
A. Related Work

A.1. Multi-Modal Benchmarks

With the fast development of recent MLLMs [1, 3, 21–23], it becomes essential to evaluate their performance across a variety
of tasks to understand their strengths and weaknesses, which is crucial for guiding future developments and enhancements [5,
24, 26, 28–37]. For example, MMMU [5] has been proposed to evaluate the scientific problem-solving abilities of MLLMs
across a range of college-level subjects. MathVista [24] is widely used to assess the mathematical capabilities of MLLMs.
While considerable progress has been achieved, these benchmarks often focus solely on evaluating final answers, overlooking
crucial information of intermediate reasoning steps and potentially leading to unreliable results.

A.2. MLLM-based Process Judges

As MLLMs regularly make mistakes when solving scientific problems [5, 18], evaluating the validity of their reasoning
processes is critical for ensuring reliability and uncovering fine-grained model weaknesses. Since human evaluation is costly
and time-consuming, prompting MLLMs as automated process judges has become a common practice. MLLM-based process
judges have been widely used to automatically evaluate reasoning steps of multi-modal language models. For example, MM-
Math [17] incorporates MLLM-as-a-judge to automatically analyze solution steps, identifying and categorizing errors into
specific error types. OlympicArena [8] employs GPT-4V to conduct process-level evaluations, scoring the correctness of each
reasoning step to ensure a rigorous assessment. MathVerse [18] introduces a Chain-of-Thought (CoT) evaluation strategy,
using GPT-4V to extract and assess key reasoning steps, providing fine-grained error analysis and nuanced scoring that goes
beyond binary correctness. MME-CoT [19] extends this approach by evaluating CoT reasoning across multiple domains,
while introducing metrics for reasoning quality, robustness, and efficiency.

Despite the widespread adoption, reliability of MLLM-based judges themselves is rarely scrutinized. Besides, cur-
rent evaluation predominantly relies on proprietary models, suffering from prohibitive costs and reproducibility instabil-
ity. This necessitates the development of open-source process judges. To address these challenges, we introduce Pro-

JudgeBench, a comprehensive benchmark for assessing MLLMs’ capabilities as process judges, and ProJudge-173k, a
large-scale instruction-tuning dataset designed to enhance open-source MLLMs’ process evaluation abilities.

A.3. Process Evaluation Benchmarks

There exist several benchmarks related to assessing process evaluation abilities of LLMs. MR-GSM8K [12] introduces a
meta-reasoning paradigm, requiring LLMs to transition from solving problems to evaluating the correctness of reasoning
steps. MathCheck-GSM [14] presents a checklist-based framework, where LLMs are tasked with evaluating both final an-
swers and intermediate reasoning steps. CriticBench [13] assesses the ability of LLMs to critique and correct their reasoning
across multiple domains. ProcessBench [15] measures the ability to identify erroneous steps in mathematical reasoning,
particularly in competition-level problems. PRMBench [16] synthesize erroneous steps based on PRM800k [11], evaluating
fine-grained error detection capabilities of PRMs across multiple dimensions.

Our ProJudgeBench is distinguished from prior benchmarks in three key aspects: First, it covers four scientific discipline
with multi-modal content and varying difficutly levels, reflecting the complexity of real-world reasoning tasks. Second,
test cases are curated from diverse model-generated solutions instead of synthetic data, capturing broad realistic reasoning
behaviors and error patterns. Third, each step is human-annotated for correctness, error type and explanation, enabling
fine-grained evaluation of models’ error-diagnosing capabilities.

B. Definitions of Error Types

As described in Section 3.1, we define seven error types based on a comprehensive analysis of common mistakes that models
tend to make during long-chain reasoning processes. The definitions of each category are displayed in Table 5.

C. Detailed Information of ProJudgeBench

In this section, we provide detailed information on ProJudgeBench, including the list of MLLMs used for generating solu-
tions in data construction, instruction for human annotators, our annotation website, quality control process, and breakdown
statistics.

C.1. Data Construction

As described in Section 3.2, we utilize 10 distinct MLLMs to generate solutions in ProJudgeBench. The list of utilized
MLLMs are presented in Table 6.



