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This supplementary material provides additional details
on the experiments presented in the main paper (Sec. 1), ad-
ditional details on the contextual information, ablation stud-
ies, and results (Sec. 2), and detailed information about our
dataset (Sec. 3). Lastly, we provide additional ground-truth
data to broaden the dataset’s impact for other applications
(Sec. 4).

1. Additional comparison details

In the main paper and this supplementary material, we re-
port the results of various methods evaluated on our pro-
posed dataset. We benchmark several approaches, including
statistical-based (learning-free) methods, camera-specific
learning-based methods, and cross-camera learning-based
methods.

For the cross-camera learning-based methods (specifi-
cally, SIIE [2] and C5 [6]), we report results for three ver-
sions of each method:

• A model trained on the Cube++ [19] and NUS [17]
datasets (results reported without any postfix). Since the
Cube++ and NUS datasets lack user-preference ground
truth, we only report results on neutral ground truth using
our dataset.

• A model trained on the Cube++ and NUS datasets, as well
as our proposed dataset (results reported with the postfix
(tuned)). Similarly, due to the absence of user-preference
ground truth in the Cube++ and NUS datasets, we only
report results on neutral ground truth using our dataset.

• A model trained exclusively on our dataset (results re-
ported with the postfix (tuned-CS), where ’CS’ stands for
camera-specific).

This approach ensures a fair comparison, as the generic
models (trained on Cube++ and NUS datasets) lack expo-
sure to the diverse lighting conditions present in our dataset.

For the C5 method [6], when training the tuned-CS
model, we used only the input histogram and excluded

*Equal contribution.

the additional histograms proposed in the original method.
These additional histograms were mainly intended to assist
the model in calibrating for new cameras. Since our dataset
uses a single camera, we removed the extra encoders from
the C5 model for the tuned-CS version.

For FFCC [8], we first performed tuning to iden-
tify optimal hyperparameters before training the model.
The model was tuned and trained on our dataset.
When reporting FFCC with capture metadata—denoted
as FFCC (capture info) in the tables—we used a vector
of [log(shutter-speed), log(ISO), 1] instead of the original
metadata vector [log(shutter-speed), log(f-number), 1] ×
[cam-1, cam-2, 1], for the following reasons: we only have a
single camera (the original method was designed to handle
two different cameras), and our dataset focuses on smart-
phone cameras, which have a fixed aperture (no change in
f-number per scene).

For the classification-CC method [35], we re-
implemented the approach as the original code was
unavailable. In our implementation, we set the number of
clusters to 50, matching the value used in the original paper
[35] for the NUS dataset [17].

For the KNN method [3], which was initially proposed
for white-balance correction in the post-capture stage, we
followed the adjustments used in the evaluation presented
in [2]. Specifically, we replaced the polynomial function
used in the original method with the ground-truth 3D illu-
minant vectors from the training data. The nearest-neighbor
process was performed as described in the original paper,
but the final output was an illuminant color, rather than a
polynomial function.

For the quasi-unsupervised CC method [10], we report
the results of both the unsupervised model and the tuned
model on our dataset. We used the gray-world (GW)
method [12] as the initial estimation for APAP [4].

For the TLCC method [40], we used the official check-
point released by the authors, trained on the sRGB dataset
[51] and raw datasets [17, 21]. We then finetuned the model
on our proposed dataset to leverage transfer learning from
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Figure 1. This figure illustrates the daily variations in sunrise and sunset times across different countries throughout the year 2024. The
x-axis represents the date, while the y-axis denotes the time of day (4 AM – 10 PM). The light green shaded regions indicate the duration
of daylight for each country, highlighting seasonal variations due to differences in latitude and geographical location.
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Figure 2. Qualitative examples from the best 25% (first quartile), second quartile, third quartile, and the worst 5% of our results. Shown
images are white-balanced using the illuminant estimates from TLCC [40], FFCC [8], C4 [47], C5 [6], and our method. We show results
of both types of white-balance corrections: 1) neutral (on the left side of each white-balanced image) and 2) user-preference (on the right
side). All images are gamma-corrected to enhance visualization.

sRGB to raw, as described in the TLCC paper [40].

For the gamut method [23], we present the results for
three canonical gamuts: edges, pixel colors, and the 1st-
degree gradient. For the TECC method [9], we report the
results with the 2nd-order gray-edge [41]. Lastly, for the
gray-edge (GE) method [41], we provide the results based

on both the first and second gradients of the images.
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Figure 3. Additional qualitative examples of scenes with limited color variations, which are particularly challenging for illuminant estima-
tion. Images are white-balanced using illuminant estimates from TLCC [40], FFCC [8], C4 [47], C5 [6], and our method. For reference,
we also include results corrected using the ground-truth illuminant. We show results of both types of white-balance corrections: 1) neutral
(on the left side of each white-balanced image) and 2) user-preference (on the right side). All images are gamma-corrected for better
visualization.
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Figure 4. Our dataset includes diverse scenes captured under various weather conditions (sunny, cloudy, rainy, and snowy) and lighting
conditions (indoor, daylight, sunset/sunrise, and night). For each example, we show raw images (gamma-corrected for better visualization)
alongside their sRGB counterparts.

2. Additional details and results

2.1. Additional details on contextual information

In the main paper, we presented our method, which relies
on the “probability” of an image being captured during one
of the key solar events (e.g., sunrise, noon, sunset) along
with additional capture metadata and color information rep-
resented as histograms.

Our method leverages the probability of the time of day,
allowing the model to rely on an absolute time reference
rather than being affected by location-specific time zones,
thereby improving generalization.

Solar event times (i.e., dawn, sunrise, noon, sunset, dusk,
and midnight) vary significantly based on the time of year
and geographical location. For instance, locations near the
equator experience relatively small variation in day length,



whereas higher-latitude regions exhibit more pronounced
seasonal differences. In Fig. 1, we illustrate the average
length of daylight across different countries and continents.
As is well known, sunset/sunrise times vary depending on
both location and date.

If we were to use the raw clock timestamp without geolo-
cation, the information would be highly location-dependent
and would not generalize well to regions with different so-
lar event timings. An alternative approach would be to pro-
vide both geolocation and timestamp, allowing the model
to learn their relationship with solar event timings. How-
ever, this would require a diverse dataset with images cap-
tured across different locations worldwide to ensure robust
learning, which may be impractical due to the extensive
data collection required. Our method is simpler and more
effective–instead of relying on learned patterns, we use tra-
ditional astronomical methods [34, 42, 43] to compute solar
event times for a given location. This allows us to represent
time in an absolute manner, using the probability of an im-
age being captured at each solar event rather than relying on
location-specific timestamps.

2.2. Additional ablation studies

In the main paper, we presented a set of ablation studies
to analyze the impact of different input features on our
method. Here, we provide additional ablation studies on
the validation set with masks applied, as shown in Table 1.
By default, our results in Table 1 use the histogram feature,
H, and the time-capture feature, c, with noise stats, n.

In this additional set of ablation studies, we show results
when using only the time feature, p, without the histogram
feature (w/o H). We then added capture information, in-
cluding ISO (i), shutter speed (s), flash status (f ), and noise
stats (n), one at a time, in addition to the time feature, p.
Additionally, we examine the effect of using the histogram
feature in combination with only ISO (i), shutter speed (s),
flash status (f ), and noise stats (n).

