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Figure 1. Comparison of SOTA watermarking methods in terms
of average TPR@0.1%FPR (90% of watermarked images are cor-
rectly detected at 0.1% false positive rate) under different attacks.

1. Summary of Notations
To ensure clarity in understanding SpecGuard’s mathemat-
ical formulation, we summarize the key notations used
throughout the methodology (Sec. 3) of the main paper. The
complete set of notations is presented in Tab. 1.

2. Impact of Parseval’s Theorem in Message
Extraction

To achieve robust and efficient decoding as detailed in Sec.
3.2 of the main paper, SpecGuard leverages Parseval’s theo-
rem [4], a fundamental principle in signal processing, which
establishes energy equivalence between spatial and spectral
domains. Formally, Parseval’s theorem is defined as fol-
lows: ∑

x,y

|I(x, y)|2 =
∑
u,v

|ζ(u, v)|2, (1)

where I(x, y) denotes spatial-domain pixel intensities, and
ζ(u, v) represent their corresponding spectral-domain coef-
ficients.

In SpecGuard, watermark embedding modifies selected
spectral coefficients, introducing subtle local energy varia-
tions. The embedding process employs a strength factor s,
adjusting spectral energy differences as follows:

ζembedded(u, v) = ζ(u, v) + s ·W (u, v), (2)

where ζembedded(u, v) denotes modified coefficients and
W (u, v) is the spectral-domain watermark signal. Although
local energy distribution is altered, the overall signal en-
ergy remains constant as guaranteed by Parseval’s theorem
as follows:∑

x,y

|I(x, y)|2 =
∑
u,v

|ζembedded(u, v)|2. (3)

During decoding, these local spectral energy variations,
preserved due to total energy constancy, allow stable water-
mark extraction. Specifically, the decoder computes spec-
tral projections via FFT approximation to isolate embedded
spectral energy patterns as follows:

Ssp
DHH

= SpectralProjectionFFT(Shigh
DHH

). (4)

The decoder subsequently employs a dynamically opti-
mized threshold θ to differentiate watermark signals from
noise as follows:

DM [i] =

{
1 if Ssp

DHH
[i] > θ,

0 otherwise.
(5)

The adaptive threshold θ is optimized via gradient de-
scent during training, adapting to spectral energy distribu-
tions as follows:

θ ← θ − η · ∂Ldec

∂θ
, (6)

where Ldec is the decoding loss, and η is the learning rate.
Thus, Parseval’s theorem critically supports SpecGuard by
preserving total spectral energy, enabling stable differentia-
tion of watermark bits and reliable decoding even under di-
verse real-world image distortions and adversarial attacks.

3. Mathematical Proof
3.1. Proof for SHH Band of Wavelet Projection.
Here we presented a proof of one of the wavelet projections
SHH from Eq. (4) based on the Eq. (6) of the main paper.

ψDj (u) = 2j/2ψD(2ju), //1D wavelet

ψDj,m(u) = 2j/2ψD(2ju−m), //Translation

ψDj,m,n(u, v) = 2j/2ψD(2ju−m) · ψD(2jv − n), //2D wavelet

SHH(j,m, n) =

∫ ∞

−∞

∫ ∞

−∞
I(u, v)·

ψDj,m,n(u, v) du dv, //Projection



Notation Description

I Cover image
Iembedded Watermarked image
M Watermark message
c Number of channels (e.g., RGB has c = 3)

H,W Height and width of the image
W (a, b) Wavelet transform of signal f(x)
a, b Scaling and translation parameters in wavelet transform
ψ Mother wavelet function
d) Direction of each wavelet components derived from ψ

ϕ(u, v), ψH(u, v), ψV (u, v), ψD(u, v) Every directional scaling and wavelet basis components
SLL, SLH , SHL, SHH Wavelet sub-bands (low and high frequency components)

βj Feature set capturing frequency and spatial details
κ Decomposition level determined by image complexity

T (x, y) Pixel intensity in high-frequency sub-band SHH

ζ(u, v) Spectral projection coefficients
s Strength factor controlling embedding intensity

(cx, cy) Center coordinates of the image
D(xi, yi) Euclidean distance from the center

r Radius of embedding region
Wc Selected watermark channel for embedding
θ Learnable threshold for watermark extraction

F (u, v) 2D Fast Fourier Transform (FFT) of the extended signal
Lenc, Ldec Encoder and decoder loss functions

Table 1. Description of the notations we used in the Sec. 3 (main paper) to describe our proposed SpecGuard.

