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Supplementary Material

A. Analyzing the Limitations of Synthetic
Datasets

This section provides a comprehensive analysis of the lim-
itations of synthetic datasets (e.g., VidUDC33K [8]). As
outlined in Sec. 4 in the main body, the VidUDC33K dataset
exhibits several strange scenes. In this section, we analyze
three representative anomalies frequently observed in the
dataset: flares occurring in physically improbable scenar-
ios, unintended white artifacts, and darkened and nearly
featureless degraded frames.

Improbable situations and unintended white artifacts.
Liu et al. [8] attempt to synthesize flares by convolving the
PSF with ground-truth images. However, the desired flares
do not manifest as expected. To address this, they apply
a scaling procedure to pixel values exceeding a predefined
threshold to amplify these intensities, followed by PSF con-
volution.
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This process leads to two notable phenomena. First,
flares appear in physically improbable scenarios. Their
method generates flares with values of white pixels exceed-
ing the threshold regardless of whether these correspond to
actual light sources, as shown in Fig. 8(a)-(c) in the main
body and Fig. A.1.

Second, unintended white artifacts occur. Since pixel
values above a predefined threshold are amplified, some re-
gions become saturated, appearing as white, and lose their
original colors. For example, areas with clouds in the sky,
waterfalls, and white walls become excessively white, as
depicted in Fig. 8(f)-(g) in the main body and Fig. A.2. To
verify the relationship between the scaling and flare genera-
tion, we conducted an experiment shown in the bottom row
of Fig. A.2. Without the scaling procedure, flares fail to ap-
pear even in frames where they are expected, as illustrated
in the bottom row of Fig. A.2(d). Approximately 12% of
the videos exhibit these unintended white artifacts caused
by the scaling, which makes the data unsuitable for deep-
learning training.
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Figure A.1. The visual illustration that showcases improbable flares resulting from excessive scaling in the VidUDC33K dataset [8]. (a)
Flare in the river. (b) Flare from the dust on the camera lens. (c) Flare on the bird feathers. (d) Flare on the flower petals. (e) Flare on the
mountain peaks. (f) Flare on the food. (g) Flare in the snake eyes. (h) Flare on the waterfalls.
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Figure A.2. The visual depiction that shows white artifacts resulting from excessive scaling in the VidUDC33K dataset [8]. The frames
processed without the scaling procedure do not exhibit these artifacts (see (c) and (d)), in contrast to the frames processed with the scaling
procedure (see (a) and (b)). Notably, flares are visible only when the scaling procedure is applied (see (b)), while absent without it (see (d)).
This suggests that the authors rely on scaling to generate flares, unintentionally producing unrealistic white artifacts. (a) The ground-truth
frame with scaling procedure. (b) The degraded frame with scaling procedure. (c) The ground-truth frame without scaling procedure. (d)
The degraded frame without scaling procedure.
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Figure A.3. The visual representation that demonstrates black frames resulting from incorrectly transformed PSFs in the VidUDC33K
dataset [8]. (a) The first frame of the degraded video. (b) The first frame of the ground-truth video. (c) The tenth frame of the degraded

video. (d) The tenth frame of the ground-truth video.

The darkened and nearly featureless frames. Liu et
al. [8] strive to create temporally variant flares in contin-
uous video sequences. They simulate the dynamic changes
of the PSF during motion by computing the inter-frame ho-
mography matrix H;_;_,4, formulated as Eq. (1), between
consecutive frames.
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where 7 (-) is the transformation function that utilizes
H; ', _,, to perform a perspective warp on the PSF of the
previous frame, k;_;. H, ', ,, denotes the inverse matrix of
Hy_1.. F(-) and F~1(-) represent the Fourier transform
and its inverse, respectively. M(-) is the matching com-
ponent used to calculate the homography matrix between
frames.

However, this process occasionally results in PSF values
approaching zero, causing the degraded frames to appear
entirely black. Specifically, this issue occurs in 4 out of
677 videos. The first frame does not undergo PSF transfor-
mation, while subsequent frames do. Therefore, as seen in

Fig. 8(e) in the main body and Fig. A.3(c), the frames af-
ter the first one (e.g., the tenth frame) sometimes become
black.

B. Cross-dataset Validation

This section demonstrates cross-dataset validation to ad-
dress the unique dataset distribution and degradation pat-
terns of UDC datasets, as discussed in Sec. 6. Trans-
fer learning techniques are crucial for addressing varying
dataset distributions and degradation patterns in practical
UDC restoration. These methods include approaches such
as fine-tuning and domain adaptation [3, 6, 7]). In this sec-
tion, we focus on fine-tuning and evaluate its effectiveness
across multiple UDC datasets.

To better illustrate the challenges in cross-dataset gen-
eralization and motivate the need for transfer learning, we
analyze device-level differences across representative UDC
datasets. For example, Samsung Galaxy Z-Fold 5 (UDC-
VIT) and ZTE Axon 20 [17] (VidUDC33K [8]) have vastly
different pixel designs, as they come from different vendors.
Similarly, Samsung Galaxy Z-Fold 3 [12] (UDC-SIT [1])
and Samsung Galaxy Z-Fold 5 [13] (UDC-VIT) share rela-
tively similar designs, but they still exhibit differences.
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Figure B.1. Comparison of the UDC datasets, showing varied data distribution and degradation patterns. (a) UDC-SIT [1]. (b)

VidUDC33K [8]. (c) UDC-VIT.

