UPP: Unified Point-Level Prompting for Robust Point Cloud Analysis

Supplementary Material

Training Detail

Downstream tasks in noisy and incomplete condition.
In our experiments, we train the downstream classifiers
under noisy conditions. For fair comparisons, identical
hyper-parameters and training strategies are applied across
fine-tuning and proposed methods, following the pioneer-
ing work Point-MAE [26], as shown in Table 4. For exam-
ple, when fine-tuning on Noisy ModelNet40 [34], the train-
ing process spans 300 epochs, using a cosine learning rate
scheduler [22] that starts at 0.0005, with a 10-epoch warm-
up period. The AdamW optimizer [21] is employed to facil-
itate optimization. To evaluate performance, we utilize the
overall accuracy metric, comparing the model’s predictions
on the clean test set.

All of our experiments across the four datasets adhere
to the settings outlined in Table 4, with the exception of
the ScanObjectNN dataset. For ScanObjectNN, we set the
point number to 2048 and adopt 128 patches to better ac-
commodate the characteristics of real-world scanned data,
following previous works [26, 41].

Parameter-Efficient Fine-tuning Settings. As a
parameter-efficient fine-tuning method, we merely train
our inserted modules with pre-trained backbone weights
frozen. Following the approach of DAPT [44], we load
pre-trained weights into a Point-MAE [26] model for
efficient fine-tuning, excluding residual components for
consistency. Notably, ReCon [28] and Point-FEMAE [41]
extend Point-MAE [26] with additional modules. We drop
these parameters, thus leading to a slight saving of FLOPs.
All experiments are implemented using PyTorch version
1.13.1 and conducted on a single GeForce RTX 4090 GPU.

Staged Optimization Strategy. While adapting to down-
stream tasks, we impose additional objective loss functions
to regularize our point-level promoters, the Rectification
Prompter and Completion Prompter. During training, we
adopt a staged optimization strategy to avoid randomly ini-
tialized prompt points disrupting the training of downstream
tasks. We add 50 epochs to optimize the point-level promot-
ers, in which the former 20 epochs optimize both the Rec-
tification Prompter and Completion Prompter, and the later
30 epochs optimize only the Completion Prompter. During
the downstream adaptation process, we optionally enable
the training of the two point-level promoters with the Shape-
Aware Unit when the learning rate narrows to 0.0001. To
simulate real-world noise and incompletion, we introduce
additional outlier points and apply random cropping, rang-
ing from 25% to 50%, to create labeled data pairs for super-
vision. During training, the backbone weights are frozen,

Task Classification ~ Segmentation
Optimizer AdamW AdamW
Learning rate 0.0005 0.0002
Weight decay 0.05 0.05
Scheduler cosine cosine
Training epochs 300 300
Warmup epochs 10 10
Batch size 32 32
Outliers number 24 24
Surface noise number 64 64
Shape missing rate 25% 25%
Points number 1024 2048
Patches number 64 128
Patch size 32 32

Table 4. Training details for downstream classification and seg-
mentation tasks in noise condition.

Method Param.(M) [Cls. mIoU(%) | Inst. mIoU(%)

Point-MAE[26] 27.06 83.3 85.6
+Point-PEFT[40] 5.62 80.5 83.1
+DAPT[44] 5.65 80.9 83.7
+UPP (Ours) 6.43 82.2 844

Point-FEMAE[41] 27.06 83.5 85.9
+Point-PEFT[40] 5.62 80.7 83.9
+DAPT[44] 5.65 81.3 84.1
+UPP (Ours) 6.43 82.5 84.8

Table 5. Point cloud part segmentation experiment results on
ShapeNetPart [37] dataset under noisy and incomplete setting.

and only the Rectification Prompter, Completion Prompter,
and their associated Shape-Aware Unit modules are opti-
mized.

Additional Experiments

Segmentation Experiments on Noisy ShapeNetPart.
ShapeNetPart [37] includes 16,881 samples across 16 cate-
gories for the object-level part segmentation task. It is chal-
lenging to accurately recognize class labels for each point
within point cloud instances. Furthermore, we add addi-
tional simulated noise points and incompleteness, which are
detailed in Table 4.

As shown in Table 5, our method outperforms other
state-of-the-art PEFT approaches, such as Point-PEFT [32]

Method Reference | Param.(M) | Acc.(%)
Point-FEMAE[26] | AAAI 24 27.4 94.0
Linear Probing - 0.3 91.9
VPT[13] ECCV 22 0.4 92.6
Adapter[5] NeurIPS 22 0.9 924
LoRA[12] ICLR 22 0.9 92.3
IDPT[40] ICCV 23 1.7 93.4
Point-PEFT([32] AAAI 24 0.7 94.0
DAPT[44] CVPR 24 1.1 93.2
SA-Unit (Ours) This Paper 0.6 94.2

Table 6. Comparison with other PEFT methods on clean Mod-
elNet40 [34] dataset. Our method only utilizes the PEFT module,
Shape-Aware Unit (SA-Unit). Classification accuracy without vot-
ing is reported. All methods adopt Point-FEMAE as the backbone.

and DAPT [44], on both pre-trained Point-MAE and Point-
FEMAE backbones. This success verifies our method’s su-
perior robustness to low-quality data and validates its gen-
eralizability across diverse downstream tasks. However,
we observe that it remains challenging to surpass the per-
formance of full fine-tuning methods in fine-grained anal-
ysis tasks like part segmentation, which require substan-
tial model capacity to memorize the training data distribu-
tion. Additionally, current PEFT methods, including ours,
exhibit greater susceptibility to noise and incompleteness
compared to full fine-tuning.