SHH(j,m, n) =

∫ ∞

−∞

∫ ∞

−∞
I(u, v) ·

[
2j/2ψD(2ju−m)

·ψD(2jv − n)
]
du dv, //Substitution

SHH(j,m, n) =

l−1∑
p=0

l−1∑
q=0

Tm,n · ψD(2ju−m)

· ψD(2jv − n), //Discretization

W d
ψ(j, u, v) =

1

l

l−1∑
m=0

l−1∑
n=0

Tm,n · ψD
(
m− u · 2−j ,

n− v · 2−j
)
, //Normalized

3.2. Maximum Theoretical Watermark Capacity
To determine the maximum theoretical watermark capac-
ity of SpecGuard, we analyze the SpecGuard’s embedding

Activation Function Radius (r) PSNR↑ SSIM↑ BRA↑

ReLU
r(50) 39.54 0.93 0.97
r(75) 38.64 0.91 0.93
r(100) 37.96 0.91 0.95

Tanh
r(50) 37.18 0.89 0.82
r(75) 35.33 0.85 0.78
r(100) 37.66 0.90 0.80

LeakyReLU
r(50) 39.77 0.96 0.98
r(75) 40.28 0.97 0.98
r(100) 42.89 0.99 0.99

Table 2. Performance evaluation of SpecGuard for different radius
size and activation functions while the Strenth Factor is 20.

pipeline, which integrates wavelet projection and spectral
projection. The capacity derivation considers three key
stages: ‘wavelet projection,’ ‘spectral projection,’ and ‘wa-
termark distribution,’ with each stage affecting the number
of available coefficients for embedding.

Impact of Wavelet Projection. SpecGuard applies wavelet
projection at decomposition level L, dividing the image
into sub-bands. The watermark is embedded in the high-



Activation Function Strength Factor (s) PSNR↑ SSIM↑ BRA↑

LeakyReLU s(5) 40.79 0.98 0.97
LeakyReLU s(10) 39.51 0.96 0.97
LeakyReLU s(15) 38.14 0.95 0.99
LeakyReLU s(20) 42.89 0.99 0.99

Table 3. Impact of Strength Factor for the best combination of the
activation function (LeakyReLU) and radius r(100).

frequency sub-band, which retains fine image details and
ensures robustness against low-frequency distortions. The
spatial dimensions of the wavelet sub-band are reduced by
a factor of 2L along both height and width, resulting in a
down-sampling effect.

The number of available coefficients after wavelet de-
composition is as follows:

NWP =
H ×W

4L
, (7)

where H and W are the image height and width, respec-
tively. Including all image channels c, the total number of
wavelet coefficients available for embedding is as follows:

NWP,total =
H ×W × c

4L
. (8)

Thus, increasing the decomposition level L reduces the
available spatial coefficients exponentially, limiting embed-
ding capacity.
Impact of Spectral Project. SpecGuard employs spec-
tral projection using FFT to distribute the watermark in the
spectral domain. The spectral coefficients are selectively
utilized based on an adaptive mask that prioritizes mid-to-
high-frequency components while avoiding low frequencies
(which contain most perceptual information) and extremely
high frequencies (which are prone to compression loss).

The fraction of spectral coefficients selected for water-
marking is denoted as fspectral where spectral coefficients are
used in between 20% and 50% as follows:

0.2 ≤ fspectral ≤ 0.5. (9)

After spectral projection following Eq. (8), the number
of coefficients available for embedding is as follows:

NSP = fspectral ×NWP,total = fspectral ×
H ×W × c

4L
. (10)

A higher fspectral increases embedding capacity but may re-
duce robustness to compression and noise, while a lower
fspectral focuses on the most resilient coefficients but limits
capacity.
Watermark Distribution and Final Capacity. The water-
mark is distributed across the selected spectral coefficients
fspectral using a weighting scheme, where each coefficient

can embed multiple bits. Let Nb represent the number of
watermark bits per selected coefficient fspectral. The total
embedded bits are then as follows:

Ctotal = Nb ×NSP. (11)

Substituting NSP, the final maximum theoretical water-
mark capacity of SpecGuard is as follows:

Cmax(H,W, c, L, fspectral, Nb) =
H ×W × c

4L
× fspectral ×Nb.

