, and directly outputs a
3D reconstruction annotated with panoptic labels in a single
forward pass (see examples in Fig. 1).

3. Method

Problem statement. Given a set of N images I1 . . . IN ∈
RW×H×3, we aim to jointly perform 3D reconstruction
and panoptic segmentation, producing a global 3D point,
a semantic class, and an instance ID for every pixel in
each input image. Formally, these outputs materialize as
3D point-maps X ∈ RN×W×H×3, semantic segmentation
masks MCLS ∈ {1 . . . C}N×W×H , and instance segmenta-
tion masks MINST ∈ {1 . . .m}N×W×H , where W and H
denote the image width and height, C the number of classes
and m the maximum number of instances1 in the scene.

Summary. Our method builds upon recent progress
made in the 3D reconstruction community. Specifically,
our approach is based on MUSt3R [3], a Transformer-
based powerful and scalable 3D reconstruction method,
which we augment with panoptic capabilities inspired by
Mask2Former [9]. In Sec. 3.1 we detail the overall archi-
tecture of our network. Since the network outputs raw mask
predictions that are potentially overlapping, a merging step
is necessary to select a globally optimal set of instances
(Sec. 3.2). In order to generate panoptic segmentations for
novel viewpoints, we optionally project the labeled point
cloud into a set of 3D Gaussians (Sec. 3.3).

1In our experiments m = 200. Instance IDs are not shared between
classes and uniquely identify each object or stuff region in the scene.

3.1. PanSt3R

The overall PanSt3R architecture is illustrated in Fig. 2 and
detailed below. It consists of a feature extraction step that
leverages foundational models for 2D and 3D feature ex-
traction, followed by instance mask proposal generation.

Feature extraction. Our network starts by extracting dense
semantic and 3D-aware representations from the set of input
images by leveraging two pretrained backbones. Namely,
we extract DINOv2 features for each input image, which
have been shown to capture dense and semantically mean-
ingful representations of the scene [38]. Likewise, we ex-
tract MUSt3R [3] features for each input image. MUSt3R is
a recent extension of DUSt3R [26, 61], a foundation model
for 3D vision, excelling at reconstructing the geometry of a
scene given only sparse views. In practice, MUSt3R pro-
cesses images sequentially while maintaining an internal
memory of the previously seen images, thereby allowing
the encoding of multi-view-consistent representations. Like
DINOv2, MUSt3R is a Transformer-based network, but it
contains an additional decoder to leverage its internal mem-
ory. This way, it can encode both local and global scene
geometry using its encoder and decoder, respectively.

Formally, we denote by ED
n = ENCD(In) the DINOv2

feature maps of image In and by EM
n = ENCM(In) and

DM
n = DEC(EM

n ) the encoder and decoder feature maps
from MUSt3R. Note that by feature maps, we refer to
an array of tokens, where each token corresponds to a
small 16 × 16 patch in the image, i.e. we have in reality
ED

n ,E
M
n ,D

M
n multi-channel feature maps of size W

16 × H
16

and the number of channels corresponding to the respective
feature dimensions dED = dEM = 1024 and dDM = 768.
As shown in Fig. 2, the three token maps are concatenated
along the feature dimension and passed through an MLP to
form compact joint 3D-semantic token representations {fn}
with fn ∈ Rdt , where df = 768. The concatenated fea-
ture maps are also used to construct high-resolution mask
features Fn ∈ R

W
2 ×H

2 ×dF used for mask prediction, with
dF = 256. For that, we perform a series of MLP and 2×
upsampling operations to gradually upscale them until we
reach the output resolution.

3D geometry. We leverage MUSt3R’s innate capabilities
to reconstruct 3D point clouds. For every image, MUSt3R
predicts a global point cloud in the first image’s coordinate
frame, a local point cloud, and a confidence map. Specif-
ically, given the decoder features DM

n , a prediction head
HEAD3D regresses 3D coordinates and confidences for each
pixel, i.e.Xg

n,X
l
n,Cn = HEAD3D(DM

n ) ∈ RW×H×3.