Error Types Definitions

Numerical Calculation Error Errors in basic arithmetic operations such as addition, subtraction,
division, or square roots.

Symbolic Calculation Error Errors in manipulating algebraic expressions, such as incorrect expan-
sion, factoring, simplification, or solving equations with variables.

Visual Interpretation Error Errors in interpreting graphical data, such as misidentifying coordi-
nates, shapes, spatial relationships, or data within figures.

Reasoning Error Errors in the logical thinking process that lead to incorrect conclu-
sions, such as flawed arguments, invalid inferences, or gaps in the
logical flow of the solution.

Knowledge Error Errors caused by insufficient understanding or incorrect application of
necessary knowledge (e.g., concepts, formulas, theorems, methods),
or using outdated or incorrect information.

Question Understanding Error Errors due to misunderstanding or misinterpreting the problems’ con-
ditions or requirements, such as misreading questions or misapplying
given conditions.

No solution provided The model refuses to answer, fails to follow instructions to make a
solution, or encounters anomalies in generation process such as repeti-
tive responses or incomplete outputs.

Table 5. Definitions of seven error types.

MLLMs as solution generators in ProJudgeBench

InternVL2.5-8B
InternVL2.5-26B
InternVL2.5-38B

Qwen2.5-VL-Instruct-3B
Qwen2.5-VL-Instruct-7B
Qwen2.5-VL-Instruct-72B

MiniCPM-V-2 6 (8B)
QVQ-72B-Preview

LLaVA-OneVision (7B)
GPT-4o

Table 6. List of MLLMs used in ProJudgeBench to generate solutions.

C.2. Quality Control

To ensure annotation reliability, we implement a rigorous quality control mechanism. First, a random subset of solutions
are selected for repeated annotation to measure inter-annotator agreement. In cases where annotations exhibit significant
discrepancies, the solutions are flagged for re-annotation. Additionally, solutions with missing annotations or contradictory
annotations (e.g., a step marked as correct but assigned an error type) are also flagged for review and re-annotation. Be-
sides, we conduct regular annotation review meetings where annotators discuss challenging cases and resolve ambiguities
collaboratively. We also develop a detailed annotation guideline document, which is continuously updated based on annota-
tor feedback and edge cases encountered during the annotating process. The multi-layered approach ensures a high level of
consistency and reliability in the final annotations.

C.3. BreakDown Statistics

The breakdown statistics of ProJudgeBench is shown in Table 7. We can see that, as the difficulty of the problems increases,
the average number of steps per solution also rises. Besides, higher-difficulty problems exhibit a greater proportion of
erroneous steps and more diverse error types, with competition-level math problems reaching up to 512 steps, indicating
that models tend to generate more steps when tackling complex problems. Higher-difficulty problems also exhibit a greater
proportion of erroneous steps and more diverse error types, with some solutions containing up to 8 erroneous steps and
4 distinct error types. This highlights the importance of fine-grained process evaluation: if the judge model can diagnose
all these errors, it will enable a more comprehensive analysis of the model’s weaknesses, offering targeted feedback for
improvement.

We also plot the frequency of the first occurrence step for different error types in Figure 7 . While the distribution varies
across error categories, a consistent overall pattern emerges: errors peak in frequency during the earlier steps (e.g., steps 0-3)



Overall
Math Physics Chemistry Biology

K12 Comp K12 Comp K12 Comp K12 Comp

# Samples 2400 450 150 300 300 300 300 300 300
Avg. Steps 20.8 23.7 21.3 21.5 26.0 20.0 19.9 15.2 18.0
Max. Steps 470 470 215 199 353 209 197 78 150
% Error Steps 21.6 23.0 19.7 21.2 23.1 18.9 24.4 15.7 23.4
Avg. Error Steps 6.6 8.1 7.0 7.0 8.4 5.7 6.2 4.2 5.7
Max. Error Types 5 4 4 4 4 4 5 3 4

Table 7. Statistics of ProJudgeBench. K12 and Comp represent normal and competition-level problems, respectively.

