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7. Contents

Here we briefly summarize the contents of all sections in

this supplementary file:

• Section 8: Discussion of the possible use-cases of IQA-

Adapter and Future Work;

• Section 9: A detailed summary of all IQA/IAA models

used in this study;

• Section 10: Details on IQA-Adapter training;

• Section 11: Limitations of IQA-Adapter;

• Section 12: Ablation Study on adapter design;

• Section 13: More results regarding high-quality condi-

tioning experiments, visual comparison with other meth-

ods;

• Section 14: Detailed results on generative capabilities of

different methods;

• Section 15: Experiments regarding alignment with quali-

tative conditions;

• Section 16: Evaluation of image degradation with Full-

Reference IQA metrics;

• Section 17: More details on Subjective Studies;

• Section 18: Miscellaneous experiments: time measure-

ments, generation consistency, examples of quality mod-

ulation;

• Section 19: Some connections between quality optimisa-

tion and adversarial robustness;

• Section 20: More examples of Reference-based IQA-

Adapter and comparison with IP-Adapter and Style-

Crafter.

8. Discussion and Future Work

8.1. IQA­Adapter as a degradation model

As most IQA models are trained to assess distorted images,

they can reliably detect noise, compression, blur, and other

artifacts on images during IQA-Adapter training. There-

fore, this knowledge is transferred to the generative model

and such image attributes are connected with low-quality

conditions. This allows IQA-Adapter to generate progres-

sively more distorted images as input quality-condition de-

creases. The IQA-Adapter in Figure 4(b), for example,

implicitly learned to simulate JPEG compression artifacts

when conditioned on low quality (1st percentile of the train-

ing dataset). Figure 23 demonstrates more examples of sim-

ilar artifacts appearing under low-quality guidance. As IQA

models are mostly tailored to assess low-level quality at-

tributes (in contrast with IAA methods), images produced

with different quality levels usually retain similar content

and composition, as illustrated in Figure 1 (bottom-to-top

direction).

By applying appropriate filtering to exclude image pairs

with unintended content differences, IQA-Adapter can gen-

erate large synthetic datasets of distorted and correspond-

ing high-quality images. Such datasets can subsequently

be used to pretrain models for image enhancement, deblur-

ring, and other restoration tasks. While training such meth-

ods is a subject for future work, we additionally explore the

distances between generated images with different target-

quality conditions in Section 16.2. We also note that IQA-

Adapter can be additionally fine-tuned with unpaired data

containing specific distortions to simulate them during in-

ference.

8.2. Exploring adversarial patterns and preferences
of IQA models

When applied with a sufficiently high guidance scale, the

gradient-based method can exploit vulnerabilities of the tar-

get IQA model, artificially inflating its values and shifting

the generation towards an adversarial subdomain. This ap-

proach tends to produce images with distinct patterns spe-

cific to each IQA model. Figure 6(a) demonstrates adversar-

ial patterns generated with different guidance models. For

certain models, such as TRES and HYPER-IQA, these pat-

terns form grid-like structures, and for others, like TOPIQ

and DBCNN, they concentrate in smaller regions. We

present more adversarial examples generated with gradient-

based guidance and GradCAM [85] visualizations of corre-

sponding IQA models in Section 19.

Our study further reveals that most IQA models exhibit

distinct preferences when used with a high IQA-Adapter

scale. For instance, TOPIQ often favors sharper images,

while LAION-AES tends to enhance color saturation, pro-

ducing more vibrant visuals. These effects can be com-

pounded by using multiple IQA/IAA models simultane-

ously during adapter training, as illustrated in Figure 6(b).

9. Employed IQA/IAA methods

Table 3 provides a detailed summary of all IQA/IAA meth-

ods used in this study, along with their training datasets

and architectural details. The column ”PyIQA” lists model

identifiers from the PyIQA library [86]. The column ”Task”

specifies supported tasks: most models are designed for

IQA, while some (e.g., TOPIQ, MUSIQ) support both IQA

and IAA, and others (e.g., NIMA) are exclusive to IAA.

The column ”Datasets” lists the datasets associated with
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Figure 6. (a) Examples of adversarial patterns appearing under high gradient-based guidance scale. (b) Examples of images generated

with the IQA-Adapters trained with different IQA models. Each IQA/IAA model has its stylistic preferences. All images in each line are

generated with the same prompt and seed.

each model; note that the models were not trained on mix-

tures of datasets, except for LIQE-MIX, which was specifi-

cally trained on a dataset mixture. For models like TOPIQ,

there are several variants, each trained on a distinct dataset.

The column ”Arch” outlines the backbone architecture of

the models. Most models are trained using finetuning of a

pretrained model; however, some, like MUSIQ, are trained

from scratch. The final three columns, ”Params,” ”FLOPs,”

and ”MACs,” highlight the performance metrics of the mod-

els. FLOPs and MACs were computed using the calflops

package [87].

Table 4 provides a detailed overview of the datasets used

for training the IQA and IAA models. The column ”Type”

categorizes the datasets: FR indicates the presence of a

distortion-free reference image used for collecting subjec-

tive scores, whereas NR denotes datasets without such ref-

erences. The column ”Year” indicates the release year of

each dataset. The column ”# Ref” specifies the number of

reference images used to generate distorted samples through

augmentations. The column ”# Dist” represents the total

number of samples in the dataset. The column ”Dist Type.”

describes how distorted images were created: ”synthetic”

refers to distortions introduced via augmentations such as

JPEG compression or blurring, ”algorithmic” applies to dis-

tortions generated by neural networks, such as GAN-based

modifications, ”authentic” denotes images captured in nat-

ural, real-world conditions, and ”aesthetics” refers to high-

quality images sourced from stock photography collections.

The column ”# Rating” indicates the number of ratings col-

lected via crowdsourcing platforms. The column ”Original

size” details the resolution of images within the datasets.

10. IQA-Adapter training

The IQA-Adapters were trained on the CC3M dataset,

which consists of approximately 3 million text-image pairs,

for 24,000 steps, followed by fine-tuning on a subset of the

LAION-5B dataset, containing 170,000 images, for 3,000

steps. During training on CC3M, the images were center-

cropped to a resolution of 512 × 512. For fine-tuning on

LAION, the resolution was increased to 1024 × 1024 to

match SDXL’s native resolution. We used the AdamW [92]

optimizer with β1 = 0.9, β2 = 0.999 and a weight de-

cay of 1 × 10−2 for the IQA-Adapter parameters. All ex-

periments utilized bf16 mixed precision to improve compu-

tational efficiency. Training was conducted using the Py-

Torch [93] and Accelerate [94] libraries, enabling efficient

scaling across our hardware setup. We use batch size=16

per GPU for 512×512 training resolution, and batch size=4

for 1024 × 1024 fine-tuning. The learning rate was set to

10−4 during the primary training phase on CC3M and re-

duced to 10−5 for the fine-tuning on the LAION subset. For

Reference-based IQA-Adapter, we apply series of degrada-

tions to training images with a probability p = 0.1 during

training.