Mask prediction and classification. We follow
Mask2Former [15] in formulating panoptic segmentation as
a binary mask prediction and classification problem. We ex-
tend this formulation to the multi-view setting, generating
globally consistent masks for each instance, i.e., the same
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Figure 2. PanSt3R architecture. 1) input unposed RGB frames are passed through pretrained DINOv2 and MUSt3R to extract 2D seman-
tic and globally aligned 3D geometric features respectively. Frame tokens and mask features are constructed from per-frame concatenated
features. 2) A mask transformer is used to decode instance masks and their class probabilities, by cross-attending learnable instance queries
with extracted frame tokens.

instance ID is assigned to a 3D object instance across all
views it appears in.

This is achieved by a series of learnable queries de-
noted by {q0

j}, shared by all views and used to represent
different instances of things and stuff classes in the in-
put scene. These learnable query features can hence be
seen as region proposals. They are input to a mask trans-
former DECP that attends to multi-view frame tokens {fn}
using cross-attention. This results in a set of refined queries
{qj} = DECP({q0

j}, {fn}), which serve as the base for in-
stance classification and mask prediction.

To enable training across multiple datasets with diverse
labeling conventions, we adopt an open-vocabulary ap-
proach for instance classification. Specifically, the class
probabilities for each query are computed as the cosine sim-
ilarity between the query embeddings and SigLIP [39, 72]
generated text embeddings of class names2. Second, the
mask prediction of each query is obtained via a dot product
with the high-resolution mask features Fn. We denote the
resulting instance mask for the image In and query j as

Mj,n = sigmoid(Fn · qM
j ) ∈ RW

2 ×H
2 , (1)

where qM
j = LINM(qj) is the mask embedding of qj .

Training loss. We follow the training protocol of
Mask2Former [15], which comprises three losses: a focal
loss Lcls for instance classification [28], and a combina-
tion of dice loss Ldice[54] and binary cross-entropy Lbce

for mask prediction. The final loss is a weighted combina-
tion

L = λcLcls + λdLdice + λbLbce. (2)

Discussion. While our panoptic prediction network is
largely inspired by Mask2Former [15], we would like to

2pi,j = sim(qCLS
j , ti), where qCLS

j = LINCLS(qj) is the class embed-
ding of the query qj and ti is the text embedding of the class i.

point out a few key innovations. Most notably, our network
is inherently multi-view, processing multiple images simul-
taneously and directly predicting consistent panoptic seg-
mentation across all views. This is enabled by leveraging
3D-aware features from MUSt3R and employing a shared
set of queries, where each query explicitly targets the same
object instance across all view. Unlike [15], we do not con-
struct a multi-resolution feature pyramid, but instead we re-
tain the original frame tokens to limit the memory footprint.
We adapt an open-vocabulary classification head [73], fa-
cilitating training on heterogeneous datasets and improving
test-time performance.

3.2. Merging mask predictions
Given the set of multi-view mask predictions from Eq. (1),
denoted Mi ∈ RN×W

2 ×H
2 for each query i, our goal is to

find a subset of masks that optimally cover the N × W
2 × H

2
output pixel space, minimizing the overlap between se-
lected masks while reducing the area of empty regions
(i.e. , holes). Mathematically, this can be formalized as a
quadratic unconstrained binary optimization (QUBO) prob-
lem:

u⋆ = maxu∈{0,1}m

∑
i uiQi −

∑
i<j uiujQi,j , (3)

where u is a boolean assignment of proposals, the weight
Qi =

∑
k Mi,k represents the area |Mi| covered by mask

proposal i, and Qi,j represents the area in excess when se-
lecting both mask proposals i and j due to their overlap:

Qi,j = |Mi ∩Mj | =
∑

k min(Mi,k,Mj,k),

since |Mi ∪Mj | = |Mi|+ |Mj | − |Mi ∩Mj | .
(4)

To limit the selection of overlapping regions, we further
multiply Qi,j by a penalty λp > 1, (typically λp = 2).
Since QUBO is an NP-hard problem, we rely on simulated
annealing [47] to find a near-optimal solution efficiently.
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Given u⋆, we construct instance masks MINST by merg-
ing the final assigned masks via per-pixel argmax. MCLS

is obtained by assigning the highest probability class cj =
argmaxi pi,j within the mask area of an instance.