Figure 7. Distribution of the first occurance steps for different error types. Truncated to 16 for better visualization.

and gradually decline thereafter. Visual interpretation errors show a distinct peak at step 3, highlighting the model’s initial
struggles with accurately interpreting visual elements. Calculation errors, on the other hand, are more evenly distributed
across all steps, indicating persistent challenges in performing precise mathematical operations throughout the reasoning
process. In contrast, reasoning errors become more frequent in later steps, suggesting that models face increasing difficulty
in maintaining logical consistency as the solution progresses.

D. Detailed Information of ProJudge-173k

In this section, we provide detailed information on ProJudge-173k, including the list of MLLMs used for generating solutions
in data construction, data filtering process, and breakdown statistics.

D.1. Data Construction

As described in Section 4.1, we utilize 9 distinct MLLMs to generate solutions in ProJudge-173k. The list of utilized MLLMs
are presented in Table 8.

MLLMs as solution generators in ProJudge-173k

InternVL2.5-8B
InternVL2.5-26B
InternVL2.5-38B

Qwen2.5-VL-Instruct-3B
Qwen2.5-VL-Instruct-7B
Qwen2.5-VL-Instruct-72B

MiniCPM-V-2 6 (8B)
QVQ-72B-Preview
LLaVA-OneVision (7B)

Table 8. List of MLLMs used in ProJudge-173k to generate solutions.



Total Camel-AI K12 Olympiad

# Samples 173,354 26,249 93,184 53,921
# Problems 26,084 8,000 12,000 6,084
# Math 58,922 7,196 15,908 35,818
# Physics 40,910 6,268 16,539 18,103
# Chemistry 37,789 6,656 31,133 0
# Biology 35,733 6,129 29,604 0
Avg. Steps 18 11 17 22
Max. Steps 926 77 487 926
% Error 24.72 20. 23.55 27.52

Table 9. Statistics of data sources and quantities in ProJudge-173k.

D.2. Data Filtering

As described in Section 4.1, we conduct rigorous filtering processes to ensure data quality. Specifically, we apply three quality
control mechanisms: (1) Format Consistency: We remove samples that deviate from the predefined format, where each step
in the student solution must be annotated as a tuple containing the step description, correctness, error type, and a brief
explanation. Additionally, samples with mismatched step counts between annotations and student solutions are discarded.
(2) Annotation Consistency: Samples with contradictory or incomplete annotations, such as steps marked as incorrect but
lacking error type or cause descriptions, are excluded. (3) Error Coverage: Samples with insufficient error diversity or
repetitive error patterns are excluded to maintain dataset variety.

D.3. BreakDown Statistics

The statistics of the data sources and quantities are presented in Table 9. By providing detailed error analysis, realistic
reasoning paths, and diverse problem types, our dataset lays a solid foundation for advancing research in process evaluation,
particularly for improving model’s capabilities of error diagnosis in complex reasoning tasks.

E. Detailed Information of Process Evaluation

E.1. Fine-tuning Details

In the experiments, we fine-tune InternVL2.5-8B, Qwen2.5-VL-3B-instruct and Qwen2.5-VL-7B-Instruct on ProJudge-173k
with Dynamic Dual-Phase strategy. The training is conducted on 8 H100 GPUS. All the models are fine-tuned using LoRA
for one epoch, with the same training set. The global batch size is set to 16, with per-device batch size of 4 and gradient
accumulation steps of 2. For InternVL2.5-8B, we employ a learning rate of 4e-5, optimized using a cosine learning rate
scheduler with a warmup ratio of 0.03. Additionally, we applied weight decay of 0.05 to regularize the training process
and prevent overfitting. For Qwen2.5-VL-3B and Qwen2.5-VL-7B, the models are trained with a learning rate of 1.0e-4,
also using a cosine learning rate scheduler and a warmup ratio of 0.1. Both fine-tuning processes utilize mixed-precision
training (bf16) to accelerate computation and reduce memory usage. For InternVL2.5-8B, we additionally enable gradient
checkpointing to further optimize memory usage during training.