To ensure consistency and reproducibility, all experi-

ments were conducted within Docker containers built from

a shared image. The environment included Python 3.11,

PyTorch 2.1, and other dependencies required for training



Model PyIQA Task Datasets Arch Params FLOPS MACs

TOPIQ [1] topiq nr IQA / IAA KonIQ-10k [50], SPAQ [52], FLIVE [54], AVA [55] ResNet50 45.2M 886 GFLOPS 441.5 GMACs

DBCNN [42] dbcnn IQA KonIQ-10k [50] VGG16 15.3M 2.1 TFLOPS 1 TMACs

HyperIQA [40] hyper iqa IQA KonIQ-10k [50] ResNet50 27.4M 2.6 TFLOPS 1.3 TMACs

ARNIQA [43] arniqa IQA KonIQ-10 [50], FLIVE [54], KADID [56] ResNet50 23.5M - -

LIQE-Mix [75] liqe mix IQA
Mixed

(

LIVE [88], CSIQ [89], KADID [56],

CLIVE [53], BID [90], KonIQ-10k [50]
) OpenAI CLIP ViT-B/32 151.3M 1.7 TFLOPS 850.7 GMACs

MANIQA [46] maniqa IQA KonIQ-10k [50], PIPAL [51] ViT-B/8 135.7M 56.4 TFLOPS 28.2 TMACs

CNN-IQA [47] cnniqa IQA KonIQ-10k [50] CNN 729.8K 49.4 GFLOPS 24.5 GMACs

LIQE [75] liqe IQA KonIQ-10k [50] OpenAI CLIP ViT-B/32 151.3M 1.7 TFLOPS 850.7 GMACs

MUSIQ [41] musiq IQA / IAA KonIQ-10k [50], AVA [55], FLIVE [54] Multiscale ViT 27.1M 400.6 GFLOPS 199.1 GMACs

CLIP-IQA+ [48] cliq iqa+ IQA KonIQ-10k [50] OpenAI CLIP ResNet50 102.0M 981.1 GFLOPS 489.2 GMACs

NIMA [49] nima IAA AVA [55] InceptionResnetV2 54.3M 342.9 GFLOPS 171 GMACs

LAION-Aes [2] laion aes IAA Other OpenAI CLIP VIT-L/14 428.5M 2 TFLOPS 1 TMACs

TReS [45] tres IQA FLIVE [54] ResNet50 152.5M 25.9 TFLOPS 12.9 TMACs

HPSv2 [91] – Human Preference Human Preference Dataset v2 [91] OpenAI CLIP VIT-L/14 428.5M 2 TFLOPS 1 TMACs

Table 3. List of employed metrics with their corresponding training datasets.

Type Dataset Year # Ref # Dist Dist Type. # Rating
Original size

W ×H

FR

LIVE [88] 2006 29 779 Synthetic 25k 768× 512 (typical)

CSIQ [89] 2010 30 866 Synthetic 5k 512× 512
KADID-10k [56] 2019 81 10.1k Synthetic 30.4k 512× 384
PIPAL [51] 2020 250 29k Syth.+alg. 1.13M 288× 288

NR

BID [90] 2010 120 6000 Synthetic ∼ 7k 1K – 2K

AVA [55] 2012 - 250k Aesthetic 53M < 800
CLIVE [53] 2015 - 1.2k Authentic 350k 500× 500
KonIQ-10k [50] 2018 - 10k Authentic 1.2M 512× 384
SPAQ [52] 2020 - 11k Authentic – 4K (typical)

FLIVE [54] 2020 - 160k Auth.+Aest. 3.9M Train< 640 | Test> 640

Table 4. Description of training datasets from Table 3.

and inference. We use adapter scale λ = 0.5 in all ex-

periments, unless stated otherwise, and negative guidance

scale δ = 0.3, if IQA-Adapter name includes ”+ Neg. G.”

(δ = 0 otherwise). For Reference-based IQA-Adapter, we

use adapter scale λ = 0.65.

11. Limitations

IQA-Adapter serves as a guiding mechanism for transfer-

ring knowledge from the IQA/IAA domain to generative

models. However, the extent of this knowledge transfer

is inherently constrained by the capabilities and limitations

of current IQA/IAA models. Most existing IQA datasets,

and the models trained on them, are designed to assess the

quality of real images, focusing on aesthetical attributes and

distortions common for human-generated images. These

models often lack the ability to detect distortions specific to

generated content, such as unnatural or anatomically incor-

rect features (e.g., distorted limbs or physically implausible

scenes). As a result, these issues may not be adequately pe-

nalized in the quality estimates used for guidance, limiting

the adapter’s ability to address such generation defects. One

possible direction of future work to address this limitation

is to train a classifier for different kinds of generation arti-

facts and then attempt to utilize its logits as a conditioning

factor.

Another limitation arises from biases in the training data.

The IQA-Adapter can inadvertently learn and reproduce un-

intended relationships between image content and quality

levels present in the dataset. For example, when condi-

tioned on low aesthetic scores, the adapter may occasion-

ally generate images with watermarks, likely because it en-

countered numerous stock photos with watermarks during

training and associated them with lower-quality conditions.

While some of these correlations may be considered gen-

uine (e.g., watermarks generally reduce image aesthetics),

such artifacts highlight the challenge of disentangling gen-

uine quality attributes from dataset-specific correlations.

The training process itself introduces additional chal-

lenges. IQA-Adapter training occurs entirely in the latent

space of the diffusion model, while the quality scores used

for supervision are computed in pixel space. This discrep-

ancy between the latent representations of images (com-

pressed by the model’s VAE encoder) and the pixel-level

quality scores can introduce instability into the training pro-

cess, as the adapter must work with imperfect representa-

tions of the input images. Furthermore, the VAE decoder

used in the final generation step imposes inherent limita-



tions, as it may introduce artifacts (e.g., blurred text or tex-

ture inconsistencies) that the adapter cannot correct. In this

work, we only cover existing quality assessment models;

however, this limitation can be largely mitigated in the fu-

ture by implementing a quality assessment model that oper-

ates in the latent space of the generative model.