Discussion. The standard mask merging procedure as in-
troduced in MaskFormer [9] is substantially different from
ours. In a nutshell, it consists of first filtering out low-
confidence mask predictions to get a pool of candidate
masks. This is followed by a pixel-wise voting process to
select the most confident mask at each location. Finally, ad-
ditional filtering is applied to remove predictions that lack
sufficient vote support. While this heuristic procedure is
simple and typically performs well for single images, it of-
ten fails to integrate the multi-view constraints essential for
3D panoptic segmentation. Indeed, as shown in Sec. 4.5,
our QUBO procedure results in a large boost in perfor-
mance, thanks to its global optimization of instance masks
across all views.

3.3. Panoptic labels on novel views with 3DGS
In order to compare our model with other methods [2, 16,
25, 50, 57, 62], which evaluate the panoptic performance
on unseen views, we additionally rely on Gaussian Splat-
ting (3DGS) [22]. We explore two possible strategies: (i)
we simply generate novel RGB views with vanilla 3DGS
and predict the panoptic segmentation by a simple forward
pass of PanSt3R on the rendered images; or (ii) we uplift the
predicted panoptic segmentations to 3D and render the seg-
mentations on novel views. Since the first strategy is triv-
ial and self-explanatory, we now describe the second strat-
egy in more detail. In the following, we denote 2D images
I1, . . . , IN and instance mask predictions MINST, as output
by the QUBO mask merging described above.

Scene optimization. The 3DGS optimizes the means and
covariances of the Gaussian densities, their opacities, and
the color function parametrized by spherical harmonics
[22]. Denoting by θ the color-related parameters and by
ψ the other parameters, the 3DGS optimizes the following
reconstruction loss:

Lrgb =
1

N

N∑
n=1

L(In, În(θ, ψ)), (5)

where În(θ) is the image rendered in the direction corre-
sponding to view n, and L is a combination of L1 and SSIM
loss functions [22].

Panoptic regularization. Optimizing Gaussians using only
RGB supervision may cause them to span multiple object
instances or semantic boundaries, which can negatively im-
pact subsequent label uplifting. To address this, we propose
an additional regularization term to align Gaussians to the
predicted panoptic masks.

Concretely, we assign a unique RGB color to each in-
stance ID in MINST

n , producing an instance color map Pn ∈
R3×W×H for each image In, which we use as a lightweight
supervision signal. We introduce an additional set of Gaus-
sian color parameters θ̂, and an auxiliary loss and an aux-
iliary loss that supervises the rendering of instance color
maps during Gaussian optimization:

Lreg(θ, ϕ) =
1

N

N∑
n=1

L1(Pn, P̂n(θ̂, ψ)), (6)

where P̂n(θ, ϕ) is the rendered panoptic image. We opti-
mize the Gaussians with the following weighted combina-
tion of the two losses:

min
θ,ϕ

Lrgb(θ, ψ) + λLreg(θ̂, ψ) (7)

with weight λ set to 1 in all our experiments.
Uplifting with LUDVIG. To uplift the instance labels into
the optimized Gaussian Splatting scene, we opt for LUD-
VIG [35], a recent 3DGS-based feature uplifting method
that simply averages 2D pixel features across all views. In-
stead of using LUDVIG to uplift features, we utilize it to up-
lift one-hot encoded instance labels M0

n ∈ {0, 1}m×W×H

obtained from MINST
n . We define Si as the set of view-pixel

pairs (n, u) impacted by Gaussian Gi during forward ren-
dering. This impact is quantified by the weight wi(n, u)
resulting from α-blending. LUDVIG defines the 3D feature
gi for the Gaussian Gi as the following weighted sum:

gi =
∑

(n,u)∈Si

wi(n, u)

Zw
M0

n(u), Zw =
∑

(n,p)∈Si

wi(n, p), (8)

After uplifting to 3D and and reprojecting to 2D, the final
2D rendered instance label is obtained as the argmax along
the instance label dimension.

