
A. Mathematical supplement

A.1. Minimizing the trainable parameters in KRAdapter

Khatri-Rao products: Our main theorem is that an arbitrary matrix W of size m×n can be approximated by the Khatri-Rao
product of two matrices. In order to see how to do this we will need the column-wise vectorization operator vec.

Definition A.1. Let vec denote the column-wise vectorization operator defined as follows. Given a matrix A = [A1 · · ·An]
of size m× n, where each Ai has size m× 1, we define vec(A) to be the matrix of size mn× 1 defined by

vec(A) =

A1

...
An

 (A.1)

Theorem A.2. Let W be a matrix of size m× n such that rank(W) = r. Then there exists matrices U of size m× r and V
of size n× r and a vector σ of size r × 1 such that

vec(W) = (V ⊙ U)σ. (A.2)

Proof. We apply the SVD to W to obtain the decomposition W = USV T . We can then write

W =

r∑
i=1

uiv
T
i σi (A.3)

where ui is the ith column of U , vi is the ith column of V and σi is the ith singular value of S. We then observe that if we
vectorize (A.3) we obtain

vec(W) =

r∑
i=1

vec(uiv
T
i)σi. (A.4)

The we note that since ui and vi are column vectors we have

vec(uiv
T
i) = vi ⊗ ui. (A.5)

This gives

vec(W) =

r∑
i=1

(vi ⊗ ui)σi. (A.6)

If we define U = [u1 · · ·ur] and V = [v1 · · · vr] then by definition of the Khatri-Rao product we have

vec(W) = (V · U)σ (A.7)

where σ = (σ1 · · ·σr)
T .

Theorem A.2 shows that we can use Khatri-Rao products to approximate matrices. The importance of this approximation
is that if were to use Khatri-Rao products for weights of a neural model, we get a parameter efficient decomposition of the
weight matrix.

In general, we can apply Khatri-Rao products to approximate weight matrices as follows: Given a pretrained base weight of
shape dout × din we can take two matrices U and V of shapes k1 × din and k2 × din respectively and consider the Khatri-Rao
product U ⊙ V of shape k1k2 × din where k1, k2 > 0. In order to get the shape right we need to take k2 = dout

k1
. Then the

total number of parameters will be (k1 +
dout

k1
)din. This is minimized when k1 =

√
dout so that k2 =

√
dout, which follows

from the following lemma.

Lemma A.3. Let f(x) = (mx + x)n for x > 0 where m, n > 0. Then f has a minimum at the point x =
√
m.

Proof. Differentiating we see that f ′(x) = n+−mn
x2 . Setting this to zero to find critical points gives

n+−mn

x2
= 0 ⇒ m

x2
= 1 (A.8)

which gives x = ±
√
m. Since we are assuming x > 0 we have that x =

√
m is a critical point. To understand what type of

critical point this is we take the double derivative and find f ′′(x) = 2mn
x3 . We then have that

f ′′(
√
m) =

2mn

m3/2
=

2n√
m

> 0. (A.9)

This tells us the critical point x =
√
m is a minimum point.

If dout is not a perfect square we can take k1 = ⌊dout⌋. Then U has size
√
dout × din and V has shape

√
dout × din. The total

parameters are 2
√
doutdin which is much smaller than doutdin. We thus see that by using a Khatri-Rao product we obtain

a low parameter approximation for the adaptors that have parameters in O(
√
doutdin) which is much less than O(doutdin)

when dout and din are large.

To further enhance parameter efficiency, we typically choose din to be the smaller dimension of the original weight matrix
W0. If dout < din, we then transpose the resulting update to be applied to W0.

A.2. Proving the Khatri-Rao of two random matrices is full rank

We can compare the construction of a matrix W ∈ Rdin×din from U ∈ Rk×din and V ∈ Rk×din where k << din using a
Khatri-Rao product compared to standard low rank approximations used in models such as LoRA. In the context of LoRA the
matrices U and V would be multiplied as follows UTV to produce a matrix of size din × din. Since k < din and assuming U
and V have rank k, we then have by properties of the rank of a product that

Rank(UTV) = k. (A.10)

In particular there are no conditions we can impose on U and V such that UTV has rank greater than k. However, by taking a
Khatri-Rao product we will show that under suitable conditions we can obtain a matrix with much larger rank = min(k2, din).
To show this we need the following lemma borrowed from from Albert et al. [2] (lemma D.2) that we rewrite here to allow this
proof to be self-contained.

