
CL-Splats: Continual Learning of Gaussian Splatting with Local Optimization

Supplementary Material

In this Supplementary Material, we provide additional
details and discussions to complement the main paper. In
Sec. 7, we elaborate on the implementation details of the
method introduced in Sec. 3 of the main paper. Section 8
describes the datasets used in Sec. 4 of the main paper. In
Sec. 9, we present further insights into the design choices
of our method. As highlighted in Sec. 5 of the main paper,
we demonstrate our method’s ability to handle multiple time
steps with dynamic changes in Sec. 11.2. Finally, Sec. 12
includes the full quantitative results of the experiments dis-
cussed in Sec. 4 of the main paper. Please also check our
supplementary video for more visualizations.

7. Implementation Details
In our experiments, we utilize the official 3D Gaussian Splat-
ting [19] implementation as our basis, adopting all default
hyperparameters as provided in 3DGS [19].

Detecting Changes in 2D. We start by obtaining a vanilla
3DGS representation (optimized on time Ta) and render-
ing it from the same viewpoints as the new captures (time
Tb; b > a). In our implementation, we use DINOv2 as the
feature extractor. In particular, we use the Dinov2-small-
14 configuration, which enables real-time processing on an
NVIDIA Quadro RTX 6000, facilitating dynamic change
detection while exploring a scene. DINOv2 model expects
image height and width to be divisible by the patch size
14. To achieve this, we perform a center crop with box
width w14 = w − (w mod 14) and height h14 = h − (h
mod 14). After this preprocessing step, we normalize the in-
puts using the statistics from imagenet [14]. The normalized
result is fed into DINOv2, and we extract the last layer patch
token activations of shape (⌊w/14⌋, ⌊h/14⌋). We compute
the DINOv2 features of the 3DGS Ta rendering and the
ground-truth images at Tb and compare them using cosine
similarity, giving us a down-scaled changed map. To scale
the result to the original resolution, we first resize the change
map to (w14, h14) using bilinear interpolation and then pad
it with 0s. Now, we translate this soft mask to a binary mask
by thresholding the cosine similarity at τ1 = 0.5. Finally,
we dilate the mask by 2% of the image width. We implement
this via a convolution with a kernel having only 1s as weights
and then thresholding at 0.

Identifying Changed 3D Regions via Majority Voting.
Given the 2D binary masks for each render-capture pair, we
now lift these masks into 3D, giving us the set of 3DGS
that are affected by the change. For each frame, we use

the camera-projection-matrix to project [18] the center of
each Gaussian into 2D. We count the number of times each
Gaussian gi projects into the 2D mask with ci and how
often it projects outside of the image with oi. Based on
these counts, we perform a majority voting strategy that
independently assigns each Gaussian either to the set of
changed Gaussians Ot or to the rest:

gi ∈ Ot iff.
4

3
oi < |It| < 2ci. (3)

Here, It is the set of new images described in Sec. 3 of the
main paper. This guarantees that the changed region is well
observed while admitting less robust detection in 2D.

Given this set of Gaussians, we split them into clusters
(ki) using HDBSCAN [26] with a minimum cluster size of
1000. For each ki, we compute the mean mi and the 98th
quantile of the Euclidean distance di of all points in ki to
mi. We then define a sphere si with center mi and radius
di · 1.1 for each ki.

Sampling New Points. As described in the main paper,
to guarantee that there will be Gaussians to optimize, we
sample points in the area of change. If there are already
points close to the area of change, then we can sample in
that local area. To do that, we fit the K-Means clustering
algorithm on the xyz coordinates of the values with K = 10
and then reinterpret these as a GaussianMixture and sam-
ple new points from there. By sampling few points each
round, we gradually expand the 3D region where points are
sampled without sampling too many points that will be far
away. In contrast if there are no Gaussians in the area of
change, then we start by sampling everywhere. In any case,
we only keep the sampled points that project into enough
2D masks according to the majority voting. In Alg. 2 and
Alg. 3 we describe how we sample new points across the
scene and around existing points. The function Random
samples points uniformly distributed in the given interval,
the function K-Means computes a K-Means clustering with
K clusters, the function InitGMMFromClusters constructs a
Gaussians Mixture model with mean being the cluster center
and the covariance being the a diagonal matrix containing
the vector from the center to the furthest point on its diag-
onal. Finally MajorityVote filters the points according to
the voting algorithm described in the main paper. While it
is a viable approach to always sample in the entire scene,
we found that sampling in the region can help to get points
faster.