4. Experimental evaluation
4.1. Implementation details

Training datasets. To train our method, we employ a mix
of 2D (single-view) and 3D (set of multi-view posed im-
ages) datasets for which ground truth panoptic segmenta-
tions are available (see Tab. 1). ScanNet++ [69] is com-
prised of 1006 high-resolution 3D indoor scenes with dense
semantic (100 class labels) and instance annotations. We
use the V2 version of the dataset and follow the official split,
i.e. 850 scenes for training and 50 scenes for validation.
Aria Synthetic Environments (ASE) [1] is a procedurally-
generated synthetic dataset containing 100K unique multi-
room interior scenes populated with around 8K 3D objects
from which we randomly sampled 750 scenes. With Infini-
Gen [44], another tool for procedural generation of 3D data,
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Table 1. Statistics for datasets used during training (top) and eval-
uation (bottom). ”MV” denotes available multi-view data.

Dataset real MV # scenes # classes

Tr
ai

ni
ng

ScanNet++ [69] ✓ ✓ 855 100
ASE [1] x ✓ 750 44
Infinigen [44] x ✓ 936 76
COCO [32] ✓ x 118k 80
ADE20k [76] ✓ x 20k 150

E
va

l

ScanNet++ [69] ✓ ✓ 50 100
ScanNet [12] ✓ ✓ 12 20
Hypersim [46] x ✓ 6 20
Replica [53] x ✓ 7 20

we generate 936 indoor scenes of 25 images each. Finally,
we also leverage two widely used 2D panoptic segmenta-
tion datasets, COCO [32] and ADE20K [76], which consist
of high-resolution images with precise manual annotations.
Adding these datasets is useful to improve generalization
and robustness, since they offer a larger visual diversity. To
simulate multi-view data on 2D images, we sample several
geometric and photometric variants of the input image in-
cluding crops, rotations, and color jittering.
Training details. The DINOv2 and MUSt3R backbones
(resp. ViT-L, and ViT-L+ViT-B architectures) are initialized
with their pretrained weights and frozen during PanSt3R
training. In preliminary experiments, we observed that fine-
tuning MUSt3R does not have a big impact on the final
performance, but incurs significant additional training cost.
Since each dataset comes with a different set of classes, we
restrict the focal loss supervision Lcls to within the set of
ground-truth classes of each dataset during training. Addi-
tional training details are provided in the Supplementary.
Test-time keyframes. Since the number of test views can
be large during inference (e.g. hundreds), we adopt the same
technique as in [3] to reduce the computational and mem-
ory footprint. Namely, we efficiently cluster the set of input
images using retrieval techniques and select a small set of
50 keyframes using the farthest-point-sampling (FPS) algo-
rithm to maximize coverage. Frame tokens {fn} are then
only selected from these keyframes, which is enough to
generate relevant queries {qj}, as shown in Sec. 4.5. We
then process the remaining views frame-by-frame, only ex-
tracting the per-frame features Fn and directly performing
mask prediction via Eq. (1), with the decoded queries {qj}
obtained from the keyframes.

4.2. Evaluation metrics

Panoptic Quality (PQ). The Panoptic Quality (PQ)
score [24] is defined as

PQ =
2
∑

(p,g)∈TP IoU(p, g)

2|TP |+ |FP |+ |FN |
, (9)

where p is a predicted instance and g is a GT class instance.
Intuitively, this score averages IoU of matched segments

Table 2. We report results for direct predictions of PanSt3R on
rendered test images (with and without QUBO), as well as results
obtained via the simple 3DGS uplifting approach with LUDVIG.
†Timing for building the 3DGS. Note that given access to target
view images, PanSt3R can make predictions without the need for
3DGS (and camera parameters).