Furthermore, we present results using the complete time
feature with noise stats, n, under the following conditions:
• Without the edge histogram, He.
• Without the additional u and v positional encoding chan-

nels (u/v coord.).
• Using the log-uv histogram from prior work [6–8] instead

of our R/G and B/G chromaticity histogram.
• Using the R/G, B/G chromaticity image, Ichroma, instead

of our histogram feature.
• Without pre-processing and normalization of the time-

capture feature.
• Using a smaller histogram feature with 24 bins.
• Using a lower-resolution image of 64× 48.
• Without the time feature, p.
• Various combinations of noise stats, n, and SNR stats, r.

2.3. Analysis on outdoor vs. indoor scenes

For outdoor scenes, time-of-day information provides
strong cues about the likely range of illuminants. However,
it is not as informative for indoor scenes, which are typi-
cally illuminated by artificial lights. Therefore, for indoor
scenes, image colors and additional capture information are
necessary for accurate illuminant estimation.

In Table 2, we analyze the angular error of our model
when trained using 1) the time feature p only, 2) the com-
plete time-capture feature without the color histogram, and
3) the complete time-capture feature with the color his-
togram, across different scene types. The models are trained
on all scene types and tested separately on outdoor and in-
door scenes, with the indoor and outdoor scenes manually
labeled (see Sec. 3.2 for details).

The first row of Table 2 presents results for using only
the time feature p, without any color information from the
scene provided by the histogram H. The results for outdoor
scenes are significantly better than those for indoor scenes,
indicating that the time feature p provides valuable cues for
estimating illuminants in outdoor scenes.

The second row shows results for using the complete
time-capture feature, without scene color information. The
outdoor/indoor gap is smaller, suggesting that other capture
data, such as ISO and noise stats, provide additional insights
into the capturing environment. The third row shows re-
sults for using the complete time-capture feature along with
the image histogram (our proposed method). This further
reduces the outdoor/indoor gap, as the histogram provides
color information for both indoor and outdoor scenes.

2.4. Additional quantitative results

In the main paper, we reported results on our testing set
without masking out regions illuminated by light sources
different from the dominant one used to obtain the ground
truth. This setup mimics realistic scenarios where a sin-
gle illuminant is not always present. In Table 3, we report
results after masking out regions in the testing set that are
illuminated by different light sources than the ground truth.
Table 4 shows comparisons with other methods on the vali-
dation set without masking out regions lit by different illu-
minations than the dominant light color in the scene.

2.5. Qualitative results

Figure 2 presents qualitative results from our method along-
side other illuminant estimation methods, namely TLCC
[40], FFCC [8], C4 [47], and C5 [6]. We include randomly
selected examples representing the top 25%, second quar-
tile, third quartile, and bottom 5% of our results. For FFCC
[8] and C5 [6], we show the best result from each method
for every example shown in the figure, as we used multiple
models for each method—FFCC includes models with and



Table 1. Results on the validation set with masking. We report the mean, median, best 25%, worst 25%, tri-mean, and maximum angular
errors for each method on both neutral and user-preference white-balance ground truth, presented in the format (neutral / user-preference).
Results for our method with various configurations are included, where p, i, s, f , n, and r represent the time feature, ISO, shutter speed,
flash status, noise stats, and SNR stats, respectively. Symbols H and c denote histogram and time-capture feature. H → Ichroma indicates
using R/G and B/G images instead of histograms, while He refers to histogram of image edges. log-H refers to the histogram used in [6, 7]
and c-raw refers to using time-capture features without any pre-processing or normalization. Additional configurations include h (number
of histogram bins), and uv coord. (additional histogram channels of the u/v coordinates in histogram space). The number of parameters
required by each method is reported. The best and second-best results are highlighted.