(12)
The watermark capacity scales proportionally with the

image dimensions H × W and the number of channels
c, ensuring that larger images provide greater embedding
space. However, higher wavelet decomposition levels L
reduce the available capacity exponentially due to the 4L

down-sampling effect. The fraction of spectral coefficients
selected for embedding, denoted as fspectral, controls how
much of the frequency domain is utilized, balancing capac-
ity and robustness. Additionally, the bit depth Nb deter-
mines the number of bits embedded per coefficient, directly
influencing the total watermark payload.

Thus, SpecGuard achieves a flexible balance between ca-
pacity and robustness by leveraging adaptive spectral selec-
tion and wavelet decomposition, ensuring resilience under
various transformations and attacks.

4. Impact of Hyperparamters

The performance of SpecGuard is influenced by several key
hyperparameters, including the activation function, radius
size (r), and strength factor (s). Each parameter plays a vi-
tal role in balancing the trade-off between perceptual qual-
ity, robustness, and watermark recovery accuracy. In addi-
tion to the ablation studies shown in Section 4.5 in the main
paper, here we analyze the effect of the hyperparameters in-
dividually by conducting experiments under controlled con-
ditions and report the findings in Tab. 2 and Tab. 3. All the
experiments presented here were conducted using a 128-bit
watermark message.

4.1. Activation Function and Radius
Table 2 highlights the performance of SpecGuard with var-
ious activation functions, including ReLU [2], Tanh [8],
and LeakyReLU [12], while keeping the strength factor s
fixed at 20. Among these, LeakyReLU outperforms others
in terms of PSNR, SSIM, and bit recovery accuracy values
across different radius sizes. Notably, with a radius r of 100,
LeakyReLU achieves a PSNR and SSIM of 42.89 and 0.99,
respectively, with a bit recovery accuracy of 0.99. Over-
all, the results indicate the effectiveness of LeakyReLU for
robust and invisible watermarking compared to ReLU and
Tanh. While testing with different r, such as 50 and 75, we



Figure 2. Visualization of the watermarking process using SpecGuard. The first row shows the original image, the watermarked image,
and their spatial difference. The spatial difference highlights the minimal perceptual change between the original and watermarked images,
ensuring imperceptibility. The second row presents the frequency spectrum of the original and watermarked images, along with their
frequency difference, emphasizing the subtle embedding of the watermark in the high-frequency components. The comparison confirms
that SpecGuard achieves invisible watermarking while maintaining robust frequency-domain characteristics for effective bit recovery.

Figure 3. Effect of style transfer severity on bit recovery accuracy.
As style intensity increases, bit accuracy decreases, showing the
impact of major transformations.

observed a slightly lower perceptual quality and bit recov-
ery accuracy. Therefore, we propose the SpecGuard with a
combination of LeakyReLU, r of 100 and s of 20.

Figure 4. Pixel difference distribution between the original and
watermarked images. The x-axis represents the pixel intensity
difference, and the y-axis indicates the density. Most pixel dif-
ferences remain close to zero, highlighting SpecGuard’s minimal
perceptual loss and superior imperceptibility of the embedded wa-
termark.



Figure 5. Visualization of the watermarking process using SpecGuard for different strength factors (s). The first row illustrates the original
image, the watermarked image, and their spatial difference for s = 5, followed by the frequency spectra of the original and watermarked
images and their frequency difference. The subsequent rows demonstrate the impact of increasing the strength factor (s = 10, 15, 20) on
the frequency difference, highlighting the progressive embedding intensity. Higher strength factors increase the visibility in the frequency
domain while maintaining imperceptibility in the spatial domain, ensuring robust watermarking without compromising image quality.

4.2. Strength Factor

Table 3 investigates the impact of the strength factor (s) us-
ing the best combination of LeakyReLU and radius r(100).
A strength factor of s(20) achieves optimal performance
with a PSNR/SSIM of 42.89/0.99 and a BRA of 0.99. In-
creasing s beyond 20 reduces PSNR and SSIM values, indi-
cating diminished perceptual quality, while lower strength
factors compromise robustness. Therefore, s(20) effec-
tively balances robustness and visual quality as also shown
in Fig. 2.

Figure 5 further demonstrates the effect of different
strength factors (s = 5, 10, 15, 20) on the watermark em-
bedding process. The first row showcases the original im-

age, the watermarked image, and their spatial difference,
highlighting the imperceptibility of the watermark in the
spatial domain. The subsequent rows compare the fre-
quency spectrum of the original and watermarked images,
as well as the frequency difference, illustrating how in-
creased strength factors enhance the visibility of the wa-
termark in the frequency domain while maintaining imper-
ceptibility in the spatial domain. Illustrate the robustness
and adaptability of the proposed SpecGuard model in em-
bedding and retaining watermark information under varying
conditions.