12. Ablation Study

In this section, we report the results of our experiments with

different architectural elements and hyperparameters of the

IQA-Adapter. We compare our base design with a ”sim-

plified” model (Sec. 12.1) and a more sophisticated ap-

proach with Positional Encoding (Sec. 12.2). Furthermore,

we evaluate the impact of the scaling hyperparameter λ of

IQA-Adapter.

12.1. Impact of the Separate Qualitative Attention
and Negative Guidance

Model
Quality

Gain, %
↑

SROCC

w/ target
↑ FID↓

FID

(TOP-10%)
↓ IS ↑ CLIP-T ↑ CLIP-I ↑

IQA-Adapter 8.95 0.97 21.36 28.44 36.89 26.83 70.02

IQA-Adapter

+ Neg. Guidance
10.86 0.98 22.16 29.25 36.33 26.80 69.82

IQA-Adapter

w/o Separate Cross-Attn
8.31 0.26 29.04 39.91 30.22 26.34 67.9

Table 5. Comparison of IQA-Adapters with and without separate

qualitative attention. Both adapters are trained with TOPIQ and

LAION-Aesthtics IQA models. SROCC is calculated with target

TOPIQ scores, and Quality Gain is evaluated similarly to Sec. 4.2

and averaged across all evaluation metrics.

To test the importance of the separate qualitative cross-

attention operation, we test the ablated IQA-Adapter that

simply concatenates qualitative tokens to the text ones and

processes them within a single (textual) cross-attention

operation. This simplified model functionally resembles

“adaptive” Textual Inversion [27], controlled by a projec-

tion module.

In this setting, adapter loses the ability to control its im-

pact via λ parameter, reducing its usability. As demon-

strated in Table 5, the model partially retains the ability

for qualitative improvements; however, qualitative prompt-

following capabilities of the simplified model greatly di-

minish, as evidenced by reduced correlation between target

and predicted quality of the generated images: it drops from

0.97 to 0.27 SROCC. Furthermore, simultaneous process-

ing of the new tokens with contextual information reduces

the textual prompt-following capabilities of the model, as

evidenced by FID and CLIP scores. This emphasizes the

importance of the attention separation for qualitative con-

ditioning. It also demonstrates that the the disengage-

ment of qualitative and contextual information is benefi-

cial for learning content-independent relationships between

quality-related image properties.

12.2. Positional Encoding

Given that the quality metrics used as input for the IQA-

Adapter form a low-dimensional representation (e.g., a 2D

space for quality and aesthetics, as shown in Figure 1),

we explored the use of positional encoding to enrich these

inputs. Inspired by the sinusoidal encoding strategy em-

ployed in NeRFs[95] and timestamp encoding in Stable Dif-

fusion models[17], we applied the following transformation

to each input IQA/IAA value independently:

γ(x) =
(

x, sin(20πx), cos(20πx), . . . ,

sin(2L−1πx), cos(2L−1πx)
)

,

where x is the input value, and L controls the number of

additional components in the representation. All IQA/IAA

inputs were normalized to zero mean and unit variance prior

to this transformation.

We hypothesized that positional encoding would en-

hance the model’s sensitivity to subtle quality variations,

allowing for more fine-grained control over output quality

without affecting behavior at the edges of the input range.

However, our experiments demonstrated that positional en-

coding had minimal impact on the model’s behavior.

To evaluate this, we conducted experiments where the

IQA-Adapter was modulated on the input quality condi-

tion, as described in Sections 4.3 and 15. Using a dataset

of user-generated prompts from Lexica.art, we compared

IQA-Adapters with and without positional encoding across

a range of evaluation metrics. The results, shown in Fig-

ure 7, indicate that positional encoding produced outcomes

nearly identical to those of the baseline IQA-Adapter, re-

gardless of the value of L.

Although our experiments did not reveal significant ben-

efits from positional encoding for the quality-conditioning

task, we believe there may be potential for improvement

with alternative encoding strategies. For instance, rotary

positional embeddings (RoPE)[96], which have shown suc-

cess in recent large language models, could be a promising

direction. We leave the exploration of such strategies for

future research.

12.3. Impact of IQA­Adapter scaling factor

To evaluate the impact of the adapter scale parameter λ

on the visual quality of generated images, we tested IQA-

Adapters trained with various IQA/IAA models under both

high- and low-quality input conditions. We evaluated 9 λ

values ranging from 0.05 to 1.0. For each configuration, im-

ages were generated using 300 randomly sampled prompts

from the Lexica.art dataset. The results are shown in Figure

9.

As λ increases, image quality scores deviate progres-

sively from the base model’s levels, aligning with the spec-

ified quality condition. Under high-quality conditions, the



Figure 7. Results of the IQA-Adapter modulation on input quality-condition for different types of input preprocessing with positional

encoding. For all evaluated types, adapter was trained with TOPIQ (KonIQ) model.

increase in quality is smooth and resembles a logarithmic

curve for most adapters, reflecting diminishing returns as

the base model already achieves relatively high-quality out-

puts. Beyond a certain threshold for λ, typically around

0.75, further increases cease to improve quality, with ex-

cessively high values (λ > 0.9) introducing artifacts that

reduce both visual quality and IQA/IAA scores.

In low-quality conditions, the quality degradation pro-

gresses more rapidly, as the adapter has greater freedom

to modify the image. The decrease in scores follows a

sigmoidal trend: minimal change occurs for small λ val-

ues, but the effect accelerates significantly beyond λ ∼ 0.4
and plateaus at the adapter’s limits near λ ∼ 0.75 − 0.85.

This behavior highlights the non-linear relationship be-

tween adapter strength and its impact on image quality, with

optimal performance generally observed for λ values in the

range of [0.5, 0.75] for both low- and high-quality condi-

tioning.

13. High-quality conditioning: more results

13.1. Gradient­based guidance

Figure 10(b) presents the relative gain in metric scores when

using the gradient-based approach to optimize image qual-

ity during generation for prompts from PartiPrompts [77].