Method Mean Med. Best
25%

Worst
25%

Worst
5% Tri. Max #params

(K)
GW [12] 5.86 / 5.41 4.90 / 3.97 0.78 / 0.95 12.74 / 11.92 19.86 / 19.06 4.98 / 4.42 30.05 / 30.53 -
SoG [20] 4.38 / 3.95 3.28 / 2.71 0.57 / 0.69 9.87 / 9.03 15.63 / 14.53 3.62 / 3.09 31.28 / 31.66 -
GE-1st [41] 4.02 / 3.62 2.82 / 2.43 0.60 / 0.64 9.09 / 8.46 14.99 / 14.10 3.18 / 2.73 32.57 / 32.91 -
GE-2nd [41] 3.71 / 3.29 2.67 / 2.29 0.62 / 0.60 8.29 / 7.56 14.15 / 13.17 2.96 / 2.52 31.66 / 32.02 -
Max-RGB [11] 3.54 / 2.57 2.75 / 1.84 0.78 / 0.88 7.61 / 5.52 11.66 / 9.22 3.02 / 1.98 19.81 / 16.78 -
wGE [24] 3.96 / 3.55 2.62 / 2.19 0.56 / 0.61 9.20 / 8.62 15.69 / 14.66 3.03 / 2.63 33.91 / 34.32 -
PCA [17] 4.33 / 3.90 3.16 / 2.41 0.54 / 0.57 10.02 / 9.49 16.75 / 15.87 3.46 / 2.94 32.40 / 32.84 -
MSGP [37] 6.41 / 5.88 5.48 / 4.01 0.84 / 1.03 14.20 / 13.16 23.99 / 23.26 5.38 / 4.59 34.23 / 35.95 -
GI [36] 4.30 / 4.50 2.78 / 2.74 0.43 / 0.75 11.14 / 11.11 21.42 / 20.61 2.94 / 3.13 32.52 / 32.96 -
TECC [9] 3.78 / 3.30 2.69 / 2.23 0.62 / 0.59 8.49 / 7.66 14.16 / 13.18 2.99 / 2.57 31.41 / 31.75 -
Gamut (pixels) [23] 3.72 / 2.54 2.83 / 1.61 0.73 / 0.61 8.10 / 5.99 13.66 / 10.52 3.01 / 1.83 21.81 / 17.82 0.636
Gamut (edges) [23] 4.43 / 3.92 3.34 / 3.04 1.04 / 1.13 9.52 / 8.13 15.13 / 13.50 3.62 / 3.22 19.26 / 15.91 324
Gamut (1st) [23] 4.33 / 3.85 3.34 / 2.58 0.68 / 0.98 9.87 / 8.77 15.61 / 13.86 3.52 / 2.83 22.15 / 19.03 279
NIS [22] 4.28 / 3.80 3.75 / 2.73 0.72 / 0.85 9.14 / 8.21 14.57 / 13.33 3.80 / 3.09 31.72 / 31.87 0.078
Classification-CC [35] 2.55 / 1.64 2.15 / 1.15 0.63 / 0.36 5.37 / 3.57 8.88 / 5.47 2.17 / 1.32 17.82 / 7.89 58,384
FFCC [8] 2.21 / 1.54 1.33 / 0.90 0.42 / 0.24 5.46 / 3.92 10.38 / 8.03 1.55 / 1.00 17.18 / 14.53 12
FFCC (capture info) [8] 1.97 / 1.43 1.25 / 0.80 0.39 / 0.24 4.72 / 3.65 8.56 / 7.13 1.43 / 0.93 14.16 / 12.30 36.9
FC4 [26] 4.88 / 5.49 2.97 / 3.66 0.90 / 1.32 12.41 / 13.00 31.38 / 31.36 3.15 / 3.85 44.29 / 42.46 1,705
APAP (GW) [4] 3.43 / 1.99 2.66 / 1.53 0.86 / 0.52 7.25 / 4.11 10.91 / 6.02 2.92 / 1.66 15.11 / 7.10 0.289
SIIE [2] 3.67 / - 3.16 / - 0.88 / - 7.44 / - 10.75 / - 3.24 / - 16.91 / - 1,008
SIIE (tuned) [2] 2.90 / - 2.23 / - 0.45 / - 6.44 / - 10.27 / - 2.38 / - 13.97 / - 1,008
SIIE (tuned-CS) [2] 2.65 / 1.61 1.91 / 1.27 0.45 / 0.32 6.13 / 3.58 10.76 / 5.34 2.05 / 1.35 20.53 / 8.12 1,008
KNN (raw) [3] 2.43 / 1.42 1.52 / 0.99 0.34 / 0.25 6.08 / 3.27 11.70 / 5.90 1.63 / 1.06 22.00 / 8.96 757
Quasi-U-CC [10] 3.60 / 3.27 2.71 / 2.10 0.50 / 0.55 8.19 / 7.87 13.18 / 12.68 2.89 / 2.41 22.60 / 23.17 54,421
Quasi-U-CC (tuned) [10] 2.70 / 2.46 1.92 / 1.53 0.50 / 0.51 6.21 / 5.88 9.90 / 9.24 2.12 / 1.76 15.20 / 16.99 54,421
BoCF [30] 3.12 / 1.94 2.55 / 1.37 0.85 / 0.50 6.28 / 4.19 8.91 / 6.90 2.67 / 1.57 11.97 / 10.81 59
C4 [47] 1.63 / 1.46 1.04 / 0.94 0.30 / 0.29 3.87 / 3.49 6.73 / 5.68 1.17 / 1.07 9.89 / 10.59 5,116
CWCC [31] 3.21 / 2.21 2.44 / 1.79 0.83 / 0.73 6.84 / 4.48 10.67 / 7.89 2.68 / 1.83 12.99 / 14.34 101
C5 [6] 2.90 / - 2.34 / - 0.78 / - 5.95 / - 9.89 / - 2.44 / - 19.78 / - 412
C5 (tuned) [6] 1.87 / - 1.14 / - 0.29 / - 4.74 / - 8.69 / - 1.26 / - 12.44 / - 412
C5 (tuned-CS) [6] 1.80 / 1.44 1.24 / 0.92 0.33 / 0.27 4.23 / 3.45 7.44 / 5.69 1.37 / 1.05 13.70 / 8.17 172
TLCC [40] 2.69 / 2.51 2.09 / 1.77 0.63 / 0.57 5.75 / 5.60 9.22 / 9.63 2.21 / 1.98 13.51 / 21.24 32,910
PCC [48] 3.06 / 1.89 1.92 / 1.39 0.46 / 0.40 7.29 / 4.18 11.99 / 6.91 2.28 / 1.48 24.28 / 9.33 0.378
RGP [16] 4.31 / 4.39 2.92 / 2.81 0.39 / 0.69 10.84 / 10.82 20.28 / 18.68 3.06 / 3.26 33.93 / 34.36 -
CFCC [13] 2.74 / 1.57 2.04 / 1.25 0.57 / 0.42 6.17 / 3.34 10.45 / 5.82 2.18 / 1.29 14.53 / 9.35 0.283
Ours (w/o H, h = 0) 2.24 / 1.60 1.68 / 1.20 0.47 / 0.38 4.93 / 3.61 8.83 / 6.18 1.77 / 1.25 19.44 / 8.52 2.1
Ours (w/o c) 2.28 / 1.35 1.51 / 0.89 0.35 / 0.29 5.64 / 3.12 12.01 / 5.86 1.61 / 0.93 23.51 / 10.53 4.07
Ours (w/o H, c = p) 5.28 / 4.20 3.15 / 2.28 0.61 / 0.55 13.39 / 10.83 19.41 / 15.72 3.83 / 2.84 27.27 / 19.60 1.95
Ours (w/o H, c =

[
pT , i

]T
) 4.22 / 3.41 2.15 / 2.23 0.43 / 0.50 10.86 / 8.30 18.10 / 13.93 2.93 / 2.57 27.53 / 18.70 1.97

Ours (w/o H, c =
[
pT , s

]T
) 4.61 / 3.79 2.34 / 2.23 0.59 / 0.52 12.14 / 9.61 18.89 / 14.74 3.06 / 2.61 26.83 / 19.58 1.97

Ours (w/o H, c =
[
pT , f

]T
) 5.24 / 4.14 2.67 / 2.30 0.52 / 0.55 13.62 / 10.69 19.67 / 15.73 3.60 / 2.72 26.57 / 19.67 1.97

Ours (w/o H, c =
[
pT ,nT

]T
) 2.34 / 1.66 1.66 / 1.14 0.41 / 0.38 5.50 / 3.83 9.74 / 6.89 1.73 / 1.27 19.47 / 9.22 2.05

Ours (c = [i]
T ) 1.99 / 1.26 1.35 / 0.82 0.36 / 0.28 4.78 / 3.01 9.25 / 5.88 1.51 / 0.92 16.89 / 9.82 4.61

Ours (c = [s]
T ) 2.11 / 1.27 1.57 / 0.81 0.38 / 0.25 4.90 / 3.10 9.19 / 5.98 1.61 / 0.89 20.73 / 9.65 4.61

Ours (c = [f ]
T ) 2.06 / 1.33 1.24 / 0.80 0.36 / 0.24 5.11 / 3.34 10.34 / 6.04 1.38 / 0.91 20.66 / 11.15 4.61