Table B.1. The design of experiments to verify the effect of fine-tuning and the use of a real-world dataset (e.g., UDC-VIT). The first and
the second subscripts beside M indicate the training and fine-tuning datasets, respectively. For example, M 43 refers to the model trained
on UDC-SIT without fine-tuning, while M 3,5 denotes the model trained on UDC-SIT and subsequently fine-tuned on UDC-VIT. Models

without subscripts are trained and tested on the same dataset.

Experiments Model name | Training dataset Fine-tuning dataset — Test dataset
M3 UDC-SIT - UDC-VIT
Exp. 1 M35 UDC-SIT UDC-VIT UDC-VIT
M UDC-VIT - UDC-VIT
M UDC-VIT - VidUDC33K
Exp. 2 Ms220 UDC-VIT VidUDC33K VidUDC33K
M VidUDC33K - VidUDC33K
M0 VidUDC33K - UDC-VIT
Exp. 3 M 2055 VidUDC33K UDC-VIT UDC-VIT
M UDC-VIT - UDC-VIT

Fig. B.1(a) and (c) illustrate that the UDC-SIT and
UDC-VIT datasets show similar degradation, such as blur,
decrease in transmittance, and flare shape. In contrast,
Fig. B.1(b) and (c) highlight the stark difference between
the VidUDC33K and UDC-VIT datasets. This discrepancy
arises from two factors: the variation in pixel design and the
synthetic nature of the VidUDC33K dataset, which results
in unrealistic degradation patterns.

Fine-tuning models to address variant dataset distribu-
tions or degradation patterns is crucial in practical appli-
cations. To evaluate the effect of fine-tuning and validate
the effectiveness of UDC-VIT, which reflects real-world
degradation, we conduct three experiments (Exp. 1-3), as
shown in Tab. B.1. The subscripts beside the model name
M specify the datasets used for training and fine-tuning.
For example, M 3 refers to the model trained on UDC-SIT
(Samsung Galaxy Z-Fold 3) without fine-tuning, M 5,90 is

trained on UDC-VIT (Samsung Galaxy Z-Fold 5) and fine-
tuned on VidUDC33K (ZTE Axon 20), while M 545 is
trained on VidUDC33K (ZTE Axon 20) and fine-tuned on
UDC-VIT (or Samsung Galaxy Z-Fold 5). We use mod-
els M such as UDC-UNet [9], DISCNet [4], and DDR-
Net [8] among six benchmark models in Tab. 3. Fine-tuning
is performed for 10% or 20% of the total iterations, with the
learning rate set to 10% or 20% of the original value.

Experiment 1: impact of fine-tuning on UDC-VIT.
This experiment evaluates the impact of fine-tuning on
UDC-VIT when tested on UDC-VIT. We compare the per-
formance of models trained on UDC-SIT, with or with-
out fine-tuning on UDC-VIT, and models trained solely
on UDC-VIT. Since UDC-SIT is a still image dataset, we
use UDC-UNet and DISCNet as models M, which are
specifically designed for UDC still images. As presented



in Tab. B.2, DISCNet,3 and UDC-UNet,3 trained exclu-
sively on UDC-SIT struggle to generalize to UDC-VIT.
In contrast, DISCNet,3,5 and UDC-UNetg3,5, Which in-
corporate fine-tuning with UDC-VIT, demonstrate supe-
rior restoration performance for UDC-VIT degradations.
In particular, increasing the number of fine-tuning iter-
ations further enhances the performance. This is also
evident in Fig. B.2. Models without fine-tuning (e.g.,
DISCNetg3 and UDC-UNet,3) struggle to restore UDC-
VIT, as shown in Fig. B.2(b). In contrast, models with fine-
tuning (e.g., DISCNet,355 and UDC-UNetg3,5), as shown in
Fig. B.2(c) and (d), achieve restoration performance com-

parable to those solely trained on UDC-VIT (e.g., DISCNet
and UDC-UNet), as depicted in Fig. B.2(e).

These findings lead to the following conclusions. Al-
though the Samsung Galaxy Z-Fold 3 (UDC-SIT) and Sam-
sung Galaxy Z-Fold 5 (UDC-VIT) share similar pixel de-
signs, being from the same vendor, their differences are sub-
stantial enough to require fine-tuning. With adequate adap-
tation, however, these models effectively leverage degrada-
tions from other UDC devices, underscoring the potential
for cross-device generalization with fine-tuning.

Table B.2. [Exp. 1] Restoration performance of DISCNet [4] and UDC-UNet [9] when tested on UDC-VIT. They are trained on UDC-
SIT [1], either with or without fine-tuning on UDC-VIT, or solely trained on UDC-VIT. Models without subscripts refer to those solely
trained on UDC-VIT, meaning their PSNR, SSIM, and LPIPS values match those in Tab. 3 in the main body. The number of iterations
represents the percentage of fine-tuning iterations relative to the total iterations in the original configurations provided by the authors.