Algorithm 2 Full-Scene Point Sampling

1: Input: Gt−1,(Mt
i)i≤N , n

2: Output: pointcloud P
3: function RANDOMSAMPLE(Gt−1,(Mt

i)i≤N , n)
4: min = min(Gt−1.xyz)
5: max = max(Gt−1.xyz)
6: S = RANDOM(min, max, n)
7: Sin = MAJORITYVOTE((Mt

i)i≤N , S)
8: return Sin
9: end function

Algorithm 3 Region Point Sampling

1: Input: O, (Mt
i)i≤N , n

2: Output: pointcloud P
3: function SAMPLEREGION(O,(Mt

i)i≤N , n)
4: K = K-MEANS(O.xyz, K = 10)
5: GMM = INITGMMFROMCLUSTERS(K)
6: S = SAMPLE(GMM, n/5)
7: Sin = MAJORITYVOTE((Mt

i)i≤N , S)
8: return Sin
9: end function

3DGS Optimization in Changed Regions. We are able
to only perform local updates by only applying gradients
to Gaussians in Ot. We achieve this by masking the gra-
dients for each Gaussian not in that set and only applying
optimizer update steps to the Gaussians in this set. This
also prevents unwanted movement due to first and second
moment from Adam [20]. In addition to this, we perform
pruning of Gaussians in Ot that are not inside any sphere
si – every 15 iterations, we check if a Gaussian gi ∈

⋃
j sj

and if not we remove it. We found that on average less than
1 Gaussian leaves the spheres each iteration which leads to
a smooth optimization. On the other hand, if they are not
pruned then a significant amount of Gaussians will not be
in the area of the change making the optimization with the
local kernel inefficient.

Local Optimization Kernel. We modify the 3DGS CUDA
kernel to exploit the spatial locality inherent to our optimiza-
tion approach. We conducted a preliminary experiment using
a real-world scene to justify these modifications. In this ex-
periment, we measured the time spent in the rasterization
routines under two conditions: (a) the original complete
3DGS optimization and (b) an artificially constrained ver-
sion where rendering is restricted to a central crop occupying
30% of the image.

Table 6 presents the results of these measurements, detail-
ing the timings for individual steps during 3DGS optimiza-
tion. The results demonstrate that localized optimization
achieves speedups proportional to the reduced number of
tiles rendered.

Given this information, we make three modifications to

Routing / Method Full 3DGS 3DGS 30%

Forward::Preprocess 0.70ms 0.61ms
Forward::Render 0.92ms 0.21ms

Backward::Preprocess 0.32ms 0.21ms
Backward::Render 10.99ms 3.37ms

Total 12.93ms 4.40ms

Table 6. Comparison of Individual Routine Times. We artificially
restrict the optimization to a center crop making up 30% of the tiles
and compare the times of the routines.

the diff-gaussian-rasterization kernel:

1. We compute the dynamic rendering mask by projecting
all Gaussians from Ot onto a boolean matrix of size
⌈w/16⌉×⌈h/16⌉, setting each entry to true if at least one
Gaussian projects onto the corresponding tile. To avoid
additional overhead, we reuse the computed projection to
create the per-tile depth ordering.

2. During forward and backward rendering, we utilize the
generated mask to terminate threads associated with tiles
marked as false in the boolean matrix. We can compute
the entry associated with a thread by checking the threats
group index for x and y.

3. Finally, we terminate threads performing the backward
pass of the preprocessing step for Gaussians that are not
part of Ot.

Baselines.
1. 3DGS [19]: In our experiments we use the official imple-

mentation of 3DGS with unchanged hyperparameters.
2. GaussianEditor [10]: We used the local optimization

code from GaussianEditor [10] in combination with our
masks. We leave the hyperparameters mostly unchanged
– the only change we make is that we set the number of
iterations from 1000 to 30000 for a fair comparison.

3. CL-NeRF [49]: We use the official implementation with
the default hyperparameters. Additionally, we make sure
that the parameters work robustly on new data as well.