Ours (c = n) 1.94 / 1.26 1.20 / 0.88 0.38 / 0.32 4.66 / 2.93 8.85 / 5.77 1.36 / 0.88 23.85 / 9.55 4.69
Ours (c = n) 1.93 / 1.28 1.27 / 0.83 0.36 / 0.23 4.71 / 3.26 9.36 / 5.96 1.35 / 0.86 20.59 / 9.76 4.79
Ours (w/o He) 1.96 / 1.30 1.37 / 0.87 0.35 / 0.23 4.73 / 3.03 10.29 / 4.65 1.41 / 0.96 26.11 / 5.84 4.86
Ours (w/o u/v coord.) 1.69 / 1.34 1.25 / 0.94 0.28 / 0.31 3.88 / 3.02 7.03 / 4.89 1.32 / 1.06 19.58 / 6.84 4.79
Ours (w/ log-H [6, 7]) 1.88 / 1.27 1.37 / 0.89 0.40 / 0.26 4.24 / 2.86 7.28 / 4.92 1.43 / 1.00 23.83 / 6.96 4.93
Ours (H→ Ichroma) 2.17 / 1.32 1.46 / 0.85 0.41 / 0.25 5.20 / 3.19 10.29 / 5.65 1.58 / 0.93 17.97 / 7.61 4.79
Ours (w/ c-raw) 2.11 / 1.46 1.45 / 1.10 0.46 / 0.38 4.79 / 3.23 9.00 / 5.51 1.60 / 1.17 21.59 / 10.09 4.93
Ours (h = 24) 1.74 / 1.14 1.24 / 0.74 0.29 / 0.23 4.12 / 2.74 7.80 / 4.84 1.32 / 0.84 21.94 / 7.24 4.93
Ours (I ∈ R(64×48)×3) 1.86 / 1.16 1.26 / 0.73 0.34 / 0.24 4.35 / 2.81 8.36 / 4.91 1.41 / 0.83 18.76 / 8.33 4.93
Ours (w/o p) 1.83 / 1.13 1.25 / 0.75 0.31 / 0.20 4.39 / 2.72 8.87 / 4.90 1.34 / 0.83 18.52 / 7.33 4.83
Ours (w/o n, w/o r) 1.79 / 1.24 1.20 / 0.86 0.34 / 0.24 4.23 / 2.95 7.77 / 5.53 1.35 / 0.89 17.82 / 10.33 4.83
Ours (w/o n, w/ r) 1.70 / 1.12 1.15 / 0.85 0.29 / 0.25 4.13 / 2.56 8.84 / 4.65 1.23 / 0.87 21.55 / 7.79 4.93
Ours (w/ n, w/ r) 1.63 / 1.12 1.14 / 0.71 0.33 / 0.25 3.78 / 2.67 7.19 / 4.98 1.25 / 0.83 19.96 / 9.28 5.03
Ours (w/ n, w/o r) 1.63 / 1.09 1.05 / 0.71 0.29 / 0.24 3.92 / 2.62 8.12 / 4.89 1.18 / 0.77 22.22 / 8.45 4.93



Table 2. Results on outdoor vs. indoor scenes. We report the mean, median, best 25%, worst 25%, tri-mean, and maximum angular errors
for each experiment setting on the testing set (without masking). Models are trained and tested on the neutral ground-truth illuminants. c
denotes the time-capture feature. p represents the time feature. ‘c = all’ indicates that the full time-capture feature is used.

Method Mean Med. Best 25% Worst 25% Worst 5% Tri. Max
outdoor indoor outdoor indoor outdoor indoor outdoor indoor outdoor indoor outdoor indoor outdoor indoor

Ours (w/o H, c = p) 3.47 9.39 1.96 8.83 0.40 1.98 9.24 17.73 16.19 25.51 2.28 8.97 24.31 36.23
Ours (w/o H, c = all) 2.12 3.05 1.41 2.41 0.38 1.13 5.05 6.00 8.58 10.00 1.53 2.53 17.55 11.25
Ours (w/ H, c = all) 1.77 1.97 1.20 1.26 0.33 0.42 4.18 4.83 8.32 10.15 1.31 1.33 18.75 35.42

Table 3. Results on the testing set with masking. We report the mean, median, best 25%, worst 25%, tri-mean, and maximum angular
errors for each method on both neutral and user-preference white-balance ground truth, presented in the format (neutral / user-preference).
Symbols n and r represent noise stats and SNR stats, respectively. The best and second-best results are highlighted.

Method Mean Med. Best
25%

Worst
25%

Worst
5% Tri. Max

GW [12] 6.38 / 5.68 6.29 / 4.67 1.05 / 1.11 12.55 / 12.05 18.15 / 19.89 5.94 / 4.86 28.09 / 31.89
SoG [20] 4.36 / 3.78 3.44 / 2.19 0.66 / 0.70 9.52 / 9.27 14.53 / 16.36 3.68 / 2.69 23.22 / 32.06
GE-1st [41] 4.02 / 3.58 3.13 / 2.27 0.63 / 0.59 9.11 / 8.86 14.37 / 16.09 3.32 / 2.59 21.38 / 32.21
GE-2nd [41] 3.90 / 3.38 2.87 / 1.97 0.65 / 0.59 8.82 / 8.39 14.02 / 15.65 3.11 / 2.32 22.24 / 31.73
Max-RGB [11] 3.70 / 2.73 2.80 / 1.87 0.90 / 0.91 7.90 / 6.19 12.32 / 12.76 3.05 / 1.95 21.84 / 24.86