Unlike IQA-Adapter, direct optimization of the target met-

ric improves that specific metric alone, while most other

quality metrics tend to decline. This observation highlights

the adversarial nature of gradient-based guidance, further

confirmed by a closer examination of changes in generated

images, which reveal adversarial patterns (as shown in Fig-

ure 24). Interestingly, certain metrics, such as ARNIQA

(trained on KADID), LAION-AES, and LIQE MIX, show

improvements even when unrelated quality metrics are tar-

geted for optimization. This behavior points to their inher-

ent instability and susceptibility to adversarial attacks, rais-

ing questions about their robustness as quality measures.

13.2. IQA­Adapter

Figure 11 presents detailed results for all tested IQA-

Adapters on Lexica.art dataset, complementing Figure 3 (a)

from the main paper. Figure 10 (a) provides additional re-

sults of high-quality conditioning with IQA-Adapter on Par-

tiPrompts. The results on this dataset mirror the trends ob-

served on the Lexica.art prompts, discussed in Section 4.2.

Specifically, conditioning on the 99th percentile of target

metrics not only boosts the target metrics themselves but

also improves most other metrics, highlighting the strong

transferability of IQA-Adapter. However, the average met-

ric improvements on PartiPrompts are 1–2% lower than

those observed on Lexica.art. This discrepancy can likely

be attributed to the quality and completeness of the prompts.

Unlike the more detailed and descriptive prompts in Lex-

ica.art, PartiPrompts consists of shorter and more generic

prompts. These simpler prompts impose fewer demands

on the generation process, limiting the need for detailed

generation, which is one of a key factors behind the sig-

nificant metric improvements achieved by IQA-Adapter on

Lexica.art.

Figure 8 demonstrates the comparison of IQA-Adapter

with existing generation quality improvement methods on

prompts sampled from Lexica.art dataset. IQA-Adapter

conditioned on high quality usually results in sharper and

more detailed results.



DiffusionDPO DiffusionDPO + IQA-Adapter BeautifulPrompt BeautifulPrompt + IQA-Adapter

Base Model Q-Refine Prompt Weighting IQA-Adapter

DiffusionDPO DiffusionDPO + IQA-Adapter BeautifulPrompt BeautifulPrompt + IQA-Adapter

Base Model Q-Refine Prompt Weighting IQA-Adapter

Base Model Q-Refine Prompt Weighting IQA-Adapter

DiffusionDPO DiffusionDPO + IQA-Adapter BeautifulPrompt BeautifulPrompt + IQA-Adapter

Base Model Q-Refine Prompt Weighting IQA-Adapter

DiffusionDPO DiffusionDPO + IQA-Adapter BeautifulPrompt BeautifulPrompt + IQA-Adapter

“Photorealistic filmic city of Jerusalem at dawn before sunrise by james gurney, unreal engine, 
assassin's creed 1, 35 mm lens, trending on artstation”

“Portrait of a feminine boy with curly shoulder length dirty blond hair, wearing a white t shirt and black work apron, 
dramatic lighting, illustration by Greg rutkowski, yoji shinkawa, 4k, digital art, concept art, trending on artstation”

“Medieval knight power armour, space marine, concept art, medieval, sword, fantasy, detailed digital matte painting in 
the style of simon stalenhag and bev dolittle zdzislaw beksinski, greg hildebrandt artstation, psychedelic”

“The Night Inn, game concept art by Akihiko Yoshida, trending on artstation and cgsociety”

Figure 8. Comparison of different generation quality improvement methods.



Condition

Figure 9. The relationship between image-quality scores (evaluated by the HYPER-IQA, TOPIQ and LIQE metrics) and the adapter scale

parameter (λ) for the IQA-Adapters trained with different target IQA/IAA models and conditioned on low (dashed line) and high (solid

line) target quality. For reference, the red dotted line indicates the quality level of the base model. The experiment utilized 300 random

user-generated prompts from the Lexica.art dataset.
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Figure 10. Quality improvement relative to base model (in %) for the IQA-Adapters trained on different IQA/IAA models and other

generation quality improvement methods (a); and gradient-based method targeted on different IQA/IAA models (b). All IQA-Adapters are

conditioned with high target quality (99th percentile of the training dataset) and use the same prompts and seeds. Prompts are taken from

PartiPrompts dataset.

14. Evaluating Generative Capabilities: more

results

Table 6 provides the complete results on the GenEval

benchmark. Among the 25 evaluated IQA-Adapters, five

outperform the Base Model in terms of the overall score.

Notably, even the weakest IQA-Adapter surpasses the Base

Model in the Counting and Position metrics. However,

the best-performing IQA-Adapter underperforms the Base

Model in the Two Object, Colors, and Single Object met-

rics. Overall, while all IQA-Adapters achieve performance

levels comparable to the initial model, some manage to out-

perform it in specific areas.

Table 7 presents quantitative results for the FID, IS,

and CLIP-similarity metrics. With a few exceptions, most

IQA-Adapters exhibit slightly higher FID scores on the full

MS COCO training dataset compared to the Base Model.

This can be attributed to the diverse quality distribution

of the dataset, which contains images of varying visual fi-

delity. Since IQA-Adapters are conditioned to prioritize

high-quality generation, they naturally shift the output dis-

tribution toward a more specific subdomain characterized

by higher visual quality. As a result, the distance to the

broader, more heterogeneous image distribution of the full

dataset increases. To address this domain shift, we also cal-

culate FID scores on high-quality subsets of the MS COCO

training dataset. These subsets include the top 10% and

25% of images, selected based on average quality scores

from multiple IQA and IAA models. In this scenario, most

IQA-Adapters consistently achieve lower FID scores than

the Base Model, demonstrating superior alignment with the

high-quality subsets.
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Figure 11. Quality improvement relative to base model (in %) for the IQA-Adapters trained on different IQA/IAA models and other

generation quality improvement methods on Lexica.art dataset. This Figure complements the results reported in Figure 3 in the main paper.

Figure 12. The relationship between input quality-condition (represented as a percentile of target IQA/IAA model on the training dataset)

and image-quality scores evaluated by four different metrics (TOPIQ (KonIQ), TOPIQ (SPAQ), CLIP-IQA+, LIQE).

In addition to FID, we evaluate the Inception Score (IS)

and CLIP-similarity metrics. CLIP-Text (CLIP-T) mea-

sures the similarity between generated images and their cor-

responding text prompts, using COCO captions as prompts

in our experiment. CLIP-Image (CLIP-I) measures the dis-

tance between generated images and the real images corre-

sponding to the captions. Results indicate that most IQA-

Adapters achieve better CLIP scores than the Base Model,

highlighting improved prompt-following capabilities. How-

ever, the Inception Score results are slightly lower com-

pared to the Base Model. It is worth noting that the IS dif-

ferences fall within the confidence interval. Additionally,

IS is not well-suited for evaluating SDXL model, which is

trained on large-scale internet datasets [97]. Furthermore,

as IQA-Adapters generate more complex and detailed im-

ages, the classifier behind Inception Score struggles to iden-

tify the main object within the scene, further complicating

its evaluation.