Model name ‘ PSNR1 SSIM1 LPIPS| Training Fine-tuning (#Iterations) Test

DISCNet;3 16.81 0.7139  0.3293 UDC-SIT - UDC-VIT
DISCNet,355 23.16 0.8281  0.2527  UDC-SIT UDC-VIT (10%) UDC-VIT
DISCNet,355 23.57 0.8331  0.2459  UDC-SIT UDC-VIT (20%) UDC-VIT
DISCNet 24.70 0.8403  0.2675 UDC-VIT - UDC-VIT
UDC-UNet;3 17.21 0.7260  0.3400 UDC-SIT - UDC-VIT
UDC-UNetgs3s5 | 24.94 0.8709  0.2113  UDC-SIT UDC-VIT (10%) UDC-VIT
UDC-UNetg3s5 | 25.41 0.8758  0.2015  UDC-SIT UDC-VIT (20%) UDC-VIT
UDC-UNet 28.00 0.8911  0.1779  UDC-VIT - UDC-VIT
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Figure B.2. [Exp. 1] Comparison of restoration performance across different models when tested on the UDC-VIT dataset. (a) UDC-
degraded (at the first row) and GT (at the second row) frames of the UDC-VIT dataset. Test frames from UDC-VIT by DISCNet (at the
first row) and UDC-UNet (at the second row) trained on UDC-SIT (b) without fine-tuning on UDC-VIT, (¢) with fine-tuning on UDC-VIT
(10%), and (d) with fine-tuning on UDC-VIT (20%). (e) Test frames from UDC-VIT by DISCNet (at the first row) and UDC-UNet (at the

second row), solely trained on UDC-VIT.



Experiment 2: impact of fine-tuning on VidUDC33K.
This experiment aims to assess the impact of fine-tuning on
VidUDC33K when tested on VidUDC33K. It compares the
performance of models trained on UDC-VIT, with or with-
out fine-tuning on VidUDC33K, and models trained solely
on VidUDC33K. For models M, we use UDC-UNet, DIS-
CNet, and DDRNet, which are explicitly designed to ad-
dress UDC degradations.

As described in Tab. B.3, fine-tuning across datasets
from different devices (e.g., Samsung Galaxy Z-Fold 5
and ZTE Axon 20) improves generalization to different
data distributions. Interestingly, the fine-tuned models
DISCNet,5.29 and UDC-UNet,s5,20 outperform DISCNet
and UDC-UNet, solely trained by VidUDC33K, as shown
in Tab. B.3. This performance boost can be attributed to the
fact that UDC-VIT exhibits more realistic and severe degra-

Table B.3. [Exp. 2] Restoration performance of DISCNet [4], UDC-UNet [9], and DDRNet [8] when tested on VidUDC33K [8]. They
are trained on UDC-VIT, either with or without fine-tuning on VidUDC33K, or solely trained on VidUDC33K. Models without subscripts
refer to those solely trained on VidUDC33K, meaning their PSNR, SSIM, and LPIPS values match those in Tab. 3 in the main body. The
number of iterations represents the percentage of fine-tuning iterations relative to the total iterations in the original configurations provided

by the authors.

Model name ‘ PSNR1 SSIM?T LPIPS | Training Fine-tuning (#Iterations) Test

DISCNet,s5 18.73 0.7503  0.4159 UDC-VIT - VidUDC33K
DISCNet,5.20 28.89 0.9129  0.1727 UDC-VIT VidUDC33K (10%) VidUDC33K
DISCNet 28.89 0.8405  0.2432  VidUDC33K - VidUDC33K
UDC-UNet,s5 19.84 0.7682  0.3737 UDC-VIT - VidUDC33K
UDC-UNetgs5.20 29.57 09139  0.1506 UDC-VIT VidUDC33K (10%) VidUDC33K
UDC-UNet 28.37 0.8361 0.2561  VidUDC33K - VidUDC33K
DDRNet,;5 20.10 0.8313  0.3446 UDC-VIT - VidUDC33K
DDRNet,5.20 29.12 0.8994  0.2073 UDC-VIT VidUDC33K (10%) VidUDC33K
DDRNet 31.91 0.9313  0.1306  VidUDC33K - VidUDC33K
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Figure B.3. [Exp. 2] Comparison of restoration performance across different models when tested on the VidUDC33K dataset [8]. (a)
UDC-degraded (at the first row) and GT (at the second row) frames of the VidUDC33K dataset. The models in the first row are pre-trained
on UDC-VIT without fine-tuning on VidUDC33K: (b) DISCNet,s. (c) UDC-UNetss. (d) DDRNetss. The models in the second row are
pre-trained on UDC-VIT with fine-tuning on VidUDC33K: (b) DISCNetss5.20. (c) UDC-UNetss5.20. (d) DDRNetss .20, showing improved

restoration performance.



dation patterns, such as noise, blur, transmittance decrease,
and variant flares, compared to the synthetic VidUDC33K
dataset, as discussed in Sec. 4 in the main body. Conse-
quently, models pre-trained on UDC-VIT exhibit improved
performance with fine-tuning on VidUDC33K, underscor-
ing the benefits of utilizing real-world images as training
datasets.

As described in the first row of Fig. B.3(b), (c), and
(d), models trained on UDC-VIT without fine-tuning (e.g.,
DISCNet,5, UDC-UNet,5, and DDRNet,5) restore blur
but fail to address flare artifacts. Interestingly, they
show better restoration of transmittance decrease com-
pared to VidUDC33K’s ground truth, probably due to the
brighter tone in UDC-VIT’s ground truth compared to
VidUDC33K’s. On the other hand, models fine-tuned on
VidUDC33K (e.g., DISCNetgs.20, UDC-UNet,s,99, and
DDRNet,5,90) effectively restore the complex degradation
patterns specific to VidUDC33K, as shown in the second
row of Fig. B.3(b), (¢), and (d).