wGE [24] 3.76 / 3.33 2.68 / 2.01 0.57 / 0.53 8.66 / 8.45 13.85 / 16.01 2.98 / 2.33 21.39 / 31.94
PCA [17] 4.34 / 3.75 3.52 / 1.97 0.62 / 0.64 9.54 / 9.47 14.51 / 16.65 3.67 / 2.58 22.87 / 32.31
MSGP [37] 6.62 / 5.87 5.91 / 4.56 0.98 / 1.05 13.56 / 12.87 20.62 / 22.30 5.85 / 4.85 37.25 / 36.92
GI [36] 4.76 / 4.85 3.24 / 2.83 0.45 / 0.76 11.65 / 12.07 19.87 / 21.06 3.52 / 3.46 36.34 / 36.02
TECC [9] 3.92 / 3.39 2.95 / 2.11 0.67 / 0.58 8.85 / 8.41 13.68 / 15.43 3.21 / 2.46 21.85 / 31.83
Gamut (pixels) [23] 3.53 / 2.53 2.53 / 1.46 0.69 / 0.59 7.95 / 6.39 12.35 / 12.86 2.88 / 1.65 21.53 / 26.62
Gamut (edges) [23] 4.28 / 4.06 3.30 / 3.03 1.07 / 0.96 9.23 / 9.07 14.47 / 16.86 3.48 / 3.18 28.50 / 30.72
Gamut (1st) [23] 3.87 / 3.81 2.80 / 2.51 0.70 / 0.85 8.88 / 8.83 14.01 / 16.17 3.03 / 2.86 21.38 / 32.62
NIS [22] 4.53 / 4.03 3.69 / 2.74 0.67 / 0.78 9.80 / 9.40 14.83 / 16.12 3.77 / 3.10 20.76 / 32.75
Classification-CC [35] 2.71 / 1.68 2.07 / 1.19 0.60 / 0.35 5.94 / 3.78 9.83 / 6.28 2.21 / 1.32 19.31 / 10.26
FFCC [8] 2.61 / 1.54 1.43 / 0.85 0.37 / 0.26 6.83 / 4.07 16.24 / 8.46 1.66 / 0.98 48.98 / 18.60
FFCC (capture info) [8] 2.19 / 1.37 1.37 / 0.82 0.30 / 0.24 5.49 / 3.53 11.86 / 6.90 1.53 / 0.92 48.53 / 16.40
FC4 [26] 3.92 / 2.67 2.77 / 2.23 0.84 / 0.89 9.17 / 5.18 17.30 / 7.77 2.88 / 2.36 45.83 / 11.83
APAP (GW) [4] 3.77 / 2.13 3.20 / 1.70 0.98 / 0.48 7.63 / 4.49 10.96 / 6.69 3.34 / 1.80 14.66 / 8.91
SIIE [2] 4.16 / - 3.37 / - 0.91 / - 9.06 / - 16.13 / - 3.49 / - 43.76 / -
SIIE (tuned) [2] 3.16 / - 2.25 / - 0.49 / - 7.27 / - 12.25 / - 2.50 / - 34.53 / -
SIIE (tuned-CS) [2] 3.17 / 1.79 2.20 / 1.21 0.49 / 0.32 7.50 / 4.23 13.76 / 6.94 2.41 / 1.34 39.01 / 9.54
KNN (raw) [3] 2.41 / 1.44 1.50 / 0.85 0.34 / 0.21 6.14 / 3.70 12.05 / 7.12 1.65 / 1.00 28.95 / 13.49
Quasi-U-CC [10] 3.84 / 3.38 2.94 / 1.89 0.55 / 0.60 8.55 / 8.56 13.62 / 16.02 3.20 / 2.36 24.74 / 32.79
Quasi-U-CC (tuned) [10] 3.02 / 2.70 2.18 / 1.51 0.48 / 0.48 6.95 / 6.94 11.38 / 14.05 2.37 / 1.74 22.67 / 33.64
BoCF [30] 3.44 / 2.14 2.67 / 1.60 0.89 / 0.49 7.16 / 4.72 11.07 / 7.84 2.89 / 1.71 21.38 / 19.68
C4 [47] 1.73 / 1.45 1.18 / 0.90 0.35 / 0.24 4.09 / 3.67 7.60 / 7.05 1.29 / 1.00 21.55 / 18.09
CWCC [31] 3.46 / 2.31 2.48 / 1.71 0.76 / 0.70 7.62 / 4.98 11.84 / 9.54 2.82 / 1.85 20.73 / 20.81
C5 [6] 3.18 / - 2.49 / - 0.78 / - 6.82 / - 10.55 / - 2.67 / - 16.70 / -
C5 (tuned-CS) [6] 1.81 / 1.27 1.22 / 0.86 0.36 / 0.22 4.31 / 2.98 7.45 / 5.08 1.36 / 0.95 16.78 / 9.23
TLCC [40] 2.64 / 2.87 2.06 / 2.01 0.65 / 0.69 5.69 / 6.58 9.68 / 13.13 2.16 / 2.18 21.44 / 33.20
PCC [48] 2.87 / 1.68 2.03 / 1.16 0.51 / 0.38 6.83 / 3.89 10.62 / 7.05 2.25 / 1.25 14.60 / 10.34
RGP [16] 4.57 / 4.50 3.21 / 2.88 0.43 / 0.67 10.95 / 11.16 18.06 / 20.05 3.55 / 3.33 32.11 / 33.98
CFCC [13] 2.82 / 1.50 2.01 / 1.02 0.70 / 0.38 6.24 / 3.46 10.62 / 6.39 2.19 / 1.10 17.11 / 10.19
Ours (w/o n, w/o r) 1.86 / 1.26 1.31 / 0.78 0.37 / 0.23 4.33 / 3.15 8.71 / 6.00 1.41 / 0.89 22.63 / 16.07
Ours (w/o n, w/ r) 1.84 / 1.25 1.18 / 0.80 0.34 / 0.24 4.55 / 3.04 9.36 / 5.15 1.31 / 0.90 24.99 / 13.02
Ours (w/ n, w/o r) 1.84 / 1.22 1.18 / 0.73 0.35 / 0.24 4.56 / 3.06 9.85 / 5.76 1.25 / 0.82 29.46 / 15.24
Ours (w/ n, w/ r) 1.82 / 1.21 1.19 / 0.78 0.36 / 0.20 4.42 / 2.97 9.42 / 5.18 1.25 / 0.87 35.42 / 12.93

