
MixA: A Mixed Attention approach with Stable Lightweight Linear Attention to
enhance Efficiency of Vision Transformers at the Edge

Supplementary Material

A. Overview
The supplementary material is structured as follows:
• In Section B, we present the proofs for Theorem 5.1, The-

orem 5.2 and Theorem 5.3.
• In Section C, we present implementation details for three

CV tasks we evaluated.

B. Proofs
Theorem 5.1. Consider the query and key matrices Q,K ∈
RN×d and assume that the components of query Qi ∈ Rd

and key Kj ∈ Rd are independent random variables fol-
lowing standard normal distribution. Then the variance of
dot-product between Qi and Kj follows

Var(QT
i Kj) ∈ O(d)

where d is the dimension of the attention head.

Proof of Theorem 5.1. The dot product QT
i Kj can be

written as:

QT
i Kj =

d∑
k=1

QikKjk.

Since each QikKjk term is uncorrelated with QilKjl for
k ̸= l (due to the independence of Q and K components),
we can sum the variances of each term individually:

Var(QT
i Kj) =

d∑
k=1

Var(QikKjk).

Since Qik and Kjk are independent standard normal vari-
ables, variance of their product QikKjk can be calculated
as follows

Var(QikKjk) = E[Q2
ik] · E[K2

jk] = 1 · 1 = 1.

Since each Var(QikKjk) = 1, the total variance is:

Var(QT
i Kj) =

d∑
k=1

1 = d.

This shows that the variance of the dot product scales as
O(d).

Theorem 5.2. Consider an attention matrix A ∈ RN×N

and value matrix V ∈ RN×d. Assume that the variance of
product terms is bounded, i.e., Var(AijVjk) ≤ C for some

constant C. Then the variance of elements of the resultant
matrix, i.e., Oik =

∑N
j=1 AijVjk has the following growth

rate

Var(Oik) ∈ O(N2)

where N is the number of tokens in the sequence.

Proof of Theorem 5.2. By using triangle inequality and
Cauchy-Schwarz we get the following

Var(Oik) = Var

 N∑
j=1

AijVjk


=

N∑
j=1

N∑
l=1

Cov(AijVjk,AilVlk)

≤
N∑
j=1

N∑
l=1

|Cov(AijVjk,AilVlk)|

≤
N∑
j=1

N∑
l=1

√
Var(AijVjk)Var(AilVlk)

≤
N∑
j=1

N∑
l=1

√
C · C

= CN2

This shows that the variance of Oik scales as O(N2).

Theorem 5.3. Consider the query and key matrices Q,K ∈
RN×d and assume that the components of query Qi ∈ Rd

and key Kj ∈ Rd are independent random variables follow-
ing standard normal distribution. Then the variance of dot-
product between ReLU(Qi) and ReLU(Kj) vectors fol-
lows

Var(ReLU(Qi)
T ReLU(Kj)) ∈ O(d)

where d is the dimension of the attention head.

Proof of Theorem 5.3. The dot product between
ReLU(Qi) and ReLU(Kj) can be written as:

ReLU(Qi)
T ReLU(Kj) =

d∑
k=1

ReLU(Qik)ReLU(Kjk),

where each component Qik and Kjk is an independent
standard normal random variable. Since ReLU(Qik) and

ReLU(Kjk) are also independent, we can sum the variances
of each term individually:

Var(ReLU(Qi)
T ReLU(Kj))

=

d∑
k=1

Var(ReLU(Qik)ReLU(Kjk)).

Now, for a standard normal variable X ∼ N (0, 1), we have
the following:

E[ReLU(X)] =

∫ ∞

0

x
1√
2π

e−
x2

2 dx =
1√
2π

,

E[ReLU(X)2] =

∫ ∞

0

x2 1√
2π

e−
x2

2 dx =
1

2
.