Method Req. Hyper- Rep- Scan Time
Poses sim lica Net (min)

DM-NeRF [57] ✓ 51.6 44.1 41.7 ∼ 900
PNF [25] ✓ 44.8 41.1 48.3 -

PanLift [50] ✓ 60.1 57.9 58.9 ∼ 450
Contrastive Lift [2] ✓ 62.3 59.1 62.3 ∼ 420

PLGS [62] ✓ 62.4 57.8 58.7 ∼ 120
PCF-Lift [78] ✓ - - 63.5 -

PanSt3R w/o QUBO † 51.6 57.3 59.5 ∼ 4 (+35†)
PanSt3R † 56.5 62.0 65.7 ∼ 4.5 (+35†)

PanSt3R + LUDVIG ✓ 66.3 60.6 67.5 ∼ 40

Figure 3. Qualitative examples of novel-view panoptic segmenta-
tion on Hypersim and Replica scenes. Predictions are overlaid on
top of original images, and colors and their nuances denote differ-
ent classes and object instances respectively.

while penalizing segments with wrong matches (False Pos-
itives) or without matches (False Negatives). It can be
seen as a combination of two terms, segmentation qual-
ity SQ = 1/|TP |

∑
(p,g)∈TP IoU(p, g), and a recognition

quality RQ = TP/(2 · |TP |+ |FP |+ |FN |).
Extension to 3D scenes. PQ can be trivially computed at
the scene level by pretending that the scene is a concatena-
tion of all images, effectively tying predictions between all
images. This metric, coined scene-PQ (PQsc), was first pro-
posed in [50] to evaluate the results of 3D panoptic segmen-
tation. As we always use the scene-PQ metric, we omit the
upper-script ”sc” for brevity in the following. To compute
the overall results for a dataset, we average the per-scene
PQs across all scenes.

4.3. Evaluation on the PanLift benchmark
We first evaluate our method on the Panoptic Lifting (Pan-
Lift) benchmark [50]. It comprises 12 scenes from Scan-
Net [12], 6 scenes from Hypersim [46] and 7 scenes from
Replica [53] (see details in [50]). We use the same splits
between seen and unseen (novel) views as in [2, 50].

For PanSt3R, we experiment with the two strategies pre-
sented in Sec. 3.3: (i) we simply render a novel image of the
target viewpoint using an off-the-shelf 3DGS model, and
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Original Image Panoptic Lifting Contrastive Lift PanSt3R PanSt3R+LUDVIG

Figure 4. Qualitative comparison of novel-view panoptic segmen-
tation on ScanNet [12] scenes. Colors and their nuances denote
different classes and object instances respectively.

perform a forward pass on rendered images with PanSt3R;
or (ii) we utilize the LUDVIG uplifting strategy to di-
rectly construct a panoptic 3DGS-based scene representa-
tion. Given access to target-view images, PanSt3R can di-
rectly predict panoptic segmentation in a forward pass, in
principle not requiring poses or 3DGS. However, to be more
inline with the competing methods, which predict panoptic
segmentation based on test poses, not images, we compute
the PQ results for PanSt3R (and PanSt3R w/o QUBO) on
test images rendered with vanilla 3DGS built with posed
training images3.

Comparison with existing methods. 3D panoptic segmen-
tation methods either directly process an input 3D point
cloud (see discussion in Supplementary), or they revolve
around the idea of performing 3D panoptic segmentation
by lifting 2D segmentation masks obtained with off-the
shelf pre-trained 2D panoptic segmentation models, often
Mask2Former [62] pretrained on COCO [32]. Then they
map the COCO panoptic classes to the following 21 classes:
wall, floor, cabinet, bed, chair, sofa, table, door, window,
counter, shelves, curtain, ceiling, refrigerator, television,
person, toilet, sink, lamp, bag and other. In general, these
methods lift and align the 2D predictions to 3D with a test-
time optimization of a NeRF or 3DGS.