It is worth noting that the majority of trainable parame-
ters in our framework originate from the large downstream
task head, highlighting the efficiency of our approach in
minimizing additional parameter overhead while maintain-
ing competitive performance.

Comparison with Other PEFT Methods. As shown in
Table 6, we present classification results on the clean Mod-
elNet40 dataset and compare our Shape-Aware Unit with
other PEFT approaches [5, 12, 13, 32, 40, 44]. Since other
methods struggle to tackle low-quality point clouds, we en-
sure a fair comparison by applying no noise or incompletion
settings. Despite these adjustments, our approach achieves
the highest accuracy of 94.2%, outperforming both the
state-of-the-art PEFT method DAPT [44] and the full fine-
tuning. This success is attributed to the effective inter-
action of the feature similarity-based self-attention mech-
anism and spatial distance-based Shape-Aware Attention,
capturing critical shape information. These results highlight
the adaptability and potential to serve as a general 3D PEFT
method.

Impact of Different Prompting Order. The order of point-
level prompting is a critical factor influencing the perfor-
mance of our method. As shown in Table 7, we compare
the impact of different prompting orders. Our results indi-
cate that UPP achieves the highest performance of 92.95%
when the Rectification Prompter is applied first. This sug-

Concurrently | Complete First | Rectify First | Acc.(%)
v - - 90.76
- v - 91.18
- - v 92.95

Table 7. Abaltion on point-level prompting order.

Rect. Prompter ‘ Compl. Prompter ‘ Shape-Aware Unit

0.148M | 0370M | 0028M

Table 8. Parameters of each component in our UPP.

gests that reducing noise levels forms a solid foundation
for accurate point cloud understanding, which is essential
for both completion prompting and analysis. Intuitively,
performing both completion and rectification concurrently
could offer better computational parallelism. However, this
approach yields only marginal performance improvements.
This is because the Completion Prompter relies on the Rec-
tification Prompter to rectify noisy points, enabling filtered
features of the point cloud. Interestingly, performing com-
pletion before rectification results in improved performance
than concurrent, as the Rectification Prompter helps to cor-
rect artifacts introduced by low-quality completion. Based
on these empirical findings, we adopt the rectification first
strategy in our method.

Parameters Efficiency

Our UPP paradigm employs only 1.4 M trainable param-
eters and requires 6.1 G FLOPs, significantly reducing
computational costs compared to the ensemble paradigm
while achieving superior performance. This efficiency is
attributed to our compact module design and the progres-
sive extraction of point cloud features from shallow to deep
layers.

The enhancement in parameter efficiency arises from the
insight that, in the ensemble paradigm, the denoising, com-
pletion, and analysis models each include dedicated feature
extraction modules designed for task-specific knowledge.
By contrast, our approach leverages a unified pre-trained
backbone for robust feature extraction. Lightweight Shape-
Aware Unit modules are then employed to adaptively ad-
just feature distributions for specific tasks. This unified de-
sign substantially improves the efficiency of both the total
parameter count and the trainable parameters, achieving a
balance between performance and resource utilization, as
detailed in Table 8.

Implementation Detail

Spatial Interpolation

We provide detailed formulations for the spatial interpola-
tion operation F (-) utilized in Equation 2 and Equation 11.

Given a set of center points with coordinates {c;} €
RE*3, where i = 1,...,C, and the corresponding fea-
tures {f(c;)}, the objective of the Propagation operation
is to compute the features of a neighboring point z € R3
using spatial interpolation. The resulting feature f(x) is de-
rived from z, the coordinates {c; }, and the features { f(c;)},
demonstrated as:

f(@) = F({f(c)} {ei},) (17)

First, we compute the Euclidean distance from x to each
center point ¢;:

d(z,c;) = ||z — ¢ (18)

Next, we calculate the weight by taking the inverse of the
spatial distance:

1
5 Ci) — 5 19
w(z, ;) Az,)P (19)
where p is typically set to 2.
This results in a set of weights w(z, ¢;) fori =1,...,C.
We then select only the top- K weights for interpolation:
{w(z,c;)} = Top-K ({w(z, ¢:)}), (20)

where 7 = 1,..., K, and K is typically set to 6. Sub-
sequently, the interpolation of features is based on the
weights, formulated as:

21

Finally, this procedure is repeated for each neighboring
point to obtain their features for further utilization. The
Propagation operation effectively transfers and aggregates
features by leveraging spatial relationships, enabling robust
and efficient feature refinement. This mechanism is partic-
ularly suited for point clouds, where irregular data distri-
bution necessitates dynamic interpolation based on spatial
distances.

	Introduction
	Related Work
	Point Cloud Pre-training
	Point Cloud Enhancement
	Parameter-Efficient Fine-Tuning

	The Proposed Method
	Rectification Prompter
	Completion Prompter
	Shape-Aware Unit

	Analysis and Discussion
	Experiments
	Implement Details
	Datasets
	Quantitative Analysis
	Ablation Studies
	Visualization

	Conclusion