Attack Name Description Parameters

Distortion Attacks
Rotation Rotates an image by a specified angle to test watermark robust-

ness against geometric transformations.
Angle: 9° to 45° clockwise

Crop Crops a portion of the image and resizes it back, simulating
common editing.

Crop Ratio: 10% to 50%

Bright Adjusts image brightness to test watermark stability under il-
lumination changes.

Brightness Increase: 20% to 100%

Contrast Modifies image contrast to simulate lighting variations. Contrast Increase: 20% to 100%

Blur Applies a low-pass filter to smooth the image, reducing high-
frequency details.

Kernel Size: 4 to 20 pixels

Noise Introduces random pixel fluctuations to simulate compression
noise and low-quality rendering.

Std. Deviation: 0.02 to 0.1

JPEG Compresses the image using JPEG encoding, reducing quality
and adding artifacts.

Quality Score: 90 to 10

Geo Combination of geometric distortion attacks, Strength: Geo(x):

including rotation, crop, applied uniformly Rotation: 9◦ + x× (45◦ − 9◦),

to assess cumulative effects. Crop: 10% + x× (50%− 10%)

Deg Combination of degradation attacks, integrating Strength: Deg(x):

blur, noise, and JPEG Blur: 4 + x× (20− 4),

to simulate complex real-world distortions. Noise: 0.02 + x× (0.1− 0.02),

JPEG: 90− x× (90− 10)

Regeneration Attacks
Regen-Diff Passes an image through a diffusion model to reconstruct a

similar but altered version.
Denoising Steps: 40 to 200

Regen-DiffP A prompted version of diffusion-based regeneration, leverag-
ing text guidance to refine results.

Denoising Steps: 40 to 200 with Prompt

Regen-VAE Uses a variational autoencoder to encode and decode an image,
affecting watermark integrity.

Quality Level: 1 to 7

Regen-KLVAE Uses a KL-regularized autoencoder to compress and recon-
struct an image, weakening watermark signals.

Bottleneck Sizes: 4, 8, 16, 32

Rinse-2xDiff Applies a two-stage diffusion regeneration, progressively al-
tering the image over multiple steps.

Timesteps: 20 to 100 per diffusion

Rinse-4xDiff Performs four cycles of diffusion-based image reconstruction,
aggressively erasing watermark traces.

Timesteps: 10 to 50 per diffusion

Adversarial Attacks
AdvEmbG-KLVAE8 Embeds adversarial perturbations using a grey-box VAE-based

attack to reduce detection accuracy.
KL-VAE Encoding, ϵ = 2/255 to 8/255, PGD Itera-
tions = 100, Step Size = 0.01×ϵ

AdvEmbB-RN18 Uses a pre-trained ResNet18 model to introduce adversarial
noise and affect watermark recognition.

ℓ∞ Perturbation: 2/255 to 8/255, PGD Iterations =
50, Step Size = 0.01×ϵ

AdvEmbB-CLIP Attacks the CLIP image encoder to introduce embedding shifts
that disrupt watermark decoding.

ℓ2 Perturbation Norm = 2.5, PGD Iterations = 50,
Learning Rate = 0.001

AdvEmbB-KLVAE16 Uses an alternative KL-VAE model to introduce structured per-
turbations into the embedding process.

KL-VAE Embedding, Latent Size = 16, ℓ∞ Perturba-
tion = 4/255

AdvEmbB-SdxlVAE Attacks Stable Diffusion XL’s VAE encoder to alter latent rep-
resentations and remove watermarks.

Targeted VAE Perturbation, Diffusion Steps = 100, ℓ2
Perturbation = 3.0

AdvCls-
UnWM&WM

Trains a surrogate detector on watermarked and non-
watermarked images to bypass watermark detection.

Dataset Size = 3000 Images (1500 Per Class),
ResNet-18, Learning Rate = 0.001, Batch Size = 128

AdvCls-Real&WM Trains an adversarial classifier using real and watermarked im-
ages to classify watermark presence.

Dataset Size = 15,000 Images (7500 Per Class), Adam
Optimizer, Learning Rate = 0.0005, Batch Size = 128,
Epochs = 10

AdvCls-WM1&WM2 Exploits watermark signal variations between different users
to remove or alter hidden information.