without capture information, and C5 has differently tuned
models.

As shown in Fig. 2, the worst 5% example is a scene
with limited colors, a typical challenge in illuminant es-
timation, where color information can mislead any model
from achieving accurate estimates. Although our method
has a relatively high error, other methods, such as TLCC

[40] and FFCC [8], exhibit even higher errors. However, our
method results in more perceptually acceptable differences
compared to these methods when compared to the ground
truth.

To further examine our method on scenes with limited
colors, we present additional qualitative examples in Fig. 3.
As shown, our method performs reasonably well in these



Table 4. Results on the validation set without masking. We report the mean, median, best 25%, worst 25%, tri-mean, and maximum
angular errors for each method on neutral and user-preference white-balance ground-truth illuminants, presented in the format (neutral /
user-preference). Symbols n and r refer to noise and SNR stats, respectively. The best and second-best results are highlighted.

Method Mean Med. Best
25%

Worst
25%

Worst
5% Tri. Max

GW [12] 5.76 / 5.30 4.83 / 3.94 0.78 / 0.89 12.45 / 11.68 19.83 / 18.98 4.91 / 4.29 30.03 / 30.51
SoG [20] 4.42 / 3.74 3.27 / 2.35 0.59 / 0.71 10.01 / 8.76 15.91 / 14.41 3.65 / 2.77 30.43 / 30.82
GE-1st [41] 4.15 / 3.40 2.99 / 2.30 0.63 / 0.61 9.42 / 8.13 16.51 / 14.63 3.28 / 2.61 32.02 / 32.37
GE-2nd [41] 3.88 / 3.10 2.74 / 2.01 0.69 / 0.58 8.68 / 7.27 15.31 / 13.45 3.06 / 2.29 28.72 / 29.15
Max-RGB [11] 3.76 / 2.57 2.98 / 1.79 0.96 / 0.92 7.94 / 5.56 13.21 / 10.13 3.17 / 1.91 21.06 / 17.57
wGE [24] 4.11 / 3.28 2.65 / 2.06 0.59 / 0.53 9.66 / 8.30 17.98 / 15.37 3.00 / 2.33 33.88 / 34.29
PCA [17] 4.36 / 3.77 3.04 / 2.15 0.56 / 0.54 10.27 / 9.32 17.99 / 16.41 3.37 / 2.69 32.27 / 32.71
MSGP [37] 6.39 / 5.81 5.48 / 3.87 0.80 / 0.99 14.08 / 13.17 23.97 / 23.36 5.35 / 4.51 34.23 / 35.95
GI [36] 4.21 / 4.53 2.75 / 2.79 0.42 / 0.76 10.82 / 11.08 21.20 / 20.40 2.85 / 3.17 32.52 / 32.96
TECC [9] 3.89 / 3.08 2.80 / 2.00 0.64 / 0.56 8.80 / 7.35 15.47 / 13.64 3.03 / 2.26 28.28 / 28.69
Gamut (pixels) [23] 3.72 / 2.54 2.83 / 1.61 0.73 / 0.61 8.10 / 5.99 13.66 / 10.52 3.01 / 1.83 21.81 / 17.82
Gamut (edges) [23] 4.42 / 3.92 3.37 / 3.09 1.05 / 1.13 9.48 / 8.12 15.14 / 13.49 3.65 / 3.25 19.24 / 15.91
Gamut (1st) [23] 4.33 / 3.85 3.34 / 2.58 0.68 / 0.98 9.87 / 8.77 15.61 / 13.86 3.52 / 2.83 22.16 / 19.03
NIS [22] 4.36 / 3.80 3.44 / 2.73 0.80 / 0.85 9.35 / 8.21 14.88 / 13.33 3.70 / 3.09 31.43 / 31.87
Classification-CC [35] 2.58 / 1.61 2.25 / 1.23 0.58 / 0.35 5.32 / 3.53 9.23 / 5.33 2.24 / 1.29 18.53 / 6.95
FFCC [8] 2.19 / 1.51 1.29 / 0.91 0.42 / 0.25 5.42 / 3.76 10.20 / 7.70 1.53 / 1.01 17.18 / 13.79
FFCC (capture info) [8] 1.97 / 1.35 1.29 / 0.91 0.35 / 0.25 4.70 / 3.22 8.23 / 5.59 1.47 / 1.02 16.01 / 8.74
FC4 [26] 4.02 / 2.87 2.92 / 2.72 0.90 / 0.83 9.26 / 5.24 19.13 / 7.23 2.98 / 2.72 39.64 / 11.83
APAP (GW) [4] 3.38 / 1.93 2.54 / 1.52 0.86 / 0.51 7.15 / 4.02 11.04 / 5.96 2.80 / 1.58 16.12 / 7.16
SIIE [2] 3.67 / - 3.16 / - 0.88 / - 7.44 / - 10.75 / - 3.24 / - 16.91 / -
SIIE (tuned) [2] 2.90 / - 2.23 / - 0.45 / - 6.44 / - 10.27 / - 2.38 / - 13.97 / -
SIIE (tuned-CS) [2] 2.65 / 1.61 1.91 / 1.27 0.45 / 0.32 6.13 / 3.58 10.76 / 5.34 2.05 / 1.35 20.53 / 8.12
KNN (raw) [3] 2.49 / 1.39 1.61 / 0.99 0.35 / 0.26 6.13 / 3.18 11.35 / 5.70 1.72 / 1.05 20.63 / 7.91
Quasi-U-CC [10] 3.66 / 3.19 2.61 / 1.95 0.55 / 0.53 8.58 / 7.79 14.24 / 12.77 2.84 / 2.29 22.69 / 23.25
Quasi-U-CC (tuned) [10] 2.82 / 2.36 1.99 / 1.51 0.55 / 0.47 6.46 / 5.60 9.93 / 8.77 2.21 / 1.70 11.32 / 11.99
BoCF [30] 3.18 / 1.97 2.49 / 1.42 0.82 / 0.50 6.53 / 4.20 9.29 / 6.70 2.68 / 1.61 12.17 / 10.60
C4 [47] 1.72 / 1.42 1.04 / 0.86 0.30 / 0.26 4.22 / 3.49 7.19 / 5.44 1.21 / 1.03 14.36 / 6.49
CWCC [31] 3.42 / 2.27 2.71 / 1.75 0.89 / 0.73 7.28 / 4.69 11.93 / 8.36 2.90 / 1.82 17.99 / 13.95
C5 [6] 2.97 / - 2.27 / - 0.81 / - 6.21 / - 10.13 / - 2.42 / - 18.38 / -
C5 (tuned) [6] 2.00 / - 1.21 / - 0.31 / - 5.09 / - 9.71 / - 1.31 / - 17.56 / -
C5 (tuned-CS) [6] 2.01 / 1.46 1.36 / 0.96 0.36 / 0.26 4.82 / 3.53 8.82 / 5.68 1.49 / 1.06 15.99 / 8.17
TLCC [40] 2.70 / 2.36 2.24 / 1.69 0.69 / 0.56 5.54 / 5.19 8.87 / 8.24 2.30 / 1.91 14.35 / 11.87
PCC [48] 3.32 / 1.90 2.19 / 1.34 0.48 / 0.39 7.89 / 4.33 13.12 / 7.49 2.52 / 1.45 24.28 / 11.30
RGP [16] 4.28 / 4.38 2.82 / 2.76 0.37 / 0.72 10.79 / 10.62 20.02 / 18.62 3.04 / 3.24 33.76 / 34.19
CFCC [13] 2.98 / 1.70 2.13 / 1.18 0.62 / 0.43 6.83 / 3.90 11.92 / 7.85 2.33 / 1.28 19.49 / 14.06
Ours (w/o n, w/o r) 1.85 / 1.27 1.32 / 0.90 0.35 / 0.25 4.26 / 3.01 7.53 / 5.64 1.44 / 0.95 17.44 / 10.14
Ours (w/o n, w/ r) 1.72 / 1.11 1.16 / 0.83 0.30 / 0.24 4.13 / 2.58 8.16 / 4.66 1.23 / 0.86 18.50 / 7.54
Ours (w/ n, w/o r) 1.67 / 1.11 1.07 / 0.70 0.29 / 0.24 4.04 / 2.68 7.90 / 4.97 1.21 / 0.76 24.40 / 8.28
Ours (w/ n, w/ r) 1.66 / 1.14 1.20 / 0.73 0.33 / 0.26 3.77 / 2.69 6.95 / 4.70 1.29 / 0.86 19.80 / 6.98

challenging cases when compared to other methods (e.g.,
TLCC [40]).

2.6. Cross-camera generalization

In the main paper, we explained that our method is inher-
ently camera-specific by design. However, this limitation
can be mitigated through calibration. Here, we present an
experimental evaluation of a calibration-based solution to
address the camera-specific nature of our approach. Specif-
ically, we calibrate a polynomial mapping for metadata
(ISO, shutter speed) and a 3×3 color mapping matrix be-
tween our primary camera (Samsung S24 Ultra main cam-
era) and the Samsung S25 Ultra telephoto camera. We eval-
uate two strategies on 257 test scenes captured by the S25

Ultra telephoto camera:

1. Mapping the S24 Ultra main camera’s training data to
the S25 Ultra telephoto camera’s space offline, followed
by training on the mapped data.

2. Mapping S25 Ultra telephoto images and metadata on-
line to the S24 Ultra main camera’s space, applying the
model trained on the S24 main camera, and then map-
ping the predicted illuminant back to the S25 Ultra tele-
photo camera’s space.

Results are shown in Table 5, alongside C4 [47] and
C5 [6], both of which are cross-camera methods. None of
the methods, including ours, had access to training exam-
ples from the target camera (S25 Ultra telephoto).



Table 5. Results on cross-camera generalization. We report the mean angular error for each method on 257 test scenes captured using
the S25 Ultra telephoto camera. None of the listed methods were trained on any data from the test camera. For our method, we present
results for the model trained on data from the S24 Ultra main camera under three settings: without calibration, with offline calibration, and
with online calibration. The best result is highlighted.

Method C4 [47] C5 [6] Ours
w/o calibration w/ offline calibration w/ online calibration

#params (K) 5,116 172 4.8 4.8 4.8
Mean AE (S25-T) 1.61 1.63 2.06 1.70 1.53

3. Additional details of dataset
In the main paper, we presented our dataset of 3,224 images
captured by the Samsung S24 Ultra’s main camera. Exam-
ple scenes from our dataset are shown in Fig. 4. As shown,
our dataset includes diverse scenes captured under various
weather and lighting conditions.