We conduct hyperparameter tuning for the switching probability p in Table 10, and set p = 0.2 for optimal performance.

p 0.1 0.2 0.3 0.4 0.5

InternVL2.5-8B 82.55 84.50 83.78 83.65 83.26
Qwen2.5-VL-Instruct-7B 83.65 83.72 80.47 81.05 80.34

Table 10. Effect of p on step-level error detection accuracy.



F. Prompts

F.1. Prompts for Injection Errors

As discussed in Section 4.1, we utilize GPT-4o to intentionally inject errors into correct solutions. The prompts we use are
displayed in Table 11.

1. System Prompt

You are a highly experienced educator with a strong understanding of both solving problems and mimicking realistic, com-
mon mistakes made by students or AI.

2. User Content

Task: Analyse the following question, tested knowledge points and reference step-by-step solution.
Introduce REASONABLE and REALISTIC errors into solution that mimic COMMON mistakes made by students or AI.

Instructions:

1. Understand the following error categories and incorporate one or more of the following error types:
a. Numerical Calculation Error. Errors in basic arithmetic operations such as addition, subtraction, division, or square roots.
b. Symbolic Calculation Error. Errors in manipulating algebraic expressions, such as incorrect expansion, factoring, simpli-
fication, or solving equations with variables.
c. Visual Interpretation Error. Errors in interpreting graphical data, such as misidentifying coordinates, shapes, spatial
relationships, or data within figures.
d. Reasoning Error. Errors in the logical thinking process that lead to incorrect conclusions, such as flawed arguments, invalid
inferences, or gaps in the logical flow of the solution.
e. Knowledge Error. Errors caused by insufficient understanding or incorrect application of necessary knowledge (e.g.,
concepts, formulas, theorems, methods), or using outdated or incorrect information.
f. Question Understanding Error. Errors due to misunderstanding or misinterpreting the problems’ conditions or require-
ments, such as misreading questions or misapplying given conditions.

2. Introduce Errors:
a. Insert multiple errors into the reference solution steps.
b. Errors should be RESONABLE, REALISTIC and resemble COMMON mistakes, NOT arbitrary or overly obvious.
c. AVOID REPEATING the same error reason across steps. ENSURE each step is evaluated INDIVIDUALLT.

3. Generate Erroneous Solutions:
a. Provide 3–5 erroneous solutions to cover diverse possibilities.
b. Ensure the erroneous solutions align with the question, remain logically consistent and misleading enough to challenge
the reader.

4. Response Format: Present each erroneous solution step-by-step in the following format.
a. Mark each step as 1 (Correct) or 0 (Incorrect).
b. For incorrect steps, specify the error type and a brief error description.
c. Example:
[

[
[”Step Description 1”, 0, ”Error category”,”a brief error descrition”],
[”Step Description 2”, 1, ””,””],

],
]
d. Strictly adhere to the format! DO NOT add any explanations, extra content, or annotations outside the specified format!

Table 11. Prompt for injecting errors.



F.2. Prompts for Solution Generation

As described in Section 3.2 and Section 4.1, we use diverse MLLMs to generate solutions, capturing a wide range of realistic
reasoning behaviors and error patterns. The prompts we use for generating solutions are displayed in Table 12.

1. System Prompt

You are a highly skilled student proficient in solving scientific problems.

2. User Content

Based on the given images, solve the following question.

Here is some context information for this question, which might assist you in solving it: {context}*

Problem: {problem}

Think step by step logically, considering all relevant information before answering.
Write out the solution process, and use the same LaTeX format as the question in the solution process.
Please end your response with: ”The final answer is ANSWER .”

Table 12. Prompt for generating solutions.

.

F.3. Prompts for Spliting Solutions into Steps

To standardize the step granularity of each solution, we prompt Qwen2.5-72B-Instruct to split solutions into logically com-
plete and progressive steps. The prompts we use for splitting are displayed in Table 13.

User Content:

Please split the following solution steps into individual steps and return them formatted as a Python list.
Each step should be a separate string within the list.
If the solution steps contain only a single step or sentence, DO NOT split it further, return it as a single element in the list.
Only return the list itself, with no additional text or formatting.
DO NOT modify the text in any way, simply split it.