Experiment 3: comparison of UDC-VIT and
VidUDC33K. This experiment evaluates the effect
of fine-tuning on UDC-VIT when tested on UDC-VIT.
We compare the performance of models trained on
VidUDC33K, with or without fine-tuning on UDC-VIT,

and models trained solely on UDC-VIT. For the mod-
els M, we use DDRNet, the only publicly available
pre-trained model trained on VidUDC33K. As shown
in Tab. B.4, DDRNet,5y without fine-tuning on UDC-
VIT fails to adequately handle the complex, severe, and
real-world degradations present in UDC-VIT. In contrast,
DDRNet, 5055, fine-tuned on UDC-VIT, demonstrates
significant performance improvements over DDRNet 9.

However, as illustrated in Fig. B.4, even with fine-
tuning, DDRNet, o055 still shows limitations in handling
specific real-world degradations, such as severe flares.
Notably, models pre-trained on the real-world UDC-VIT
dataset and fine-tuned on the synthetic VidUDC33K dataset
show strong performance in restoring degraded images in
VidUDC33K (Experiment 2). In contrast, models pre-
trained on the synthetic VidUDC33K dataset and fine-tuned
on the real-world UDC-VIT dataset struggle to handle real-
world degradation in UDC-VIT effectively (Experiment 3).
These findings underscore the importance of pre-training
on real-world datasets, such as UDC-VIT, to capture better
complex degradations that synthetic data cannot fully repli-
cate.

Table B.4. [Exp. 3] Restoration performance of DDRNet [8] trained on VidUDC33K [8], with or without additional fine-tuning on UDC-
VIT. Models without subscripts refer to those trained solely on UDC-VIT, meaning their PSNR, SSIM, and LPIPS values match those in
Tab. 3 in the main body. The number of iterations represents the percentage of fine-tuning iterations relative to the total iterations in the

original configurations provided by the authors.

Model name \ PSNRT SSIM1 LPIPS | Training Fine-tuning (#Iterations) Test

DDRNet, 29 11.20 0.5331  0.5609  VidUDC33K - UDC-VIT
DDRNet 0055 | 21.92 0.8302 0.2519 VidUDC33K UDC-VIT (10%) UDC-VIT
DDRNet 24.68 0.8539  0.2218 UDC-VIT - UDC-VIT
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Figure B.4. [Exp. 3] Restoration performance of DDRNet [8] tested on the UDC-VIT dataset. (a) UDC-degraded and (b) GT images from
the UDC-VIT dataset. Restored images by (c) DDRNet20, (d) DDRNet.20s5, and (¢) DDRNet. The model DDRNet. 2 is pre-trained on
VidUDC33K without fine-tuning on UDC-VIT, while DDRNet 20,5 is pre-trained on VidUDC33K with fine-tuning on UDC-VIT, showing
improved restoration performance. However, compared to the results in Fig. B.3, the fine-tuned model still struggles to handle the real-
world degradations present in the UDC-VIT dataset, since it is pre-trained on the synthetic VidUDC33K dataset.



C. Effects of Video Capturing Environment

Tab. C.1 provides a comparative evaluation of the restora-
tion performance across different deep-learning models,
considering the impact of UDC-VIT dataset annotations.
Since a single UDC-VIT video may include multiple anno-
tations (e.g., an indoor scene with flares caused by artificial
light), the annotation type listed in a column in Tab. C.1
cannot be interpreted as the sole factor influencing UDC
degradation. Nevertheless, it is reasonable to consider the
annotation type as a key factor influencing PSNR, SSIM,
and LPIPS values.

Light sources. Asillustrated in Fig. C.1, flares can be cat-
egorized into glare, shimmer, and streak [1, 2], marked as
red, green, and yellow arrows, respectively. A glare is char-
acterized by intense and robust light, resulting in circular
patterns as artifacts. Shimmer entails rapid and nuanced
variations in light or color intensity across an image. A
streak manifests as a lengthy, slender, and usually irregu-
lar line of light or color within an image.

As shown in Tab. C.1, all models encounter difficulties in
restoring scenes with flare (Flare - Present - Average) com-
pared to those without flare (Flare - Absent). Within flare-
present scenes, the severity of degradation varies based on
the light source (i.e., light source variant flare) and location
(i.e., spatially variant flare). For example, in Fig. C.1(a),

sunlight-induced flares are intense, causing all models to
struggle to restore obscured objects. In contrast, flares from
artificial light, shown in Fig. C.1(b) and (c), are relatively
more straightforward to restore than sunlight-induced flares.
Flares caused by natural light are often scattered by win-
dows, as illustrated in Fig. C.1(c) and (d), whereas those
from artificial light sources with diffusers appear softened,
as shown in Fig. C.1(e). All models demonstrate effective
restoration of these flare artifacts. However, some models
fail to restore reflected light on the human face, as shown in
Fig. C.1(f), which may impact face recognition accuracy.

Shooting location. In the UDC-VIT dataset, 33.3% of
outdoor and 15.4% of indoor scenes contain sunlight-
induced flares. The benchmark models face more diffi-
culty restoring outdoor scenes than indoor ones, as shown
in Tab. C.1. Sunlight-induced flares in outdoor scenes
(Fig. C.1(a)) are more intense than those scattered by win-
dows in indoor scenes (Figures C.1(c) and (d)).
Restoration performance is sometimes more affected by
the presence of flares than by the shooting location alone.
For example, among two indoor scenes, the models restore
the flare-free frame (Fig. C.1(h)) more effectively than the
frame with flare (Fig. C.1(b)). Similarly, among two out-
door scenes, the models perform better on the flare-free
frame (Fig. C.1(i)) than on the frame with flare (Fig. C.1(a)).