We compare our PanSt3R variants on the PanoLift
datasets against state-of-the art methods in Tab. 2, where
DM-NeRF [57], PNF [25], PanLift [50] and Contrastive
Lift [2] are NeRF-based approaches, and PLGS [62] and
PCF-Lift [78] rely on 3DGS to uplift 2D panoptic segmen-
tation masks. PanSt3R inference is performed using the full
training class set, then classes are re-mapped to the target 21
classes, similar to existing work. In Fig. 3 we provide vi-
sual examples for PanSt3R+LUDVIG on different datasets
and scenes, and in Fig. 4 we provide qualitative compar-
isons between PanSt3R, PanSt3R+LUDVIG, PanLift and
Contrastive Lift.

3Note that prediction quality of PanSt3R is limited by the fidelity of
3DGS rendered views. Direct prediction on test images yields notably
better results (see Supplementary).

Table 3. Results on the ScanNet++ val set. We report result of our
default model PanSt3R (full) and one trained only on ScanNet++.
PanSt3R is compared with PanLift [50] and Contrastive Lift [2],
utilizing Mask2Former [15] finetuned on ScanNet++.

Method PQ PQth PQst Time (min)

PanLift [50] 29.5 15.6 59.4 ∼ 500
Contrastive Lift [2] 28.4 14.8 56.3 ∼ 460

PanSt3R (ScanNet++) 46.7 43.2 55.8 ∼ 2.3
+ LUDVIG 54.8 52.4 62.4 ∼ 35
PanSt3R (full) 49.1 45.8 58.7 ∼ 2.3
+ LUDVIG 54.7 51.7 62.4 ∼ 35

Discussion. PanSt3R + LUDVIG set a new state-of-the-
art, except on Replica, where direct forward pass predic-
tion of PanSt3R on rendered views performs slightly bet-
ter. On Hypersim and ScanNet, uplifting the panoptic seg-
mentations performs much better than direct forward with
PanSt3R due to the noise reduction effect of multi-view fea-
ture aggregation (Fig. 4). Notably, PanSt3R accomplishes
this while being far more computationally efficient than pre-
vious methods, even when uplifting to 3DGS via LUDVIG.
Additionally, using a simple direct prediction with PanSt3R
on re-rendered images is enough to outperform all previous
methods on two out of three datasets (except Hypersim),
with potentially no need for camera parameters in contrast
to existing methods.

4.4. Evaluation on ScanNet++

We also evaluate PanSt3R on the validation set of the
ScanNet++ [69]. For each of the 50 validation scenes,
we randomly select 100 frames (only iPhone images) and
use PanSt3R to predict multi-view consistent panoptic seg-
mentations for these images in a single forward pass. We
then randomly select 50 images from the remaining pool
of images to serve as test views in order to evaluate the
panoptic segmentation on novel unseen viewpoints with the
same process as used in the PanLift benchmark. A ma-
jor difference compared to PanLift is a much larger num-
ber of classes (100 instead of 20), including small objects
(e.g. crate, paper, socket, cup, smoke detector, soap dis-
penser), hence requiring much more fine-grained segmen-
tation. To better assess the performance of the models, we
also report PQth and PQst, denoting panoptic quality com-
puted separately on thing and on stuff classes.

Comparison with existing methods. Due to a lack of pub-
lished results for panoptic segmentation on ScanNet++,
we compare our method to PanLift [50] and Contrastive
Lift [2] using the official code and uplift the predictions
of Mask2Former, finetuned on the ScanNet++ training set.
To ensure a fair comparison, we also evaluate a variant of
PanSt3R trained only on the ScanNet++ training set, de-
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Figure 5. Qualitative results of novel-view panoptic segmentation
on various ScanNet++ [12] scenes. Colors and their nuances de-
note different classes and their instances. Note that due to the large
number of classes (100), some may share similar colors.

noted as PanSt3R (ScanNet++) alongside our full model4.
Quantitative and qualitative results are presented in Tab. 3
and Fig. 5 respectively.