15. Alignment with qualitative condition: more

results

To further evaluate the relationship between the input qual-

ity conditions provided to the IQA-Adapter during image

generation and the quality of the resulting images, we an-

alyzed correlations between the target quality and vari-

ous metric scores. Figure 17 shows estimated correla-

tions for each trained IQA-Adapter. Generally, the metrics

demonstrate a strong alignment with the target quality, with

the highest correlations observed when comparing differ-

ent IQA models. In contrast, weaker correlations are noted



Models

in IQA-Adapter

Two

Object
↑

Attribute

Binding
↑ Colors↑ Counting↑

Single

Object
↑ Position↑ Overall↑

LAION-AES 65.40% 16.75% 84.57% 45.00% 97.50% 12.25% 53.58%

MANIQA (PIPAL) 73.23% 20.25% 86.17% 36.56% 96.56% 10.50% 53.88%

ARNIQA (FLIVE) 69.70% 18.50% 84.04% 42.50% 97.81% 12.25% 54.13%

TOPIQ (KONIQ) 71.97% 18.75% 85.11% 38.75% 98.12% 13.75% 54.41%

CLIPIQA+, LIQE-MIX 71.72% 20.25% 85.64% 41.25% 97.81% 11.75% 54.74%

LIQE-MIX 68.43% 19.50% 87.50% 43.12% 98.12% 12.75% 54.91%

MUSIQ (FLIVE) 69.19% 23.25% 88.30% 39.38% 99.06% 12.50% 55.28%

TOPIQ (4 versions) 72.47% 21.75% 87.77% 40.31% 97.19% 12.25% 55.29%

TOPIQ, LAION-AES 69.70% 18.75% 85.90% 45.31% 99.38% 13.00% 55.34%

TOPIQ(KONIQ), HPSv2 71.21% 22.25% 85.64% 42.50% 98.44% 12.25% 55.38%

CNNIQA 71.72% 19.50% 87.50% 41.56% 98.12% 14.25% 55.44%

MUSIQ (AVA) 69.44% 24.25% 86.97% 40.94% 99.06% 12.50% 55.53%

MUSIQ(KONIQ), MUSIQ(AVA) 73.23% 22.75% 86.44% 40.94% 98.12% 12.50% 55.66%

TOPIQ (SPAQ) 73.48% 21.25% 86.70% 43.75% 97.50% 12.50% 55.86%

ARNIQA (3 versions), LIQE-MIX 73.99% 19.25% 89.36% 39.69% 99.69% 13.75% 55.95%

MANIQA (KONIQ) 73.48% 25.75% 88.30% 38.75% 96.88% 12.75% 55.98%

LIQE 72.73% 21.75% 86.97% 41.56% 98.75% 14.25% 56.00%

NIMA (AVA) 70.96% 23.00% 87.50% 44.69% 98.44% 11.50% 56.01%

MUSIQ (KONIQ) 73.74% 21.00% 86.44% 46.25% 97.50% 11.50% 56.07%

ARNIQA (KONIQ) 71.97% 22.00% 87.50% 44.38% 98.12% 12.75% 56.12%

CLIP-IQA+ 72.73% 22.75% 88.03% 43.44% 98.44% 12.25% 56.27%

HYPER-IQA 73.99% 25.25% 85.90% 39.69% 98.75% 14.75% 56.39%

DBCNN 73.48% 22.75% 86.44% 44.38% 99.06% 13.00% 56.52%

ARNIQA (KADID) 72.98% 23.25% 86.97% 45.94% 98.75% 11.50% 56.56%

TOPIQ (AVA) 75.00% 22.50% 87.77% 42.81% 98.12% 13.50% 56.62%

TOPIQ (FLIVE) 72.73% 21.75% 87.77% 45.94% 99.38% 13.00% 56.76%

Base Model 73.74% 21.75% 88.30% 43.75% 99.69% 10.50% 56.29%

Gradient-based, TReS IQA model 61.87% 17.00% 81.91% 41.88% 95.31% 11.75% 51.62%

DiffusionDPO 83.33% 26.50% 87.77% 47.81% 99.69% 12.50% 59.60%

Q-Refine 70.96% 21.75% 88.83% 40.94% 99.06% 9.75% 55.21%

Prompt Weighting 71.21% 23.00% 87.23% 43.12% 99.38% 11.50% 55.91%

BeautifulPrompt 18.94% 1.00% 35.90% 9.38% 72.81% 4.75% 23.80%

DiffusionDPO + IQA-Adapter (TOPIQ, LAION-AES) 83.08% 26.50% 87.77% 45.94% 99.06% 13.75% 59.35%

DiffusionDPO + IQA-Adapter(TOPIQ, HPSv2) 80.30% 31.00% 86.97% 50.62% 99.06% 12.50% 60.08%

Q-Refine + IQA-Adapter (TOPIQ, LAION-AES) 68.94% 19.00% 86.70% 44.69% 98.44% 11.75% 54.92%

Table 6. GenEval, more results. The best results are bold, the second- and third-best are underlined. Table is sorted over ”Overall” column.

when IQA models are compared with IAA models. Among

the evaluated metrics, the poorest correlations are associ-

ated with images generated using the IQA-Adapter based

on the IAA metric, LAION-Aes. Interestingly, even the

metric’s own values fail to exhibit significant correlation,

which may be attributed to the IQA-Adapter training pro-

cess, specifically the additional fine-tuning step. However,

when LAION-Aes is paired with an IQA metric, the correla-

tions with IAA models improves significantly. For example,

the IQA-Adapter trained on the TOPIQ and LAION-Aes

metrics achieves high correlations with both IQA and IAA

models, making it an optimal choice for generating images

with high visual quality.

Additionally, Figure 12 illustrates the relationship be-

tween the average scores of four metrics and the input-

quality conditions across different IQA-Adapters. All met-

rics show a monotonic increase in their mean scores, rein-

forcing the strong correlations shown in Figure 17. This

trend is consistent across all IQA-Adapter types, regardless

of whether they are trained on IQA models, IAA models, or

VLM-based approaches. Starting from a specific target per-

centile — typically around the 50th percentile — the mean

metric scores surpass those of the base model.

