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Supplementary Material

This supplementary material provides more details about
our work. Please also watch our supplementary video for
dynamic visualizations, including the proposed datasets,
qualitative results, and character animations as a future
application of our method.

A. Per-Action Evaluation
Table 6 presents the 3D error evaluation for each action
category on Ego4View-RW. Our refinement method con-
sistently brings substantial improvement across all action
types. Notably, our proposed module demonstrates superior
effectiveness, particularly for motions involving lower-body
movements, achieving a 15.5% improvement in “stretch-
ing legs”. This enhancement is likely attributed to the fre-
quent self-occlusion of the legs in either front or rear views,
which often leads to misrepresentation in joint detection by
the current state-of-the-art method [4] even with four-view
inputs. In contrast, our module effectively mitigates these
challenges, resulting in significant advancements in egocen-
tric 3D human pose estimation with rear-view integration.

B. Joint Visibility Calculation
As described in Sec. 3, we obtain the visibility of end-
effector joints (hands and feet) in our synthetic setup.
We first generate 2D egocentric fisheye views using
SMPL models with the predefined body part segmentation
mesh [3]. Next, we project ground-truth 3D joints onto
these images to obtain reference points, querying the near-
est 2D points within a 10 × 10 pixel region around each
reference. We classify a 3D joint as visible if any queried
2D point corresponds to its respective body part; otherwise,
it is considered occluded.

C. Additional Details of Network Architecture
As mentioned in Sec. 4, we use several shallow networks,
i.e., FO, FR, FHM, PHM, PRGB, and PQ. FO and FR con-
sist of two linear layers with a bilinear up-sample operation
as well as with an intermediate dimension size of 64 and
128, respectively. FHM uses one convolutional layer with
a kernel size of 3, a stride of 2, and a padding size of 1,
followed by two linear layers with an intermediate dimen-
sion size of 256, a bilinear up-sample operation, and a linear
layer to generate heatmaps. PHM is composed of two linear
layers with intermediate and output dimension sizes of 256
whereas PRGB and PQ are a single liner layer with output
dimension size of 256.

Method walking kicking boxing crouching

EPF [4] 45.16 74.50 71.22 50.89
+ Ours 42.10 68.85 60.81 46.20

Method kneeing crawling dancing
twisting

body

EPF [4] 87.14 82.35 52.99 61.64
+ Ours 73.69 76.92 48.75 56.03

Method
stretching

arms
stretching

legs
rotating

shoulders
raising

legs

EPF [4] 50.03 58.14 53.56 75.62
+ Ours 46.88 49.09 51.94 68.91

Method
balancing

legs up behind
sitting

on the ground all

EPF [4] 82.82 77.19 63.38
+ Ours 74.24 66.79 56.94

Table 6. Per-action evaluation on Ego4View-RW (MPJPE) with
2 front and 2 rear views. EPF represents EgoPoseFormer [4].

D. Rear-View Integration for Existing Method
As mentioned in Secs. 4 and 5, the refined heatmap fea-
tures Rk and heatmaps H̃k can be utilised with existing
2D-to-3D lifting modules to estimate 3D poses. In this
work, we integrate our module into the current state-of-the-
art methods, EgoPoseFormer [4] and EgoTAP [2]. How-
ever, unlike the 3D module of EgoTAP [2] that directly uses
heatmaps as inputs, EgoPoseFormer [4] uses the heatmap
features (before the final heatmap output layer) instead of
the heatmaps in their 2D-to-3D lifting module. To account
for their methodology, we first input the refined features Rk

from all views into a simple network consisting of four con-
volutional layers followed by a linear layer, yielding an ini-
tial 3D pose P ∈ R16×3, which represents 16 joints includ-
ing the head. This initial 3D pose is subsequently fed into
the 3D updating module of EgoPoseFormer [4] to produce
an updated 3D pose Pfinal as the final output.

E. Model Size
Here, we provide the details of our model size and infer-
ence speed with 2 front and 2 rear views. As mentioned in
Sec. 4 and 5, we adopt the current state-of-the-art methods
as a baseline, i.e., EgoPoseFormer [1] (27M parameters)
and EgoTAP [2] (242M parameters), with our refinement
module (25M × the number of views). Note that EgoPose-
Former [1] consists of a simple UNet-based architecture and
three transformer-based layers; therefore, they tend to have



fewer trainable parameters than EgoTAP [2].
Regarding the inference speed on our setup with a single

NVIDIA Quadro RTX 8000 and PyTorch, while the origi-
nal EgoPoseFormer [1] runs at 67 fps, EgoPoseFormer with
our refinement module can run at 30 fps with 2 front and
2 rear views. Therefore, our method can be utilized with
real-time applications. Note that our focus lies in making
the best use of rear views and prioritizes tracking accuracy;
future work will improve inference speed with our proposed
setup and novel large-scale datasets, i.e., Ego4View-Syn
and Ego4View-RW.
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