Example Format:
[

”First step description”,
”Second step description”,
”Third step description”,
...

]

Solution steps to split: solution

Table 13. Prompt for generating solutions.



F.4. Prompts for Process Evaluation

As described in Section 6, we use the same evaluation for all models to ensure consistency. The prompts for process evaluation
are displayed in Table 14.

1. System Prompt

You are a teacher skilled in evaluating the intermediate steps of a student’s solution to a given problem.

2. User Content

You are given a scientific problem, its correct final answer, and a student’s solution to evaluate.
Your task is to: first, solve the problem yourself, using the correct final answer as a hint. Ensure your reasoning leads to the
correct answer. Once you have a clear understanding of how the problem could be solved, evaluate the correctness of each
step in the student’s solution.
Focus exclusively on the scientific, logical, or mathematical correctness of the solution. Ignore differences in formatting,
expression style, specific wording, or presentation order, as long as the reasoning and results are valid.

For each step, perform:
1. Binary scoring: assign a score of 1 for correct steps and 0 for incorrect steps.
2. Error classification (only if the step is incorrect):
a. Numerical Calculation Error. Errors in basic arithmetic operations such as addition, subtraction, division, or square roots.
b. Symbolic Calculation Error. Errors in manipulating algebraic expressions, such as incorrect expansion, factoring, simpli-
fication, or solving equations with variables.
c. Visual Interpretation Error. Errors in interpreting graphical data, such as misidentifying coordinates, shapes, spatial
relationships, or data within figures.
d. Reasoning Error. Errors in the logical thinking process that lead to incorrect conclusions, such as flawed arguments, invalid
inferences, or gaps in the logical flow of the solution.
e. Knowledge Error. Errors caused by insufficient understanding or incorrect application of necessary knowledge (e.g.,
concepts, formulas, theorems, methods), or using outdated or incorrect information.
f. Question Understanding Error. Errors due to misunderstanding or misinterpreting the problems’ conditions or require-
ments, such as misreading questions or misapplying given conditions.
g. No solution provided. The model refuses to answer, fails to follow instructions to make a solution, or encounters anomalies
in generation process such as repetitive responses or incomplete outputs.
3. Provide a brief explanation for the identified error.

# The given problem: {problem}

# The Correct Final Answer: {final answer}

# Student’s solution: step-by-step student’s solution

Finally, your evaluation results should be a Python list within <evaluation> and < /evaluation> tags, as follows:
<evaluation>
[

[”The full text of a correct step”, 1, ””, ””],
[”The full text of an incorrect step”, 0, ”Error category”, ”Brief error descrition”],

]
< /evaluation>
Strictly adhere to the output format, with no additional text or formatting.
Ensure the length of your output list matches the student’s solution.

Table 14. Prompt for process evaluation.


	Introduction
	Related Work
	ProJudgeBench
	Task Definition
	Data Construction
	Statistics

	ProJudge-173k for Instruction Tuning
	Data Construction
	Statistics

	Dynamic Dual-Phase Fine-tuning
	Phase 1: Direct Evaluate
	Phase 2: Synthesize-then-Evaluate
	Dynamic Dual-Phase Training

	Experiments
	Main Results and Findings
	Further Analysis
	RQ1: Performance Across Different Domains
	RQ2: Cross-Model Evalution
	RQ3: Error Detection vs. Error Generation

	Ablation Study

	Conclusions
	Acknowledge
	Related Work
	Multi-Modal Benchmarks
	MLLM-based Process Judges
	Process Evaluation Benchmarks

	Definitions of Error Types
	Detailed Information of ProJudgeBench
	Data Construction
	Quality Control
	BreakDown Statistics

	Detailed Information of ProJudge-173k
	Data Construction
	Data Filtering
	BreakDown Statistics

	Detailed Information of Process Evaluation
	Fine-tuning Details

	Prompts
	Prompts for Injection Errors
	Prompts for Solution Generation
	Prompts for Spliting Solutions into Steps
	Prompts for Process Evaluation