16. IQA-Adapter as a degradation model

16.1. Examples of progressive quality degradation

Figures 19 and 20 illustrate the generation results for dif-

ferent percentiles of metric scores on the training dataset.

As the percentile decreases, the generated images begin to

exhibit various distortions, such as compression artifacts,

noise, blurring, and others. These distortions are likely

present in the corresponding training datasets for the met-

rics, causing them to become sensitive to these distortions

and assign lower scores. By passing progressively lower

scores to the adapter, we can approximate a continuous path

in the image-space between low and high-quality images

on the ends of the spectrum. This qualitatively monotonic



Models in IQA-Adapter
FID↓

Full

FID↓

(Top-25%)

FID↓

(Top-10%)
IS↑ CLIP-T↑ CLIP-I↑

LAION-AES 23.94 28.96 34.53 34.27±0.85 26.73 69.75

MUSIQ(KONIQ), MUSIQ(AVA) 22.48 24.96 29.68 37.00±1.43 26.79 69.47

NIMA (AVA) 22.32 25.65 30.55 37.72±1.08 26.70 69.80

TRES (FLIVE) 22.27 22.82 27.21 37.90±0.76 26.50 69.52

TOPIQ (AVA) 22.25 25.50 30.40 36.86±0.94 26.78 69.83

ARNIQA (3 versions), LIQE-MIX 21.95 22.92 27.58 37.55±1.02 26.69 69.62

TOPIQ (4 versions) 21.93 23.69 28.32 36.99±1.76 26.79 69.74

MANIQA (KONIQ) 21.74 23.85 28.57 37.63±1.23 26.91 69.61

CLIPIQA+, LIQE-MIX 21.43 22.45 27.02 38.33±1.83 26.70 69.65

TOPIQ, LAION-AES 21.36 23.53 28.44 36.89±1.33 26.83 70.02

MUSIQ (AVA) 21.20 24.92 30.08 36.42±1.39 26.93 69.96

ARNIQA (KONIQ) 21.13 22.70 27.53 37.32±0.87 26.86 69.53

TOPIQ (FLIVE) 21.04 21.63 26.28 37.93±0.70 26.64 69.54

HYPER-IQA 21.00 22.82 27.69 37.99±1.19 26.90 69.26

DBCNN 20.85 22.43 27.20 38.28±1.44 26.84 69.60

MUSIQ (KONIQ) 20.77 22.38 27.08 38.57±1.12 26.80 69.55

LIQE 20.76 22.34 27.21 37.72±1.46 26.82 69.81

CLIP-IQA+ 20.45 21.89 26.55 37.66±1.05 26.80 70.05

ARNIQA (FLIVE) 20.44 21.75 26.58 38.25±1.20 26.85 69.99

ARNIQA (KADID) 20.35 22.50 27.56 37.67±1.31 26.76 69.32

LIQE-MIX 20.35 22.26 27.18 38.09±1.02 26.79 69.65

TOPIQ (SPAQ) 20.28 22.85 27.79 37.07±1.12 26.84 69.26

TOPIQ (KONIQ) 20.17 21.95 26.90 37.29±1.15 26.96 69.49

TOPIQ, HPSv2 19.67 22.08 27.40 36.71±1.45 27.00 69.12

CNNIQA 19.61 22.40 27.53 37.87±1.18 26.94 69.31

MANIQA (PIPAL) 19.27 21.88 27.19 37.98±1.46 26.77 69.48

Base Model 19.92 23.15 28.41 39.44±1.66 26.70 69.35

Gradient-based, TReS IQA model 25.02 29.97 35.84 33.34±1.28 24.88 64.77

BeautifulPrompt 30.92 35.64 40.83 33.30±1.12 21.23 58.01

DiffusionDPO 29.57 34.04 38.88 36.93±1.04 27.10 68.74

Prompt Weighting 24.14 26.02 30.50 38.44±2.15 26.42 68.78

Q-Refine 20.29 23.41 28.56 39.05±1.11 26.83 69.11

Table 7. FID, IS and CLIP scores of the IQA-Adapters trained with different IQA/IAA models on 10k subset of the MS COCO captions.

FID-Full is calculated with the full MS COCO training dataset, and FID Top-n% measures FID to the highest-quality subset of MS COCO

(as measured by the average score across all IQA/IAA metrics) of the corresponding size. The best results are bold, the second- and

third-best are underlined. Table is sorted over ”FID Full” column.

”path” (albeit with occasional local content changes) can

potentially be used to train iterative image refinement algo-

rithms.

This quality-modulation ability of IQA-Adapter enables

leveraging diffusion models as degradation models to gen-

erate various distortions, including natural ones. To achieve

this, the IQA-Adapter should be trained on a dataset con-

taining the relevant distortions, using as guidance either

subjective assessments or a specialized metric sensitive to

these distortions. Exploring this approach will be the focus

of our future research.

Figure 23 presents additional examples of generated dis-

tortions under low-quality conditioning. Furthermore, sec-

tion 20 provides visualizations of Reference-based IQA-

Adapter conditioning on different specific distortions.

16.2. Evaluating distances between high­ and low­
quality­conditioned generation

To investigate the differences between images generated

with varying target quality levels, we estimated the dis-

tances between them using four FR IQA metrics: SSIM

[33], LPIPS [98], DISTS [99], and PieAPP [100]. SSIM is

a classical nonparametric method based on scene statistics,

designed to assess structural similarity. LPIPS, on the other
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Figure 13. Overall scheme of the subjective study described in Sections 4.3 and 17.

(a) (b)

Figure 14. Results of the subjective comparison of generation quality improvement methods. (a) Win-rates and average vote % averaged

across all image pairs. (b) Pair-wise win-rates between methods (percentage of wins of the model in the row against the model in the

column). For more details, refer to Section 17.2.

hand, is a neural network-based metric that measures simi-

larity as the cosine distance between the features extracted

from a pre-trained convolutional network. DISTS refines

LPIPS by incorporating additional insensitivity to small im-

age shifts, making it more robust. Lastly, PieAPP demon-

strates strong correlations with subjective scores, particu-

larly for the super-resolution (SR) task [101].