4. CLNeRF [6]: We use the official implementation with
the default hyperparameters.

Camera Pose Estimation. The first step in creating photo-
realistic reconstructions is obtaining camera positions. For
the synthetic part of the CL-Splats dataset, we export the
camera positions from Blender, eliminating any influence
camera pose estimation has on the reconstruction quality. For
the in-the-wild images, we follow existing methods [6, 49]
and use COLMAP to recover the camera positions of all the
captured images at all times together. We found that this
works well and that COLMAP does not have problems with
scene changes encountered in these datasets. We expected
this since COLMAP was designed to handle even images

from internet collections, which vary in style and geometry
from frame to frame and not only between time steps. At
the same time, this allows us to conduct our experiments and
focus on the reconstruction part; in practice, reconstructing
from scratch after each record is not feasible. COLMAP al-
ready includes the necessary functionality to match existing
images to a reconstruction. In particular, the following steps
can be taken to add new images to the model.
1. Extract features of the new images with feature extractor.
2. Match the new images against the existing ones, prefer-

ably using vocab tree matcher. This matcher only scales
linearly in the number of new images.

3. Use image registrator to register the new images to the
reconstruction.
The authors of COLMAP suggest using bundle adjuster

to improve the accuracy of the reconstruction, but currently,
they only support adjusting over all cameras. A valuable
addition for the continual setting would be to allow bundle
adjusting only over the new images.

Finally, if too many changes have accumulated over time,
it is possible to render the existing 3DGS reconstruction from
some viewpoints and use that to start a new reconstruction.

We have experimented with this incremental model and
compared it to the jointly estimated model on scenes from the
real-world dataset. We observed that incrementally building
the model only led to an average PSNR drop of 1.2 while
enabling speedups of up to 20 times.

8. Details on CL-Splats Dataset
In this section, we provide additional details for the datasets
that we introduced in Sec. 4 of the main paper.

Synthetic Data. We constructed a synthetic dataset com-
prising three scenes of varying complexity using Blender,
incorporating objects sourced from Objaverse [13] and
BlenderKit [5]. Each scene features multiple camera trajec-
tories inspired by Mip-NeRF-360 [3]. Notably, the training
and test trajectories are designed to be distinct.

Each level of complexity incorporates the following types
of changes: (1) addition of a new object, (2) removal of
an existing object, (3) repositioning of an existing object,
and (4) combinations of multiple operations simultaneously.
Fig. 9 illustrates the modifications introduced in Level-3.

The levels progressively increase in complexity, with
each level encompassing the previous ones, as illustrated in
Fig. 8. The first scene shows a shelf that contains multiple
objects. This shelf is found in the bottom left corner of the
room-scale level. Finally, this room is part of the Level-3
configuration that is comprised of four different rooms with
a large variety of objects and textures. Below, we outline the
key characteristics of each scene.
1. Level-1: The area of the scene is 1m2. The camera is 3m

away from the scene center and the focal length of the
camera is 50mm. The changing objects make up 10-20%
of the scene.

2. Level-2: The area of the scene is 100m2. The camera
is 5m away from the scene center and the focal length
of the camera is 50mm. The changing objects make up
1− 2% of the scene.

3. Level-3: The area of the scene is 400m2. The camera
is 10m away from the scene center and the focal length
of the camera is 50mm. The changing objects make up
< 1% of the scene.
For each level, we use 200 frames for the initial recon-

struction and 25 for training and testing the changed scene.
Since 3DGS [19] requires a sparse reconstruction, we gener-
ate a point cloud using COLMAP [33]. Given that we already
have accurate camera poses and intrinsics from Blender, we
adopt the pipeline from Tetra-NeRF [21] to produce a sparse
point cloud.

Real-World Data. We casually captured five different
scenes using an iPhone 13 at 60 FPS. Four of these scenes
were recorded indoors, and one was captured outdoors. The
outdoor scene and one indoor scene followed Mip-NeRF-
360-style trajectories, while the remaining three indoor
scenes utilized Zip-NeRF [4]-like trajectories. For each
scene, we extract every 20th frame, resulting in 100-200
images for the initial reconstruction and 10-30 images for
the changed parts.