Two Sets of Watermarked Images, Model = Vi-
sion Transformer (ViT), PGD Attack, Perturbation
Strength = 6/255

Table 4. Overview of attack types, their mechanisms, and key parameters based on the prior study [1] that we also utilized in our study.



Table 5. Robustness comparison of SpecGuard component configurations under four common perturbations: horizontal/vertical flip,
downscaling (0.75×), and saturation increase (+40%). We report PSNR and Bit Recovery Accuracy (BRA) under each condition. The
full configuration (WP + SP + adaptive θ) consistently achieves the highest robustness and fidelity across all settings, demonstrating the
complementary benefits of spectral-domain embedding and adaptive thresholding.

Config No Attack Flip (avg. H/V) Scale 0.75× Satur +40%

PSNR↑ BRA↑ PSNR↑ BRA↑ PSNR↑ BRA↑ PSNR↑ BRA↑

WP (fixed θ) 35.3±0.4 0.92±0.01 9.2±0.5 0.25±0.05 31.2±0.3 0.65±0.03 29.3±0.4 0.63±0.03
SP (fixed θ) 36.6±0.4 0.93±0.01 11.5±0.6 0.33±0.05 32.6±0.3 0.70±0.03 30.8±0.4 0.68±0.03
WP + SP (fixed θ) 38.8±0.3 0.93±0.01 13.9±0.5 0.48±0.04 34.2±0.3 0.85±0.02 32.8±0.3 0.83±0.02

WP + SP + θ (Full) 42.9±0.2 0.99±0.005 16.2±0.4 0.60±0.04 35.3±0.3 0.94±0.02 34.6±0.3 0.92±0.02
Mean ± standard deviation over three random seeds per configuration. WP: Wavelet Projection, SP: Spectral Projection.

Figure 6. ∆R/G/B maps of original vs. watermarked images.

5. Visual Analysis of Watermarked Images

To further support the claim of imperceptibility, we provide
a visual and channel-wise analysis of the original and wa-
termarked images in Fig. 6. The left panel shows side-by-
side comparisons of the original and watermarked versions,
along with their individual R, G, and B channels. The differ-
ences are visually negligible, indicating minimal perceptual
impact from the embedding process.

The right panel presents histograms of pixel intensi-
ties for each color channel before and after watermarking.
The distributions of red, green, and blue intensities remain
highly consistent between the original and watermarked im-
ages. These results validate that SpecGuard preserves low-
level color statistics and visual fidelity across all channels,
aligning with the high PSNR and SSIM values reported in
the main paper.

6. Additional Ablation Studies

To further understand the contribution of each component
of SpecGuard, we conducted ablation experiments across
different architectural configurations and evaluated their ro-
bustness under a range of perturbations, including horizon-
tal/vertical flips, downscaling, and saturation increase. The
results are summarized in Tab. 5.

Applying only Wavelet Projection (WP) or Spectral Pro-
jection (SP) with a fixed threshold provides moderate ro-
bustness under distortions such as flip (BRA = 0.25–0.33)
and scaling (BRA = 0.65–0.70). Combining WP and SP
without a learnable threshold further improves recovery,
particularly under geometric distortions (e.g., Flip BRA =

0.48, Scale BRA = 0.85).
The full configuration of SpecGuard, which includes

WP, SP, and a learnable threshold guided by Parseval’s the-
orem, achieved the highest robustness across all categories.
For instance, under flip perturbations, the BRA improved
from 0.48 to 0.60. Similarly, under saturation enhance-
ment, the BRA improved from 0.83 to 0.92. Notably, this
improvement was achieved while maintaining high fidelity
under no attack (PSNR = 42.9 ± 0.2, BRA = 0.99 ± 0.005).

These results confirm the complementary roles of
wavelet-domain localization and spectral-domain embed-
ding, with the adaptive threshold enabling reliable bit re-
covery under challenging distortions. Overall, the full Spec-
Guard architecture balances imperceptibility and robustness
more effectively than any other partial configuration.