Table C.1. Comparison of restoration performance. Each row’s best and worst scores within each category are bold-faced and underlined,

respectively.
Flare presence and light sources Shooting location | Human presence
. Present
Model Metric Natural  Artificial Absent | Indoor Outdoor | Present Absent Average
. . Both | Average
sunlight light
PSNR T | 22.34 24.15 22.37 23.64 26.92 2543 22.34 26.94 20.33 24.70
DISCNet [4] SSIM 1 | 0.7704 0.8451  0.8191 | 0.8303 | 0.8611 | 0.8573  0.7852 | 0.8795 0.7636 | 0.8403
LPIPS | | 0.2633 0.2894  0.3250 | 0.2901 | 0.2202 | 0.2608  0.2891 | 0.2247 0.3512 | 0.2675
PSNR 1 | 23.73 27.76 25.36 26.83 30.46 29.13 24.33 31.34 21.47 28.00
UDC-UNet [9] SSIM 1 | 0.8197 0.8995  0.8857 | 0.8856 | 0.9027 | 0.9092 0.8324 | 0.9276 0.8198 | 0.8911
LPIPS | | 0.1878 0.1814  0.2173 | 0.1871 | 0.1588 | 0.1679  0.2107 | 0.1398 0.2526 | 0.1779
PSNR 1 | 23.13 23.78 21.49 23.38 24.97 24.34 2245 25.34 21.06 23.89
FastDVDNet [14] | SSIM 1 | 0.7902 0.8523  0.8244 | 0.8392 | 0.8538 | 0.8593  0.7940 | 0.8720 0.7891 | 0.8439
LPIPS | | 0.2621 02772 0.3048 | 0.2785 | 0.2403 | 0.2568  0.2965 | 0.2364 0.3244 | 0.2662
PSNR 1 | 21.99 23.14 21.57 22.76 25.20 24.07 21.88 25.11 20.51 23.55
EDVR [15] SSIM 1 | 0.7711 0.8422  0.8132 | 0.8276 | 0.8445 | 0.8484 0.7833 | 0.8612 0.7781 | 0.8331
LPIPS | | 0.2565 0.2843  0.3039 | 0.2826 | 0.2351 | 0.2605  0.2893 | 0.2389 0.3227 | 0.2673
PSNR 1 | 23.61 25.54 24.08 25.05 26.05 26.07 23.12 26.99 22.22 25.38
ESTRNN [16] SSIM 1 | 0.7997 0.8818 0.8577 | 0.8662 | 0.8637 | 0.8847  0.8025 | 0.8938 0.8098 | 0.8654
LPIPS | | 0.2415 0.2192  0.2640 | 0.2285 | 0.2072 | 0.2086  0.2636 | 0.1920 0.2794 | 0.2216
PSNR 1T | 23.24 24.14 23.49 23.92 26.25 25.35 22.49 26.43 21.23 24.68
DDRNet [8] SSIM 1 | 0.8015 0.8628  0.8455 | 0.8512 | 0.8594 | 0.8697  0.8025 | 0.8810 0.8007 | 0.8539
LPIPS | | 0.2283 0.2267  0.2433 | 0.2291 | 0.2066 | 0.2079  0.2672 | 0.1936 0.2771 | 0.2218
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Figure C.1. The visual comparison of the restoration performance regarding different annotations. The red, green, and yellow arrows
represent the flares’ glare, shimmer, and streak, respectively. (a) Natural sunlight + Human absent + Outdoor. (b) Artificial light + Human
absent + Indoor. (c) Both + Human absent + Indoor. (d) Natural sunlight + Hand waving + Indoor. (e) Artificial light + Hand waving +
Indoor. (f) Artificial light + Thumbs-up + Indoor. (g) Natural sunlight + Thumbs-up + Indoor. (h) Flare absent + Body-swaying + Indoor.
(i) Flare absent + Human absent + Outdoor.



Human. The presence of humans alone does not pose a
significant challenge to restoration. Instead, the restoration
difficulty hinges on how UDC degradations, such as noise,
blur, transmittance decrease, and flare, impact humans. For
example, in Fig. C.1(d) and (e), despite the presence of
flares in the frames, they do not affect humans. However, in
Fig. C.1(f), the reflection of fluorescent light on the person’s
glasses poses challenges to restoring fine details around the
eyes. In Fig. C.1(g) and (h), human faces appear reddish in
the input frames compared to the ground-truth frames due to
UDC-induced diffraction occurring differently across RGB
channels. In addition, the restored facial colors vary among
the models. Considering the importance of facial color
in image and video-based applications, addressing diverse
UDC degradations is essential for reliable human restora-
tion in face recognition and video conferencing.

Flicker. The visual comparison presented in this paper
is limited to a single frame. While specific frames in
Fig. C.1 exhibit successful restoration, temporal inconsis-
tencies, such as flickering, are frequently observed across
multiple frames in the video for all models. This flickering
may result from varying degradations between consecutive
frames, such as decreases in transmittance and spatially and
temporally variant flares. To view the restored videos fea-
turing flickers, please visit https://mcrl.github.
io/UDC.

D. Details of the UDC-VIT Dataset

In this section, we provide detailed information on the
UDC-VIT dataset.

D.1. Dataset Acquisition

As described in Sec. 3 in the main body of the paper, to con-
struct a real-world UDC video dataset with precise align-
ment and synchronization, we propose a video-capturing
system. We first describe the synchronization strategy be-
tween the two camera modules, which includes controller
considerations, stable auto-exposure settings, fixed frame
rates, and consistent pixel binning to ensure matched res-
olution. This section then details the alignment algorithm
based on the Discrete Fourier Transform (DFT) and its ad-
vantages.