Statistics. In addition to the scene descriptions, we have
gathered statistics about the number of pixels and Gaussians
constituting the changes in all scenes of all datasets. We have
obtained these numbers by counting the inliers in the 2D
masks that we predict as described in Sec. 7 and the number
of Gaussians in Ot. Fig. 10 shows the number of pixels that
have changed compared to the total number of pixels in each
dataset. We can see the variety of change complexities in the
datasets. A similar trend can be seen in Fig. 11 but for the
number of Gaussians.

9. Discussions
9.1. Local Optimization Without Static Elements
In GaussianEditor [10], the authors propose rendering only
the modified parts of the scenes. Specifically, their renderer
considers only the changed Gaussians, entirely omitting the
background. While they leverage this approach to refine
an existing Gaussian model, we use it to generate new ob-
jects from randomly sampled Gaussians. Additionally, their
method optimizes for only 1,000 iterations, whereas we opti-
mize for 30,000.

In our main paper, we present the results of their opti-
mization using our masks in Sec. 4.1 of the leading paper.

Level-1 Level-2

Level-3

Figure 8. Overview of the Synthetic Levels. Each level is part of the next larger level. The location of the smaller scene is marked by red
rectangles in the larger scenes. The curves that are visible in each scene, are the trajectories of the camera for the initial reconstruction.

However, we also explored how GaussianEditor would per-
form if tasked with pruning points during optimization. We
observed that even for small objects, the optimization failed
to converge. It diverged to the point where all points were
pruned, causing the optimization to crash.

In contrast, our method works seamlessly with the same
set of masks. This highlights the importance of accounting
for existing structures during local optimization.

9.2. Failure Case
As discussed in Sec. 4.2, achieving a high recall in the
changed area is critical for reconstruction quality. Exist-
ing structures cannot be effectively optimized without suffi-
cient recall, and new structures are constrained too tightly.
Fig. 12 illustrates an example where the estimated area is too
small, resulting in an inability to modify the scene during
optimization properly. We observed that this happens when
some structures are extremely thin. Despite DinoV2 being

a semantic model, we found that we can reliably segment
changes even when objects are replaced by new ones with
similar semantics. We also experimented with naı̈ve sam-
pling methods which a) samples a fixed number of points in
the entire scene or b) samples a fixed number of points in a
fixed radius of the inliers and found that these lead to up to
6 PSNR lower scores.

10. Batched Updates
To obtain a unified reconstruction Gt that reflects both sets
of changes, we track the indices of the modified Gaussians,
It−1
1 and It−1

2 , in the original representation. The final
scene is constructed by combining the updated Gaussians
Ot

1 and Ot
2 with the unchanged Gaussians from the original

scene:

Gt = Ot
1 ∪ Ot

2 ∪ Gt−1 \ Gt−1[It−1
1 ∩ It−1

2]. (4)

Add

Delete

Move

Multi

Figure 9. Changes in Level-3. Each column shows the effect of one change on the Level-3 dataset. The changed areas are highlighted by
red rectangles. 1) a wooden train is added onto the carpet. 2) The whale basket is removed. 3) The husky plushy gets moved. 4) The white
chair gets replaced by a red armchair and a fire extinguisher appears on the floor.

Synthetic Real World CL-NeRF
Scene

10
7

10
8

Pi
xe

l

Number of changed pixel

Category
Total
Changed

Figure 10. Number of Pixels in Changes. Shows the number of
pixels that have changed according to our 2D masks compared to
the total number of pixels. The y-axis is in log-scale.

Synthetic Real World CL-NeRF
Scene

10
5

10
6

10
7

G
au

ss
ia

ns

Number of changed gaussians

Category
Total
Changed

Figure 11. Number of Gaussians in Changes.Shows the number
of Gaussians that have changed according to our 3D masks com-
pared to the total number of Gaussians. The y-axis is in log-scale.

For ease of notation, we treat Gaussians and indices as
indexable sets. This formulation ensures that all unchanged
Gaussians are retained, while the updated ones are seam-
lessly integrated.

By leveraging this approach, our method successfully
merges scene updates, enabling efficient reconstruction of
complex dynamic environments without the need for full
re-optimization.