We generated 8,200 images with user-generated prompts

from the Lexica.art website for each target quality level

(percentile of metric scores on the training dataset). Fig-

ure 15 shows the average distances between correspond-

ing images across different percentiles, measured using the

selected FR metrics. As the gap between percentiles in-

creases, the distance between them grows consistently as

well. High-quality percentiles (90, 95, 99) are the closest to

each other, whereas distant percentiles (e.g., 1 and 99) dif-

fer significantly, mostly because of the introduced semantic

variations. In contrast, the nearest 2–3 percentiles are quite

similar, with differences primarily in small details. Notably,

DISTS shows lower differences than LPIPS, suggesting the

presence of minor content shifts between images in differ-

ent percentiles.

17. Subjective Study

17.1. Alignment with qualitative condition

Subjective study described in Section 4.3 employed 300

randomly sampled user-generated prompts from the Lex-

ica.art dataset. We used Subjectify.us platform for the eval-

uation. Overall scheme of the subjective study and the ex-
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Figure 15. FR IQA metrics distances between images generated with the IQA-Adapter conditioned on different target-quality levels. The

IQA-Adapter is trained for HYPER-IQA model.

ample of the user interface is demonstrated on Figure 13.

During this study, we collected more than 22,300 valid re-

sponses of 1,017 unique users: each image-pair was inde-

pendently assessed by at least 10 unique participants. As

we compared 4 models (3 quality-conditions for the IQA-

Adapter and the base model), total number of compared

image-pairs was 4·3

2
×300 = 1800. Participants were asked

to evaluate the visual quality of the images generated from

the same prompts and seeds across all models. Each par-

ticipant was shown 25 pairs of images from which he had

to choose which of them had greater visual quality. The re-

spondent also had the option of “equal quality” in case he

could not make a clear choice. Each participant could com-

plete the comparison only once. Of the 25 pairs shown, 3

questions were verification questions and had a clear leader

in visual quality. The answers of participants who failed

at least one verification question were excluded from the

calculation of the results. Comparisons were allowed only

in full-screen mode and only through one of the allowed

browsers. Before completing the comparison, each partici-

pant was shown the following instructions:

Thank you for participating in this evaluation.

In this study, you will be shown pairs of images

generated by different neural networks from the

same text prompt. From each pair, please select

the image you believe has higher visual quality.

The images may often look quite similar, so in ad-

dition to overall ”aesthetic appeal,” consider fac-

tors such as clarity, contrast, brightness, color sat-

uration, and so on. Pay attention to generation de-

fects, such as extra fingers or distorted bodies. If

you cannot perceive any difference between the

images, you may select ”No difference.”

The text prompt used to generate the images will

not be shown, as this study focuses on evaluating

visual quality, and not textual alignment. Please

note that the test includes verification questions!

In these cases, the differences between the im-

ages will be clear, and selecting ”indistinguish-

able quality” will not be considered a valid re-

sponse.”

17.2. Comparing IQA­Adapter with other methods
in generation quality improvement task

To compare IQA-Adapter conditioned on high quality with

other generation quality improvement methods mentioned

in sec. 4.2, we conducted an additional pair-wise subjective

study in a similar setting as described above. We evaluated

9 models in this experiment: IQA-Adapter (trained with

TOPIQ and LAION-Aesthetics models), Gradient-based

method (with TReS IQA model), Base Model (SDXL-

Base), DiffusionDPO, BeautifulPrompts, Prompt Weight-

ing, Q-Refine, and combinations of IQA-Adapter with Dif-

fusionDPO and BeautifulPrompts. Since the complexity of

the pair-wise study scales quadratically with the number of

models, we used only 50 images per model, resulting in

50∗
9∗8

2
= 1800 image pairs for the comparison. This study

involved 850+ unique users and 18,000+ valid responses.

Results are presented in Figure 14. Win-Rate denotes the

share of side-by-side pairs where the given model was pre-

ferred over another one by most participants, and average

vote % represents the consistency of user votes by averag-

ing the share of user votes for this model across all image

pairs involving it.

Overall, combining IQA-Adapter with DiffusionDPO

and BeautifulPrompts shows the best results, improving

upon these methods alone and confirming a similar observa-

tion from the objective evaluation (Figure 3 (a) and Section

4.2 in the main paper). IQA-Adapter alone demonstrates a

better win-rate than most of the other methods and the base

model, but slightly underperforms against DiffusionDPO.

Gradient-based method is the least preferred, likely due to

artifacts that often appear under direct quality optimization

(see Figures 6 and 24).

18. Additional Experiments

18.1. Computational Overhead

In Table 8, we report time measurements for different gen-

eration methods used in this work. All evaluations were



ARNIQA (FLIVE)CLIPIQA+TOPIQ (KonIQ)

Figure 16. Distributions of relative gains defined in 4.2 across multiple generations with different seeds for IQA-Adapters trained with

different IQA models. We use 25 random user-generated prompts and 100 seeds per prompt for this experiment.

Model Time, s

Base Model (SDXL) 3.83± .04

DiffusionDPO 3.83± .04
IQA-Adapter

w/o Separate Cross-Attn
3.85± .05

Prompt Weighting 3.93± .04
IQA-Adapter 4.07± .04

BeautifulPrompt 4.15± .06
Q-Refine (3.83 + 14.1)± .7

IP-Adapter 3.99± .03
Ref.-based IQA-Adapter 4.11± .04

StyleCrafter 7.66± .08

Table 8. Time complexity of different generative models and con-

ditioning methods. See Section 18.1 for more details.

carried out in a similar environment on a dedicated server

with a single Nvidia A100 GPU in float16 format and av-

eraged across 1,000 generations. Images were generated

in 1024x1024 resolution in 35 diffusion steps. We can

see that the base model (SDXL) generates an image in

∼3.8s, and IQA-Adapter adds only ∼6% to the genera-

tion time. DiffusionDPO fine-tuning method does not add

any inference-time computational overhead, and Q-Refine

takes triple the time of the base model to refine an already

generated image. Propmt refinement techniques generally

do not add significant computational costs; however, Beat-

ifulPrompt includes inference of a small Language Model,

which adds few additional percents of computational over-

head and memory use.

In the image-prompting scenario, Reference-based IQA-

Adapter is a few milliseconds slower than IP-Adapter,

mostly due to qualitative embedding extraction with the

IQA model, and StyleCrafter is almost twice as slow as the

other methods.

18.2. Consistency across different seeds

To evaluate the consistency of quality improvements across

different seeds, we used 25 random user-generated prompts

and sampled 100 random seeds for each, resulting in 2,500

generations per model. The same set of seeds was applied to

both the base model and the IQA-Adapter. Figure 16 shows

the distributions of relative gains (see Section 4.2) across

all generations for adapters trained with different IQA/IAA

metrics. Positive values indicate quality improvement rela-

tive to the base model for the same seed and prompt.