Discussion We observe that all PanSt3R variants (full or
ScanNet++ only, with or without LUDVIG) largely outper-
form both PanLift and Contrastive Lift by more than 10%
in PQ, while being an order of magnitude faster. Analysis
reveals, that related approaches encounter difficulties with
thing instances, especially small objects (see PQth scores).
Additionally, we observe that NeRF optimization strug-
gles when using ’only’ 100 training views. In comparison,
PanSt3R’s performance is relatively invariant to the num-
ber of views, since it builds upon the sparse view recon-
struction framework of DUSt3R and MUSt3R (see abla-
tions in Sec. 4.5). When we compare PanSt3R and PanSt3R
(ScanNet++), we observe that the model trained on more
data is slightly better, but the gap disappears when using
LUDVIG. Finally, we once again observe that uplifting la-
bels with LUDVIG results in a significant improvement
both quantitatively and qualitatively (see Fig. 5).

4.5. Ablative studies
We perform a range of comparative experiments and abla-
tive studies to evaluate the impact of various components
and model configurations on the method’s performance.
We primarily assess the role of using 2D DINOv2 and 3D
MUSt3R encoders, as well as the impact of QUBO and GS
regularization. Further ablative experiences can be found in
the Supplementary.

Impact of 2D & 3D features. We ablate the contribution
of our two feature extraction backbones on the final per-
formance. For this study, we use a smaller architecture,

4The same model weights as in in Tab. 2, but using the 100 ScanNet++
classes during inference.

Table 4. Ablating the importance of 3D (MUSt3R [3]) and 2D
(DINOv2 [38]) features on the ScanNet++ validation set. Results
are shown for PanSt3R (224, ScanNet++)+LUDVIG.

features PQ PQth PQst

3D + 2D 50.4 45.4 61.1
3D 46.4 40.7 58.8
2D 35.7 28.4 51.9

Table 5. Analyzing the effect of the QUBO merging strategy
(Sec. 3.2). Results are reported for PanSt3R+LUDVIG.

QUBO Hypersim Replica ScanNet ScanNet++

x 58.1 60.8 60.2 50.8
✓ 66.7 60.7 67.3 52.0

starting from MUSt3R/DINOv2 with a 224x224 input reso-
lution and trained on the ScanNet++ training set only. Re-
sult obtained using only the 2D (DINOv2) or 3D (MUSt3R)
features are presented in Tab. 4. We observe a clear comple-
mentarity effect between 2D semantic features of DINOv2
and 3D geometric features of MUSt3R.

Mask merging strategy. We evaluate the impact of the
QUBO-based mask merging strategy (Sec. 3.2). In Tab. 2
and Fig. 5, we compare two versions of PanSt3R, with
and without QUBO (i.e. using the standard merging strat-
egy from MaskFormer [9]). The same experiments are per-
formed with additional LUDVIG uplifting in Tab. 5. We
observe an overall large gap in terms of PQ (except for
PanSt3R+LUDVIG on Replica), which highlights the inad-
equacy of the standard merging scheme when dealing with
multi-view segmentation. In a sense, this is expected, as
the standard scheme is purely heuristic and instances are
selected only locally, without considering any global con-
sistency.

5. Conclusion

We have presented PanSt3R, a novel approach for joint 3D
reconstruction and 3D panoptic segmentation operating on
unposed and uncalibrated collections of images. The pro-
posed approach, building upon recent progress in 2D and
3D foundation models, is conceptually simple yet effective,
achieving state-of-the-art results on multiple benchmarks.
Despite not relying on any depth input nor camera parame-
ters, and without the need for costly test-time optimization,
PanSt3R is able to decompose a scene into a set of instances
in an efficient manner producing high-quality results and
paving the way to promising future applications in the fields
of robotics, virtual reality and autonomous driving.
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[49] Philipp Schröppel, Jan Bechtold, Artemij Amiranashvili, and
Thomas Brox. A Benchmark and a Baseline for Robust
Multi-view Depth Estimation. In 3DV, 2022. 1

[50] Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Bulò, Nor-
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