11. Multi Day
11.1. History Recovery
Algorithm. To efficiently recover any past reconstruction
Gi, we introduce an algorithm that stores only the changing
Gaussians Ot and their corresponding indices It. This al-
lows us to reconstruct past states without storing redundant
information. We assume that in Gt, the first

#t
static := |Gt−1 \ Ot| (5)

Gaussians correspond to the static parts of the previous
state:

Gt−1
static := Gt−1 \ Ot. (6)

To satisfy this requirement, we store Ot and It immedi-
ately after computing Ot, before any optimization. Addition-

Algorithm 4 History Recovery

1: Input: GT , (Ok)k,(Ik)k, n
2: Output: Gn

3: function RECOVERSTATE(GT ,(Ok)k, (Ik)k, n)
4: if n = T then
5: return GT

6: else
7: N = GT [: |¬IT |] +OT ▷ Array of target size
8: N [IT] = OT ▷ Set indices to dynamic
9: N [¬IT] = C ▷ Set complement to static

10: return RECOVERSTATE(N , (Ok)k, (Ik)k, n)
11: end if
12: end function

ally, before optimization, we rearrange the Gaussian order
to ensure:

Gt[: #t
static] = Gt−1

static. (7)

Since duplication and pruning only affect Ot, this con-
dition remains invariant throughout optimization. To recon-
struct Gt−1 from Gt, we: Extract Gt−1

static by accessing the
first:

#t
static = |{i | ∀i ∈ It, i = 0}|. (8)

2. Retrieve the stored Ot and reconstruct the full scene
as:

Gt−1 := Ot ∪ Gt−1
static. (9)

3. Re-arrange the Gaussians to maintain consistency:
Gt−1

static is placed where It = 0 and changing Gaussians Ot

are placed where It = 1. Alg. 4 shows how this process
can be repeated to recover Gk from Gt, enabling multi-step
history recovery. Our algorithm allows for efficient and exact
scene recovery while drastically reducing storage require-
ments. As shown in the main paper, it achieves identical
reconstructions to storing the full scene while using signifi-
cantly less memory.

11.2. Multi Day Reconstruction
In Sec. 5 of the main paper, we discussed the shortcomings
of existing methods to scale to multiple days and how our
method can elegantly solve this problem due to the explicit
representation of the changes. This section showcases our
method’s prowess over multiple days (4). As a basis, we use
the second level of our blender dataset.

Setup. We perform three different operations leading to
four reconstructions based on our Level-2 synthetic dataset.
For each change, we provide 25 images for training focusing
on the changed region.

Optimization @ 5000 Ground Truth

Figure 12. Illustration of a Failure Case. Due to the underestimation of the changed area, the optimization can not possibly make the
appropriate changes to the scene. The area of interest is marked by a red rectangle.

Time 0 Time 1

Time 2 Time 3

Ti
m

e
0
à

Ti
m

e
1

Ti
m

e
1
à

Ti
m

e
2

Ti
m

e
2
à

Ti
m

e
3

Figure 13. Reconstruction Results over Multiple Days. In this figure we show the same scene and viewpoint at four different points in
time. The changed region is highlighted in red. On the right side are the changed objects that can be used to efficiently recover any point in
time. From 0 to 1, the computer on the desk gets removed. From 1 to 2, a statue of a bear gets added in the back. From 2 to 3, the desk lamp
gets replaced by a piggy bank.

Results. Fig. 13 shows some qualitative results of the re-
constructions in each time step. We can see that unchanged
regions stay the same over the time steps and that no error
accumulates due to forgetting. Additionally, the figure sepa-
rately shows the objects involved in the change. Our method
has the advantage that saving a new day’s reconstruction
is as simple as saving the Gaussians of the changed object
and their original indices. With just the base scene and the
changed objects, we can go back in time, reconstructing any
time steps scene immediately and at no loss in quality.

12. Complete Results
In this section, we present the extended results to the CL-
Splats dataset and the CL-NeRF dataset from Sec. 4.1.

12.1. CL-Splats Dataset
Level-1. Table 8 presents the per-operation performance
of all methods on our Level-1 dataset. Our method demon-
strates a clear advantage, outperforming all baselines sub-
stantially. Among the baseline methods, 3DGS shows com-
petitive performance in this scenario, benefiting from the
relatively high scene coverage compared to other levels.
However, the local optimization of 3DGS within 2D masks
(3DGS+M) proves to be particularly challenging, leading to

a noticeable drop in overall performance despite the simplic-
ity of the setting.