Using these results and the independence of ReLU(Qik)
and ReLU(Kjk), we have the following:

Var(ReLU(Qik)ReLU(Kjk))

= E[ReLU(Qik)
2] · E[ReLU(Kjk)

2]−
(E[ReLU(Qik)] · E[ReLU(Kjk)])

2

=
1

2
· 1
2
−
(

1√
2π

)2

=
1

4
− 1

2π

Therefore, the total variance is:

Var(ReLU(Qi)
T ReLU(Kj)) =

d∑
k=1

(
1

4
− 1

2π

)
= d

(
1

4
− 1

2π

)
.

This shows that the variance of the dot product scales as
O(d).

C. Additional Implementation Details
For classification task, we take pretrained ViT models [17,
28] and fine-tune them after applying MixA. For finetuning
the models, we utilize the cross-entropy loss and standard
knowledge distillation loss [12], using pretrained models as
teachers. This fine-tuning process is conducted over 150
epochs with the AdamW optimizer [18] and a cosine learn-
ing rate schedule, including 10 warm-up epochs with a base
learning rate of 1× 10−4. For DeiT models we use a batch
size of 512 and for Swin-T and Swin-S models we use a
batch size of 384 and 256 respectively. To avoid overfitting,
we follow DeiT [28] and apply RandAugment [6] and and
random erasing [39] for DeiT-T. And for DeiT-S, and Swin
models we use the standard Mixup [37] and CutMix [36]
augmentations as used in DeiT [28]. In addition, a weight
decay of 0.05 is also used for all model training. For DeiT
models [28], we use a patch size of 14 × 14 similar to [21]

and for Swin models we use a window size of 14 × 14.
For fair comparison, we carry out exact fine-tuning pro-
cess and finetune the pretrained ViT models with softmax-
based quadratic attention under the same settings and report
their results. Similarly, we carry out the same fine-tuning
process to report performance of existing linear attention
mechanisms [13, 15, 23]. For CosFormer [23], we report
performance of ReLU Linear attention without the cosine
re-weighting similar to [15]. Similar to [15], we also found
that CosFormer does not converge with the cosine reweight-
ing part.

For object detection on the COCO dataset, we use Faster
R-CNN [24] model with respective ViT backbones, initial-
izing the ViT backbones by loading the corresponding clas-
sification checkpoints. For DeiT-T [28], we adopt the ViT-
Adapter [4] configuration due to its superior performance.
We train the models using the AdamW optimizer [18] with
a base learning rate of 1 × 10−4 and a weight decay of
0.05. We apply a layer-wise decay rate of 0.6 across 12
transformer layers. The learning rate follows a step decay
schedule, starting with a linear warmup for 3000 iterations
and decaying at epochs 27 and 33. We train the models for
36 epochs with a batch size of 16 on a single GPU, using
an input resolution of 448× 448 for both training and eval-
uation. We evaluate the performance every epoch using the
mean Average Precision (mAP) metric and report the best
mAP score.

For semantic segmentation on the ADE20K dataset, we
use the SemanticFPN model with ViT backbones, initializ-
ing the ViT backbones by loading the corresponding clas-
sification checkpoints. For DeiT-T [28], we adopt the ViT-
Adapter [4] configuration due to its superior performance.
We train the models using the AdamW optimizer [18] with
a base learning rate of 2 × 10−4 and a weight decay of
1 × 10−4. A polynomial learning rate decay schedule with
a power of 0.9 is employed. We train the models for 40K
iterations with a batch size of 16 on a single GPU, using an
input resolution of 448 × 448 for both training and evalu-
ation. We evaluate the models every 4000 iterations using
the mean Intersection over Union (mIoU) metric and report
the best mIoU score.

We set the the number of quadratic attention layers, i.e.,
k = 6 for MixA across all models and all tasks.

	
	Introduction
	Related Work
	Vision Transformers
	Efficient Attention Design

	Preliminaries and Notation
	Inefficiency of Attention Mechanism
	Proposed MixA Method
	Targeted Quadratic Attention
	Stable Lightweight Linear Attention

	Experimental Results
	Datasets and Implementation Details
	Main Results
	Ablation Study

	Conclusion
	Overview
	Proofs
	Additional Implementation Details