A distinctive feature of our dataset is the inclusion of a
“user-preference” white-balance ground truth that focuses
on matching real-world scene observations and enhancing
image aesthetics. Figure 5-A shows the chromaticity dis-
tribution of both the neutral ground truth (obtained from
the color chart) and the user-preference ground truth in our
dataset. As shown, the neutral ground truth spans a larger
area in the rg chromaticity space, which is intuitive, as it
represents the true color of the illuminant lighting the scene.
In contrast, the user-preference ground truth has a narrower
distribution near the Planckian locus. This explains the
lower angular errors observed in most methods when com-
pared to the neutral illuminant estimation results.

3.1. Statistics
Figure 6 shows the statistics of lighting classes (i.e., artifi-
cial lights such as incandescent and fluorescent, and natu-
ral lights such as outdoor daylight) and scene classes (day-
light, sunset/sunrise, night, and indoor) in our dataset. The
training, validation, and testing splits are evenly distributed
across the different lighting and scene classes.

3.2. Data labeling
To facilitate the annotation process, we developed a Matlab
graphical user interface (GUI) tool; see Fig. 7-A. An ex-
pert photographer was instructed to select a reference white
point of the scene from the raw image of the color chart for
each scene, copy it, and paste it to assign as the ground-truth
neutral illuminant color for the sequential scene(s) shar-
ing the same lighting condition. In addition, the annotator
was asked to assign a “user-preference” ground truth, which
may not align with the neutral white-balance appearance or
the in-camera white-balance result of the Samsung S24 Ul-
tra; see Fig. 5-B. Notably, the user-preference ground truth
is intended to reflect real-world observations and enhance
the scene’s aesthetics, and therefore, may differ from both
the neutral and camera-based ground truths. The mean an-
gular error between the annotated user-preference ground

truth and the neutral white-balance ground truth is 2.67◦,
and the error between the user-preference and the illumi-
nant colors from the in-camera AWB module is 1.34◦.

The user-preference tools allow the annotator to inter-
polate between the camera white balance setting (produced
by the in-camera illuminant estimation method) and the an-
notated neutral white balance. Additionally, the annotator
can adjust the user-preference white point to make the scene
appear cooler or warmer by modifying the correlated color
temperature (CCT).

To map between illuminant RGB colors in the camera
raw space and CCTs, we captured a color chart under vari-
ous CCTs ranging from 1,325K to 10,000K using a control-
lable light booth, see Fig. 7-B. We then measured the raw
RGB color corresponding to each CCT by manually select-
ing gray patches from the color chart and averaging them
for each raw image. We then fit a linear regression model
to map the R/G and B/G chromaticity values of raw white
points to the corresponding CCT. To convert the CCT value
back to the normalized RGB illuminant color, we locate
the nearest CCT value within the calibrated CCTs. Sub-
sequently, we linearly interpolate between the correspond-
ing measured chroma values of the nearest lower and higher
CCTs.

While this is a simplified method for converting between
chromaticity values and CCTs, it was sufficient for our goal
to enable the annotator to adjust the white balance in an in-
terpretable manner. These adjustments could be achieved
either by modifying the CCT or interpolating between the
camera’s white balance and the neutral white balance set-
tings, rather than directly adjusting the RGB values of the
illuminant, which can be more challenging to fine-tune for
the desired results.

Our dataset includes a diverse range of scenes captured
under various lighting conditions, including night scenes,
making it challenging to ensure the presence of a single
light source in each scene. To address this, we com-
plemented white-balance labeling with binary masks for
scenes containing multiple light sources. These masks iden-
tify regions illuminated by light sources different from the
dominant light used to label the ground truth. See Fig. 8 for
example masks.

Additionally, to ensure privacy, we applied blurring to
personal information (e.g., faces, license plates, phone num-
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Figure 5. Our dataset includes the ground-truth illuminant color for each scene under neutral white balance (obtained from gray patches of
a color chart) and user-preference white balance, where an expert photographer adjusts the white-balance illuminant color of each image
to match real scene observations and enhance image aesthetics. In (A), we show the rg chromaticity distribution of both neutral and user-
preference ground-truth illuminants, and in (B), example linear images from our dataset corrected using these ground-truth illuminants.
Color correction matrix (CCM) and gamma correction are applied to enhance visualization.
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Figure 6. Statistics of our dataset categorized by lighting classes
(‘natural’ and ‘artificial’ light sources) and semantic scene classes
(‘outdoor [daylight]’, ‘outdoor [sunset/sunrise]’, ‘outdoor [night]’,
and ‘indoor’).

bers, etc.) across both the raw and camera sRGB images in
our dataset.

Each scene is further annotated with its scene class (day-
light, sunset/sunrise, night, and indoor) and lighting condi-
tion class (artificial or natural light). Although these labels
were primarily used for dataset statistics, we believe they
hold significant potential for future research. For example,
the scene class could be an additional input feature to im-
prove model accuracy.

The GUI tool also facilitates the assignment of images
to one of three sets: training, testing, or validation. The

primary criterion was to ensure that testing and validation
sets were distinct, containing no overlapping scenes with
the training set. We further evaluated the testing and vali-
dation sets by applying the gray-world algorithm [12] to se-
lected images, generating real-time statistics that provided
insights into their complexity. Since the gray-world algo-
rithm is a simple baseline, its angular error served as a use-
ful indicator of the difficulty of these sets. Finally, we visu-
ally reviewed the testing and validation sets to ensure they
comprised unique and diverse scenes.

3.3. User study

To validate the annotation of user-preference ground truth,
we conducted a user study with 20 participants who had
normal vision. We first sorted the images by the angular er-
ror between the user-preference ground truth and the neutral
ground truth.

From the images with the highest angular errors between
the user-preference and neutral ground truths, we randomly
selected 100 images.

For each participant, we performed 100 trials, showing
these 100 images one by one. In each trial, we present the
participant with two versions of white-balanced images cor-
responding to each ground truth, after applying the color
correction matrices and gamma correction for better visual-
ization on a calibrated monitor.

Participants were asked to select the image that appeared
most natural. To provide context, we also showed the time
of day at which the image was captured (e.g., sunset, sun-
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(A) Graphical user interface tool developed to facilitate data annotation (B) Captured color-chart under different CCTs, used in the tool for 
user preference annotation.
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Figure 7. (A) The graphical user interface (GUI) tool developed to facilitate the annotation process. The tool provides features such
as navigation tools, neutral white balance (WB) tools, user preference WB tools, cleaning tools, scene and light classification options,
visualization options, and dataset management functionalities. In the neutral WB tools, the annotator can select a reference white point
from a raw color chart image, copy it, and paste it into the sequential scene(s) sharing the same lighting condition. In the user preference WB
tools, the annotator can interpolate between the camera WB and the neutral WB. Additionally, the annotator can adjust the corresponding
correlated color temperature (CCT) of the selected WB setting to create a cooler or warmer appearance. (B) Color charts captured under
different CCTs, used within the GUI tool, to calculate the corresponding CCT of illuminant colors in the camera raw space. The images
shown in (B) are in raw space with a gamma correction applied to enhance visualization.
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Figure 8. Unlike other color constancy datasets (e.g., NUS [17], Cube++ [19], Two-camera [1], INTEL-TAU [32], NCC [15]), our dataset
provides masks for scenes lit by illuminants different from the dominant illuminant used as the ground-truth illuminant color. In this figure,
we show examples from each dataset, including ours, where each scene contains regions (highlighted with red borders) that are either lit
by or have source lighting different from the dominant illuminant color of the scene. For our dataset, we also show the corresponding
manually created masks for the shown images. All shown images are in the sRGB color space.

rise, daylight, etc.). Overall, participants selected the user-
preference ground truth in 71.95% of the trials, and selected
the neutral ground truth in 28.05% of the trials, confirming
that the user-preference ground truth is preferred by users
most of the time.