GaussianEditor, which also employs local optimization,
demonstrates clear limitations due to its reliance on 2D
masks and the absence of background consideration dur-
ing optimization. This drawback is particularly evident in
the PSNR scores achieved during object deletion, where
GaussianEditor performs noticeably worse than other meth-
ods. Unlike other approaches that can effectively handle
object removal, GaussianEditor’s failure to account for the
background significantly impacts its metrics.

Additionally, we observed that CL-NeRF struggles to
converge on this dataset. Even when the training duration
was doubled to 400,000 steps, no significant improvement
in results was achieved. This limitation appears to stem
from the inherent characteristics of the underlying NeRF
representation.

Level-2. As shown in Table 9, the performance of all meth-
ods is evaluated on the Level-2 dataset. Compared to Level-1,
the baseline methods—3DGS, 3DGS+M, and GaussianEd-
itor—demonstrate a noticeable decline in performance, in-
dicating increased difficulty at this level. In contrast, our
method remains highly consistent, underscoring its robust-
ness across varying levels of complexity. Interestingly, the
challenges associated with object deletion also persist at this
level.

CL-NeRF achieves improved reconstruction quality com-
pared to Level-1, though it still lags significantly behind our
method.

Level-3. We can see in Table 10 that Level-3 continues
to follow the established trends, supporting our synthetic
data design. The baseline methods show a further decline
in performance compared to Level-2, while our method de-
livers stable and reliable results. Interestingly, CL-NeRF
exhibits improved performance on this dataset, likely due to
the greater object distances, which make PSNR less sensitive
to the smoother reconstructions it generates.

Real-World Data. Table 11 presents the complete results
on real-world data. While the performance gap between
our method and the baseline approaches narrows in this set-
ting, our method outperforms the others on average. Unlike
CL-NeRF and GaussianEditor, our approach demonstrates
reliability, avoiding catastrophic failures.

12.2. CL-NeRF Dataset
Whiteroom. As shown in Table 12, despite the White-
room’s sparse textures and challenging lighting conditions,
our method achieves performance comparable to CL-NeRF.
In contrast, the baseline 3DGS performs significantly worse,

Method/Ops Add Delete

PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

3DGS [19] 10.688 0.445 0.313 6.697 0.499 0.345
CL-NeRF [49] 26.416 0.123 0.807 23.364 0.154 0.761
Ours 34.474 0.009 0.979 34.961 0.009 0.979

Table 7. Reconstruction Quality on the Rome Dataset from the
CL-NeRF dataset.

mainly due to the limited coverage of the scene’s unchanged
regions.

Additionally, we observe that move-and-replace opera-
tions result in poorer reconstruction quality than add-and-
delete operations. While this can be partly attributed to
the inherent complexity of these operations, the primary
challenge stems from the placement of the objects involved.
These objects are often situated in distant corners, where
reduced view coverage adversely impacts reconstruction ac-
curacy.

Kitchen. Table 13 provides the complete results for the
Kitchen scene from the CL-NeRF dataset. On this dataset,
our method achieves results comparable to those of CL-
NeRF. However, CL-NeRF faces significant challenges in
accurately reconstructing the scene after object deletion,
movement, or replacement operations. In contrast, our ap-
proach produces reliable reconstructions, demonstrating its
robustness.

Rome. Table 7 highlights our method’s ability to recon-
struct large-scale scenes with remarkable accuracy and ease,
such as the Colosseum in Rome. Comparatively, CL-NeRF
faces significant challenges in delivering detailed reconstruc-
tions for such complex scenarios.

Method/Operation Add Delete Move Multi

PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

3DGS [19] 23.018 0.051 0.956 27.707 0.021 0.977 25.897 0.030 0.972 25.947 0.030 0.972
3DGS+M 18.802 0.101 0.899 18.669 0.108 0.894 18.927 0.116 0.889 19.682 0.096 0.907
GaussianEditor [10] 25.548 0.047 0.973 22.863 0.065 0.957 24.193 0.051 0.959 25.254 0.044 0.967
CL-NeRF [49] 26.541 0.051 0.947 26.918 0.045 0.953 24.902 0.053 0.946 25.203 0.054 0.947
CL-Splats (ours) 41.923 0.001 0.998 44.018 0.001 0.998 37.481 0.007 0.994 36.310 0.007 0.994

Table 8. Reconstruction Quality on Level-1 of the Synthetic Data from the CL-Splats Dataset.