The controller. When capturing videos, we discard the
initial 30 frames because it takes approximately 15 frames
for the ground-truth camera and 25 frames for the UDC to
achieve focus. The UDC requires more frames for focusing
due to its degradation. Furthermore, we use a solid-state
drive (SSD) instead of a secure digital (SD) card, since the
SD card takes longer to save FHD resolution videos, which
disrupts synchronization between the two cameras.

Exposure setting and synchronization. Since the pres-
ence of the display panel affects illuminance levels, all cap-
tures are performed in well-lit environments to ensure stable
auto-exposure (AE). We fix the frame rate for temporal syn-
chronization of corresponding frames in GT and degraded
videos, while AE adjusts the exposure time. In such lighting
conditions, both UDC and non-UDC cameras exhibit simi-
lar AE responses in terms of exposure time and gain. This
is attributed to the QBC sensor’s high sensitivity, achieved
through pixel binning that aggregates light from adjacent
pixels. As a result, even with reduced transmittance from
the display, the UDC camera achieves adequate brightness
without significantly more prolonged exposure. In contrast,
in low-light conditions (e.g., nighttime scenes), exposure
mismatches can lead not only to synchronization issues but
also to poorly rendered dark regions due to noise, underex-
posure, or loss of detail. Thus, we exclude such cases from
the dataset.

Resolution consistency and image processing. To en-
sure consistent resolution between GT and degraded
frames, we apply pixel binning consistently for both cam-
eras using rpicam utility [5], constraining the output reso-
lution below 16 megapixels (MP) (e.g., FHD). This binning
process ensures that the same effective resolution is used
across both clean and degraded captures. The output of this
binning is then processed by the onboard ISP.

Alignment. The alignment algorithm we use involves
shifting, rotating, and cropping paired frames with DFT.
The detailed algorithm is illustrated in Algorithm D.1. In
this algorithm, following Ahn et al. [1]’s setting, we use
A1 = A3 = 1l and A2 = 0, and we do not apply rotation.
Their experiments show that applying rotation reduces the
Percentage of Correct Keypoints (PCK) when varying Aq,
)\27 /\3, and erolation-

The loss function in Eq. (1) in the main body enables
the incorporation of both local (i.e., MSE) and global
(i.e., DFT) information across spatial and frequency do-
mains. Using DFT to align the paired frames offers a sig-
nificant advantage because it can decompose a frame into
its constituent spatial frequency components. Fig. D.1(a)
and (c) depict paired frames G and D comprising multi-
ple sinusoidal gratings, indicating a noticeable spatial shift.
Fig. D.1(b) and (d) represent the phase and amplitude differ-
ences between the paired frames, respectively. Thus, reduc-
ing the phase component is critical for effectively aligning
the paired frames for the same scene.

D.2. Dataset Details and Statistics

This section provides detailed information about the UDC-
VIT dataset.
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Figure D.1. Frequency analysis based on the conceptual illustration for paired frames involving shifts without degradation. (a) The original
frame G consists of multiple sinusoidal gratings. The inverse D F'T" applied to F¢(u, v) produces each sinusoidal grating. (b) The phase
difference between G and D. (c) The spatially shifted frame D in the spatial domain comprises multiple sinusoidal gratings, as in (a). (d)
The amplitude difference between G and D, showing no difference.

Algorithm D.1 Alignment of paired images I and Ip [1].
Require: Images I, Ip of size (H, W), hyperparameters s, 0, 7, A1, A2, A3
Ensure: Aligned images G, D of size (H*, W™)
Crop G from I using center crop
Crop D from Ip to the size of G
Initialize best loss Lyest to a large value
Initialize optimal shifts Sopix, Sopty, and rotation Gy to 0
for Orotaiion from —6, to 0, with step r do
Apply rotation of Groation t0 Ip to get Drorated
for zir from —s to s with step 1 do
for yshirc from —s to s with step 1 do
Calculate crop position (p, q) relative to the center crop:

P = Zcenter_crop + Tshift
4 = Ycenter_crop + Yshift
Crop image Dyyp from Drgaeed at position (p, q)
Calculate loss £ using the loss function in Eq. (1) between Dinp and G
if L < Lpes then
Update Lyest to L
Update sopix tO Zhife
Update sopiy tO Yshift
Update enpt to ermation
end if
end for
end for
end for
Apply optimal rotation Oop; to Ip to get Drogated
Calculate crop position (p(,p[, qopt) relative to the center crop:
Popt = Zeentercrop + Soptx
Qopt = Yeenter_crop + Sopt.y
Crop Dirotated t0 acquire an aligned image D at position (pnm, qu[)




Statistics. From a pool of 647 videos, we have randomly
selected 510 for training, 69 for validation, and 68 for the
test set. The UDC-VIT dataset is available in PNG for-
mat accompanied by a conversion script from PNG to NPY.
We have annotated each video pair, providing a detailed
overview of the total count and the distribution of different
annotation labels. The video pairs are thoughtfully catego-
rized into various conditions, including the presence of flare
and light sources, the presence of humans and their motion
types, and whether the scene is indoor or outdoor.

IRB approval. We have obtained the approval of the In-
stitutional Review Board (IRB) for the UDC-VIT dataset, as
our research involves human subjects. This rigorous process
ensures the highest standards of research ethics. Using IRB-
approved procedures, we enlisted 22 voluntary research par-
ticipants. As shown in Tab. D.1, the IRB-approved informa-
tion sheet provides detailed instructions to the participants.