4. Additional ground truth and applications

Denoising: We used Adobe Lightroom AI denoiser to
generate denoised raw images that simulate in-camera de-
noising. These denoised images were used to compute noise



Noisy raw images After denoising

Figure 9. Our dataset includes denoised images that can serve as
proxy ground truth for learnable denoisers. To illustrate the effect
of denoising, we present raw images before and after denoising,
with gamma correction applied for better visualization.

stats, n, which served as one of the input features for our
model. The Adobe Lightroom AI denoiser may leverage
camera-specific information to achieve effective denoising
in the linear raw space, requiring minimal manual adjust-
ment to produce satisfactory results.

These denoised raw images, included as additional
“ground-truth” data in our dataset, can serve as a proxy for
evaluating denoising algorithms (e.g., [33, 44]) in the linear
raw space across diverse lighting conditions, including dark
scenes; see Fig. 9.

Expert sRGB rendering: Our dataset was captured in
Samsung Pro mode using the Samsung S24 Ultra, provid-
ing pre-processed raw images after early-stage operations
such as demosaicing. The device also produces an sRGB
image by rendering the raw image through a simplified ver-
sion of the camera’s native ISP, which lacks accurate local
tone mapping and denoising.

To improve sRGB rendering, we manually processed the
raw images in Adobe Lightroom, including local tone map-
ping adjustments. Specifically, an expert photographer ren-
dered all 3,224 denoised raw images to sRGB, enhancing
their aesthetic appeal through global and local tone map-
ping adjustments using manually created spatial masks in
Adobe Lightroom. Although our rendering approach may
seem similar to that of the MIT-Adobe FiveK dataset [14],
which also involves expert manual rendering using Adobe
Lightroom, our dataset, captured with the more recent Sam-
sung S24 Ultra, provides a more up-to-date representation
than the older DSLR cameras used in Adobe FiveK. More-
over, Adobe FiveK lacks local tonal adjustments in expert

Table 6. Quantitative results for rendering raw images to expert-
rendered sRGB on our test set. Each method was trained on our
training set to map raw images to expert-rendered sRGB.

Method PSNR SSIM LPIPS ∆E2000
#params

(K)
CIE XYZ Net [5] 23.32 0.8596 0.1242 7.0239 1,348.8
Invertible ISP [46] 22.87 0.8197 0.1468 7.3739 1,413.8
Param ISP [29] 24.32 0.8411 0.1145 6.1353 1,420.0
Lite ISP [50] 25.49 0.8967 0.0744 5.5213 9,094.0
Fourier ISP [25] 24.50 0.9125 0.0962 5.9276 7,589.8

rendering. Our rendered sRGB images leverage the latest
denoising techniques in Adobe Lightroom and its advanced
functionality to achieve high-quality tone mapping, includ-
ing local tone adjustments (see Fig. 10).

These high-quality rendered sRGB images make our
dataset a valuable resource for the raw-to-sRGB render-
ing task. In contrast to existing raw-to-sRGB datasets
(e.g., the Zurich raw-to-RGB dataset [27] and the Sam-
sung S7 dataset [38]), which suffer from input–ground
truth misalignment [27] or contain limited numbers of im-
ages (e.g., fewer than 250 full-resolution images [27, 38])
with restricted scene diversity and lighting conditions (e.g.,
primarily daylight [27]), our dataset offers well-aligned,
high-resolution (4000×3000) raw, denoised raw, and sRGB
ground-truth images across diverse scenes and lighting con-
ditions. This makes it a reliable resource for training neu-
ral ISP methods aimed at rendering raw images into high-
quality sRGB images (e.g., [25, 28, 29]).

sRGB picture styles: In addition to the sRGB images
from the Samsung S24 Ultra (Pro mode) and our expert-
rendered sRGB images, we provide five additional sRGB
versions for each raw image using Adobe Lightroom pre-
sets, similar to [18]. These can serve as ground truth for
picture style transfer or raw-to-multiple-style sRGB render-
ing. See Fig. 11.

Results of raw-to-sRGB rendering: We evaluate differ-
ent neural ISP methods that aim to render raw images into
corresponding sRGB images using our dataset, which in-
cludes expert-rendered sRGB ground truth and five addi-
tional picture styles. Specifically, we trained the methods
in [5, 25, 29, 46, 50] on our training set to map noisy raw
images to expert-rendered sRGB. Additionally, we trained
each method to map raw images to each of our five picture
styles. Table 6 shows PSNR, SSIM [45], LPIPS [49], and
∆E2000 [39] results on our test set for the evaluated neural
ISP methods. We also report results for the five different
styles, where each model was trained to map raw images
to a specific target style in the sRGB space, as shown in
Table 7. Figures 12 and 13 provide qualitative examples
comparing these methods’ outputs with the ground-truth



Raw images Camera sRGB 
(Pro mode)

Expert rendering Raw images Camera sRGB 
(Pro mode)

Expert rendering

Figure 10. Our dataset includes sRGB images produced by the in-camera lightweight ISP and expert-rendered sRGB images from Adobe
Lightroom, which incorporate local tone mapping adjustments to enhance aesthetic appeal.

Table 7. Quantitative results for rendering raw images to five different styles in sRGB. Each method was trained on our training set to map
raw images to sRGB images rendered in a specific style.

Method Style 1 Style 2 Style 3 Style 4 Style 5
PSNR SSIM LPIPS ∆E2000 PSNR SSIM LPIPS ∆E2000 PSNR SSIM LPIPS ∆E2000 PSNR SSIM LPIPS ∆E2000 PSNR SSIM LPIPS ∆E2000

CIE XYZ Net [5] 22.40 0.8586 0.1762 8.2912 24.05 0.8720 0.1199 6.6336 22.00 0.8536 0.1615 8.9058 22.26 0.8457 0.1468 7.6241 24.67 0.8967 0.1326 5.2699
Invertible ISP [46] 23.48 0.8322 0.1571 6.6418 26.35 0.8606 0.115 5.2289 23.84 0.8518 0.1437 7.3474 23.33 0.8422 0.1445 7.6935 24.9 0.8748 0.1626 5.9271

Param ISP [29] 24.97 0.8559 0.123 5.7238 27.81 0.8750 0.0952 4.9218 27.11 0.869 0.1005 4.9472 24.18 0.8533 0.1184 6.1376 25.43 0.8667 0.1344 4.4993
Lite ISP [50] 26.66 0.9145 0.0668 4.7019 28.33 0.9224 0.0636 4.2839 26.31 0.9126 0.0729 5.2200 25.04 0.8942 0.082 5.5165 28.07 0.9353 0.0707 3.4339

Fourier ISP [25] 25.19 0.925 0.0985 5.432 28.03 0.9276 0.0819 4.4879 25.38 0.9186 0.0997 5.7031 24.74 0.9063 0.0996 5.5908 27.41 0.9468 0.0889 3.5606

images.
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