Method/Operation Add Delete Move Multi

PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

3DGS [19] 17.319 0.245 0.761 26.081 0.125 0.854 26.496 0.115 0.874 25.674 0.113 0.881
3DGS+M 13.731 0.330 0.715 14.118 0.322 0.639 14.845 0.339 0.679 13.581 0.382 0.635
GaussianEditor [10] 22.386 0.109 0.926 19.521 0.162 0.887 24.792 0.072 0.942 26.913 0.074 0.939
CL-NeRF [49] 28.845 0.077 0.918 31.157 0.068 0.928 31.076 0.070 0.927 28.134 0.109 0.894
CL-Splats (ours) 39.528 0.025 0.978 41.647 0.016 0.982 41.838 0.017 0.9815 40.329 0.015 0.979

Table 9. Reconstruction Quality on Level-2 of the Synthetic Data from the CL-Splats Dataset.

Method/Operation Add Delete Move Multi

PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

3DGS [19] 16.509 0.389 0.696 15.602 0.395 0.678 18.010 0.349 0.756 15.653 0.402 0.680
3DGS+M 12.638 0.437 0.682 12.397 0.403 0.693 12.767 0.505 0.601 11.366 0.500 0.611
GaussianEditor [10] 15.581 0.378 0.725 10.443 0.434 0.732 10.951 0.481 0.718 9.191 0.446 0.718
CL-NeRF [49] 34.560 0.043 0.951 34.326 0.045 0.952 34.772 0.045 0.951 34.326 0.045 0.952
CL-Splats (ours) 39.902 0.023 0.979 39.842 0.024 0.979 40.027 0.023 0.979 38.669 0.025 0.978

Table 10. Reconstruction Quality on Level-3 of the Synthetic Data from the CL-Splats Dataset.

Method/Operation Cone Shoe Shelf Room Desk

PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

3DGS [19] 13.449 0.471 0.136 6.592 0.409 0.326 20.211 0.120 0.860 10.061 0.471 0.326 8.506 0.409 0.345
3DGS+M 8.900 0.578 0.117 5.976 0.462 0.226 12.177 0.496 0.599 8.359 0.385 0.184 7.515 0.381 0.226
GaussianEditor [10] 26.277 0.140 0.850 25.969 0.053 0.921 10.211 0.434 0.671 27.944 0.039 0.950 30.268 0.050 0.944
CL-NeRF [49] 21.482 0.422 0.511 25.583 0.192 0.829 25.731 0.154 0.844 15.125 0.551 0.574 28.419 0.132 0.867
Ours 27.163 0.114 0.886 28.144 0.046 0.926 25.256 0.064 0.944 31.203 0.0375 0.965 29.477 0.066 0.929

Table 11. Reconstruction Quality on Real-World Data from the CL-Splats Dataset.

Method/Ops Add Delete Move Replace

PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

3DGS [19] 11.503 0.275 0.733 14.839 0.233 0.773 11.717 0.284 0.731 11.524 0.282 0.728
CL-NeRF [49] 31.736 0.056 0.935 34.021 0.053 0.938 29.121 0.089 0.906 29.917 0.082 0.912
Ours 34.014 0.053 0.953 31.821 0.068 0.935 27.889 0.078 0.909 27.805 0.078 0.909

Table 12. Reconstruction Quality on Whiteroom from the CL-NeRF dataset.

Method/Ops Add Delete Move Replace

PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

3DGS [19] 19.486 0.4021 0.511 8.487 0.602 0.4074 7.339 0.5573 0.4025 8.444 0.583 0.425
CL-NeRF [49] 27.199 0.263 0.789 24.290 0.316 0.751 24.610 0.304 0.759 23.241 0.334 0.736
Ours 27.546 0.296 0.695 26.927 0.323 0.6738 27.291 0.319 0.681 27.151 0.322 0.679

Table 13. Reconstruction Quality on Kitchen from the CL-NeRF dataset.