7. Description of Benchmarking Attacks
To comprehensively evaluate watermark robustness, we
benchmark performance against a diverse set of attacks, in-
cluding distortions, regeneration, and adversarial manipula-
tions. These attacks, derived from prior benchmarking ef-
forts [1], assess the stability of watermarks under real-world
transformations. The results are presented in Tab. 3 (main
paper) and the details of the attacks are in Tab. 4, compar-
ing multiple state-of-the-art (SOTA) methods such as Tree-
Ring [11], Stable Signature [5], and StegaStamp [10]. The
attacks are categorized as follows:

7.1. Distortion Attacks
These include standard image-processing transformations
that alter the spatial or color properties of images. We con-
sider rotation (9° to 45°) where images are rotated at vary-
ing degrees to test watermark stability. Resized cropping
(10% to 50%) removes portions of an image and resizes the
remaining content, mimicking common real-world editing.
Random erasing (5% to 25%) replaces regions with gray
pixels, simulating object removal. Brightness adjustments
(20% to 100%) and contrast modifications (20% to 100%)
simulate lighting variations. Gaussian blur (4 to 20 pixels)



applies low-pass filtering, while Gaussian noise (0.02 to 0.1
standard deviation) adds random pixel fluctuations, simu-
lating compression noise [1].

7.2. Regeneration Attacks
These attacks leverage generative models such as diffusion
and variational autoencoders (VAEs) to reconstruct images
while suppressing embedded watermarks. We evaluate sin-
gle regeneration attacks including Regen-Diff (diffusion-
based reconstruction), Regen-DiffP (perceptually optimized
diffusion), Regen-VAE (autoencoder-based reconstruction),
and Regen-KLVAE (KL-regularized VAE reconstruction).
Additionally, multi-step regeneration attacks such as Rinse-
2xDiff and Rinse-4xDiff involve iterative diffusion pro-
cesses designed to further erase watermark traces [9, 13].

7.3. Adversarial Attacks
These attacks attempt to deceive watermark detectors
through embedding perturbations or surrogate model train-
ing. Grey-box embedding attacks (AdvEmbG-KLVAE8)
perturb watermarks while preserving image content. Black-
box embedding attacks (AdvEmbB-RN18, AdvEmbB-
CLIP, AdvEmbB-KLVAE16, AdvEmbB-SdxlVAE) intro-
duce noise during watermark embedding to decrease
detection confidence. Adversarial classifiers (AdvCls-
UnWM&WM, AdvCls-Real&WM, AdvCls-WM1&WM2)
use learned classifiers to distinguish watermarked images
and remove hidden signals [3, 6, 7, 9].

Overall, our evaluation framework ensures a rigorous as-
sessment of watermark robustness under various real-world
transformations and adversarial strategies.
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Matthijs Douze, and Teddy Furon. The stable signature:
Rooting watermarks in latent diffusion models. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 22466–22477, 2023. 7

[6] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. Sdxl: Improving latent diffusion mod-
els for high-resolution image synthesis. arXiv preprint
arXiv:2307.01952, 2023. 8

[7] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PmLR, 2021. 8

[8] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning internal representations by error prop-
agation, parallel distributed processing, explorations in the
microstructure of cognition, ed. de rumelhart and j. mcclel-
land. vol. 1. 1986. Biometrika, 71(599-607):6, 1986. 3

[9] Mehrdad Saberi, Vinu Sankar Sadasivan, Keivan Rezaei,
Aounon Kumar, Atoosa Chegini, Wenxiao Wang, and Soheil
Feizi. Robustness of ai-image detectors: Fundamental lim-
its and practical attacks. arXiv preprint arXiv:2310.00076,
2023. 8

[10] Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp:
Invisible hyperlinks in physical photographs. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2117–2126, 2020. 7

[11] Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom
Goldstein. Tree-rings watermarks: Invisible fingerprints for
diffusion images. In Advances in Neural Information Pro-
cessing Systems, pages 58047–58063. Curran Associates,
Inc., 2023. 7

[12] Bing Xu. Empirical evaluation of rectified activations in con-
volutional network. arXiv preprint arXiv:1505.00853, 2015.
3

[13] Xuandong Zhao, Kexun Zhang, Zihao Su, Saastha Vasan,
Ilya Grishchenko, Christopher Kruegel, Giovanni Vigna, Yu-
Xiang Wang, and Lei Li. Invisible image watermarks are
provably removable using generative ai. Advances in Neural
Information Processing Systems, 37:8643–8672, 2025. 8


	Summary of Notations
	Impact of Parseval's Theorem in Message Extraction
	Mathematical Proof
	Proof for SHH Band of Wavelet Projection.
	Maximum Theoretical Watermark Capacity

	Impact of Hyperparamters
	Activation Function and Radius
	Strength Factor

	Visual Analysis of Watermarked Images
	Additional Ablation Studies
	Description of Benchmarking Attacks
	Distortion Attacks
	Regeneration Attacks
	Adversarial Attacks