Similarly, it is essential to note that the users of the UDC-
VIT dataset are engaged in research involving human sub-
jects. Therefore, users are required to obtain IRB approval
by the regulations of their respective countries. When users
download the dataset, instructions on IRB approval will be
provided, as shown in Fig. D.3.

D.3. Rigorous Maintenance Plan

This section provides easy accessibility and a rigorous
maintenance plan for the UDC-VIT dataset.

Easy accessibility. The UDC-VIT dataset will be pub-
licly available on our research group’s website, as shown
in Fig. D.3. Users can request access by completing a
form on the site; a download link will be sent via email
upon submission. Detailed instructions are available at
https://github.com/mcrl/UDC-VIT. Hosting
the dataset on the research group’s website ensures long-
term availability, while handling contact and bug reports via
email facilitates ongoing maintenance and updates.
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License. The UDC-VIT dataset is licensed under Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 In-
ternational (CC BY-NC-SA 4.0). Under this license, users
of the UDC-VIT dataset can freely utilize, share, and mod-
ify this work by adequately attributing the original author,
distributing any derived works under the same license, and
utilizing it exclusively for non-commercial purposes. It is
essential to mention that the UDC-VIT dataset is restricted
to UDC research purposes only, as outlined in our IRB doc-
umentation. Detailed information on this license can be
found on the official Creative Commons website.

E. Reproducibility

This section provides detailed information on the deep-
learning models for reproducibility. The code can be found
and downloaded at https://github.com/mcrl/
UDC-VIT.

The learnable restoration models used for evaluating the
UDC-VIT dataset include DISCNet [4], UDC-UNet [9],
FastDVDNet [14], EDVR [15], ESTRNN [16], and DDR-
Net [8]. We use a single-node GPU cluster to train each
benchmark model. Each node has eight AMD Instinct
MI100 GPUs. While we mainly stick to the original au-
thors’ code and training settings for the models, we intro-
duce some modifications to all models except ESTRNN.

¢ DISCNet. DISCNet is designed to restore UDC still im-
ages in high dynamic range (HDR) (e.g., SYNTH [4]).
Accordingly, we modify the PyTorch Datal.oader to use
normalization instead of Reinhard tone mapping [I1].
The Datal.oader randomly selects one frame per video
from the UDC-VIT dataset for each iteration during the
training and validation phases.

e UDC-UNet. UDC-UNet is designed to restore UDC still
images in HDR. The original authors do not conduct nor-
malization or tone mapping in the Datal.oader and em-
ploy a tone mapping L1 loss function. However, since the
UDC-VIT dataset has a low dynamic range (LDR), we
modify the Dataloader to normalize the input. The model
output is clamped between 0 and 1 before computing the

# Human absent (0)

= Hand waving (1)
Thumbs-up (2)

® Body-swaying (3)

= Walking (4)

= Indoor (0)
= QOutdoor (1)

(©)

Figure D.2. The dataset distribution. The parenthesis beside a label is the encoding of the label. Note that a video pair can have multiple
annotation labels. The distribution of (a) lighting conditions, (b) human presence and their actions, and (c) shooting location.
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L1 loss. The Datal.oader randomly selects one frame per
video from the UDC-VIT dataset for each iteration.

FastDVDNet.  FastDVDNet is a video denoising
model that utilizes NVIDIA’s Data Loading Library
(DALI) [10], processing a noise map and multiple frames
as inputs. Instead of DALI, we employ the PyTorch Dat-

tition each frame into patches of size 3 x 256 x 256
and process 50 frames simultaneously. However, this
patch-wise inference introduces visible seams at the patch
boundaries. To mitigate this artifact, we instead perform
inference at full resolution (3 x 1060 x 1900), using ten
consecutive frames at a time.

alLoader tailored to the UDC-VIT dataset in NPY for-
mat. We set the noise level to zero. To accommodate the
FHD resolution and multiple degradations in the UDC-
VIT dataset, we increase the patch size from 64 to 256.
Moreover, we extend the training duration of FastDVD-
Net from the original 95 epochs to 400, allowing the
model to reach full convergence.

* EDVR. To address the out-of-memory issues of EDVR,
which contains 23.6M parameters, we reduce the training
patch size from 256 to 192. During inference on the test
set, we divide each frame into two patches of size 3 X
1060 x 1060 and merge the outputs afterward.

* DDRNet. During inference, the authors of DDRNet par-

F. Discussion on the Responsible Use of the
Dataset

This section discusses potential negative societal impacts,
corresponding user guidelines, and our responsibilities.

F.1. Potential Negative Societal Impacts

The UDC-VIT dataset contains facial images and motions
of 22 research participants, which raises concerns about
potential misuse, such as in deepfake applications. This
technology can generate convincingly altered videos, pos-
ing risks to individual privacy and societal trust. Deepfakes

Table D.1. Prescribed instructions from IRB-approved participant information sheet. Out of thirty shots per person, videos displaying
issues such as being out-of-focus are eliminated from the dataset.