The results reveal that relative gains follow a unimodal

distribution with a positive mean, indicating consistent

quality improvement across generations. For some occa-

sional seeds, the base model already achieves near-optimal

quality scores and leaves limited room for improvement; in

these instances, the adapter introduces negligible changes,

resulting in gains close to zero.

Figure 22 illustrates images generated with the same

prompt and different seeds, comparing the base model to the

IQA-Adapter conditioned on high quality. For this demon-

stration, we used a strong adapter scale (λ = 0.75), which

introduces noticeable stylization and detailing effects, par-

ticularly on high-frequency regions such as hair and tex-

tures.

18.3. Generation with different input quality­
conditions

Figures 19 and 20 illustrate the effects of modulating the

IQA-Adapter with progressively higher input quality con-

ditions. From left to right, the target quality corresponds

to increasing percentiles (1st to 99th) of the target model’s

scores on the training dataset. Different lines represent dif-

ferent IQA models used during adapter training. As the

target quality increases, the generated images exhibit en-

hanced detail and clarity, demonstrating the adapter’s abil-

ity to shift image quality in alignment with the specified

condition.



19. Quality-conditioning and Adversarial Ro-

bustness of IQA models

Figure 24 presents a comparison of images generated by

the base model (left column), the gradient-based method

(middle column), and the IQA-Adapter (right column),

alongside GradCAM visualizations of the target IQA model

used for both gradient-based guidance and IQA-Adapter

training. The gradient-based method often introduces ar-

tifacts that significantly alter the attention maps of the tar-

get model, inflating the quality score by exploiting architec-

tural vulnerabilities. For instance, with the TOPIQ model

(first row), new ’adversarial’ objects are added to the im-

age, capturing the model’s attention and artificially boost-

ing its scores. For TRES, grid-like patterns are generated

that divert the model’s focus away from the adversarial re-

gion. Similarly, with NIMA and HYPER-IQA, the method

saturates the image with high-frequency details and color

variations, dispersing the model’s focus.

In contrast, the IQA-Adapter effectively preserves the

target model’s saliency maps, maintaining focus on relevant

objects in the scene, even when the image undergoes struc-

tural modifications.

In summary, these findings underscore the potential neg-

ative impact of direct quality optimization, which can lead

to the exploitation of the target quality estimator. Gradi-

ent backpropagation through the assessor model, either at

inference time or during training (e.g., through the critic

model in Reinforcement Learning-based approaches), can

potentially exploit internal architectural vulnerabilities of

the model. This makes the development of adversarially

robust assessment models an important vector of future re-

search.

IQA-Adapter largely avoids this problem by learning

qualitative features across the entire quality spectrum dur-

ing training instead of focusing on the optimizationtion of

quality. However, we have also found out that under exces-

sively large adapter scale (λ ≥ 1) and strong negative guid-

ance, IQA-Adapter can sometimes produce “over-stylized”

images that are highly rated by many IQA/IAA models

(Figure 21). This might indicate that the adapter identified

qualitative preferences that are shared across multiple as-

sessment models trained on different datasets and was able

to exploit them.

20. Reference-based IQA-Adapter: more visu-

alizations

Figure 25 demonstrates the comparison of Reference-based

IQA-Adapter and IP-Adapter in image editing task. Fig-

ure 26 shows the results on Text-to-Image generation task

with similar distortion references. It can be seen that other

adapters copy objects and color palettes from the refer-

ence images and often fail to reproduce the distortion. We

also note that we do not present the results of StyleCrafter

in image editing since the official implementation of the

adapter does not support SDXL Image-to-Image generation

pipeline.
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Figure 17. Correlations between input quality-conditions (represented as a percentile of target IQA/IAA model on the training dataset) and

metric scores for the IQA-Adapters trained with different IQA/IAA models. Rows represent various IQA-Adapters, and columns indicate

an IQA/IAA model used for SROCC calculation.
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Figure 18. Ablation experiment: generations with IQA-Adapter with Neg. guidance enabled (1st row), without Neg. guidance (2nd row),

and with a simplified IQA-Adapter without the Separate Qualitative Attention (3rd row). Simplified adapter exhibits poorer alignment

with quality-condition and stronger content changes under different qualitative control signals. Negative guidance strengthens the effect

of IQA-Adapter and magnifies the difference between low and high quality-conditions without significant content changes. Prompt: ’A

beautiful house in the woods’.
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Figure 19. Visualization of generations with different target-quality conditions with IQA-Adapters trained with different IQA/IAA models.

Input quality increases from left (1-st percentile of the training set) to right (99-th percentile).
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Figure 20. Additional visualizations of IQA-Adapter quality-modulation with different aspect ratios.
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Figure 21. Example of images generated with and without strong negative guidance (δ = 1) defined in Section 3.2.1 under high adaptive

scale (λ = 1). Negative guidance magnifies the impact of the IQA-Adapter and occasionally results in the “over-stylisation” effect that is

highly rated by most IQA/IAA models but usually does not reflect real quality improvement.



Base Model IQA-Adapter

Figure 22. Examples of images generated with and without IQA-Adapter with the same prompt. The seeds are equal for corresponding

images to the left and right. In this experiment, we employed the IQA-Adapter trained using the CLIP-IQA+ and LIQE-MIX models.
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Figure 23. Examples of images generated with IQA-Adapter conditioned on low quality. IQA-Adapter is able to reproduce various

distortions present in the training dataset.
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Figure 24. The comparison of adversarial examples generated with the gradient-based method (middle column) alongside outputs from the

base model (left column) and the IQA-Adapter (right column), accompanied by their corresponding quality scores. Different rows represent

different target IQA/IAA models in the gradient-based method and IQA-Adapter. Even-numbered rows display GradCAM visualizations

of the target IQA model applied to the images in the respective columns. The prompts are taken from the PartiPrompts dataset.
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Figure 25. Reference-based Image Editing with SDEdit using a diffusion model equipped with Reference-based IQA-Adapter and IP-

Adapter. IQA-Adapter transfers qualitative information more accurately, while IP-Adapter captures the semantics of the reference image.
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Figure 26. Text-to-Image generation with qualitative reference. First row denotes generations with Reference-based IQA-Adapter and

corresponding distortion reference, second — with IP-Adapter, and the last — with StyleCrafter adapter. Textual prompt for all generations:

”the sun rises over the clouds in the sky”.