Q. What procedures will be followed if the participants take part in the study?

A. The participants will undergo 30-shot photography using the UDC and regular digital cameras with the following motions:

* 5-second shots of body-swaying x 9 shots (6 indoors / 3 outdoors)

¢ 5-second shots of waving hands x 9 shots (6 indoors / 3 outdoors)

* 5-second shots of giving a thumbs-up x 9 shots (6 indoors / 3 outdoors)
* 5-second shots of walking indoors/outdoors x 3 shots

Since the UDC is located beneath the display and operates in low-light environments, it is necessary to capture data in various
locations (indoors and outdoors) and lighting conditions (bright and dark) to account for the diverse degradation patterns of
the UDC. Additionally, recognizing individuals from different angles is crucial for tasks such as face recognition, especially
in financial authentication. This requires deep-learning models capable of restoring a subject’s appearance from multiple
perspectives (e.g., front, left, and right), and thus, a dataset with multi-angle captures is essential. The recorded videos will
be publicly released as a dataset to support UDC research.

Q. How long will the study participation last?

A. The study will take approximately 30 minutes. While the actual recording will take 2 minutes and 30 seconds (5 seconds
x 30 shots), additional time will be needed for:

* Adjusting the subject’s shooting angle (5 minutes)
* Transitioning between locations (5 minutes)

* Verifying alignment accuracy (5 minutes)

* Conducting necessary adjustments (10 minutes)

Q. Will compensation be provided for participating in this study?

A. As a token of appreciation, participants who complete all 30 video captures will receive a $40 Starbucks gift card. How-
ever, participants who withdraw before completing all 30 shots or request video deletion will not be compensated. If a
participant requests video deletion after receiving compensation, they must return the full amount.




may infringe upon personal integrity and privacy, poten-
tially leading to social unrest and confusion. Given these
potential negative societal impacts, careful consideration is
required when using the dataset.

F.2. User Guidelines

Users of the UDC-VIT dataset are expected to adhere to the
following guidelines:

* Responsible use. Users must utilize the dataset ethically
and responsibly, ensuring that its use does not cause soci-
etal harm or infringe on individual privacy.

e Compliance with legal and ethical standards. Users
must comply with all applicable legal and ethical stan-
dards. This includes obtaining approval from an Institu-
tional Review Board (IRB) by the regulations of the re-
spective country and adhering to any restrictions or con-
ditions imposed by the IRB or other regulatory bodies.
Any legal violations will be the sole responsibility of the
user.

¢ Restricted usage. The UDC-VIT dataset must not be
used for harmful applications, such as deep fake tech-
nologies or the creation of misinformation and manipula-
tion. Furthermore, the 22 participants agreed to a research
scope defined during our IRB review, which is limited
to acquiring UDC video data and developing restoration
models. Therefore, the dataset must be used exclusively
for UDC-related research purposes.

F.3. Our Responsibility

As the administrators of the UDC-VIT dataset, we acknowl-

edge our responsibility to:

* Protect participant privacy. Our primary priority is to
maintain the privacy and confidentiality of our research
participants. Although the participants provided consent
for the public use of their facial appearances and move-
ments within the dataset, we are committed to guiding
users toward appropriate research practices and to making
efforts to safeguard any additional personal information.

 Facilitate ethical use. We provide comprehensive doc-
umentation and ethical usage guidelines through the
Datasheets for Datasets and our GitHub repository at
https://github.com/mcrl/UDC-VIT. The
dataset can be accessed via an automatic email system
after users complete the application form on our research
group’s website. This process also informs users of po-
tential risks and ethical considerations associated with the
dataset.

* Respond to concerns. We are committed to the responsi-
ble stewardship of the UDC-VIT dataset and will respond
promptly to any concerns or complaints that may arise.
We value user feedback and are prepared to take appropri-
ate actions—such as data correction or updates—to pre-
vent or mitigate harm, should any misuse of the dataset
be reported through our research group’s website (see
Fig. D.3).

THUNDER Research Group About

Overview

Research v

UDC-VIT Under Display Camera’s Videos by Thunder Research Group

People ~ Publications - Software and Systems  Contact

Even though an Under-Display Camera (UDC) is an advanced imaging system, the display panel significantly degrades captured images or videos,
introducing low transmittance, blur, noise, and flare issues. Tackling such issues is challenging because of the complex degradation of UDCs, including
diverse flare patterns. However, no dataset contains videos of real-world UDC degradation. In this paper, we propose a real-world UDC video dataset called
UDC-VIT. Unlike existing datasets, UDC-VIT exclusively includes human motions for facial recognition. We propose a video-capturing system to acquire
clean and UDC-degraded videos of the same scene simultaneously. Then, we align a pair of captured videos frame by frame, using discrete Fourier
transform (DFT). We compare UDC-VIT with six representative UDC still image datasets and two existing UDC video datasets. Using six deep-learning
models, we compare UDC-VIT and an existing synthetic UDC video dataset. The results indicate the ineffectiveness of models trained on earlier synthetic
UDC video datasets, as they do not reflect the actual characteristics of UDC-degraded videos. We also demonstrate the importance of effective UDC
restoration by evaluating face recognition accuracy concerning PSNR, SSIM, and LPIPS scores. UDC-VIT is available at our official GitHub repository.

Download

If you would like to download the UDC-VIT dataset, kindly complete the provided form. Please note that the UDC-VIT dataset is intended solely for UDC
research purposes and can only be utilized by researchers with valid IRB approval. You must comply with legal regulations governing dataset usage in both
the Republic of Korea and your nationality, obtaining IRB clearance accordingly. Additionally, it's essential to understand that any misuse or unauthorized
distribution of the dataset beyond specified guidelines and the license will result in legal repercussions, for which you are solely responsible. By proceeding,
you agree to these terms.
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Figure D.3. Our research group’s official website providing detailed information and a download link for the UDC-VIT dataset.
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