Lemma A.4. Let {X1, . . . , Xn} denote n vectors in Rm where n ≤ m drawn i.i.d from a Gaussian or uniform distribution.
Then with probability 1 {X1, . . . , Xn} will be linearly independent.

Proof. We first note that any measure defined via a Gaussian or Uniform probability distribution is absolutely continuous with
respect to the Lebesgue measure. Meaning they have the same sets of measure zero as the Lebesgue measure.

We then prove the case that {X1, . . . , Xn} are vectors of unit length. Since the vectors were drawn independently, we can
first assume we drew X1. The probability that this is the zero vector is 0 w.r.t the Lebesgue measure on the closed unit ball
BN (0) about the origin in RN and hence any other measure absolutely continuous to it. Then draw X2 and note that the
probability that X2 lies in span{X1} ∩ BN (0) is also 0 since span{X1} ∩ BN (0) forms a set of 0 Lebesgue measure in
BN (0). Continuing in this way we find that {X1, . . . , Xn} will be linearly independent with probability 1.

For the general case where {X1, . . . , Xn} are not drawn to have unit length i.e. drawn on the sphere in RN , we simply note
that we can draw each one and then divide by its norm producing one of unit length. Since normalizing by the norm doesn’t
affect linear independence we get by the above case that {X1, . . . , Xn} must be linearly independent with probability 1.

We now prove theorem 3.1.

Proof. Let U ∈ Rk×din and V ∈ Rk×din where k ≤ din ≤ k2 be matrices whose entries are chosen i.i.d. from a standard
Gaussian or uniform distribution. Since k ≤ din write din = nk + p where 0 ≤ p < k i.e. p is the remainder when we
divide din by k. Note that since the entries of U and V are chosen i.i.d from a Gaussian or uniform distribution we have

with probability 1 that none of the columns of U are multiples of each other and none of the columns of V are multiples of
each other. Furthermore, using lemma A.4 we have with probability 1 that the k column vectors {U1, . . . , Uk} are linearly
independent, as well as the second k column vectors {Uk+1, . . . , U2k}, and continuing in this way each batch of k column
vectors {U(i−1)k+1, . . . , Uik} for 1 ≤ i ≤ n are linearly independent and the final p vectors {Unk+1, . . . , Unk+p} are linearly
independent. We can also assume the same for the columns vectors of V .

We now observe that because
{U(i−1)k+1, . . . , Uik} (A.11)

is linearly independent and
{V(i−1)k+1, . . . , Vik} (A.12)

is linearly independent for 1 ≤ i ≤ n and
{Unk+1, . . . , Unk+p} (A.13)

are linearly independent and
{Vnk+1, . . . , Vnk+p} (A.14)

are linearly independent. We have that

{U(i−1)k+1 ⊗ V(i−1)k+1, . . . , Uik ⊗ Uik} (A.15)

are linearly independent for 1 ≤ i ≤ n and that

{Unk+1 ⊗ Vnk+1, . . . , Unk+p ⊗ Vnk+p} (A.16)

are linearly independent. This uses the fact that given a collection of p linearly independent vectors x1, . . . , xp in Rq and another
collection of p linearly independent vectors {y1, . . . , yp in Rq} the collection of Kronecker products {x1 ⊗ y1, . . . , xp ⊗ yp}
in Rq2 are linearly independent.

Furthermore, since none of the column vectors of U are multiplies of the others and none of the column vectors of V are
multiples of its others we have that the set of vectors

{U1 ⊗ V1, . . . , Unk+1 ⊗ Unk+1, . . . , Unk+p ⊗ Unk+p} (A.17)

are linearly independent. Then observe that the Khatri-Rao product U ⊙ V has columns precisely given by (A.17) and thus the
columns of U ⊙ V are linearly independent. Since din ≤ k2 we have that rank(U ⊙ V) = din as required.

B. Further empirical differences with Kronecker adapter

Because Kronecker adapters (Krona) also uses a form of Kronecker products for PEFT, we propose here to highlight more
differences between KRAdapter and Krona in terms of effective rank at initialization. Empirical evidence from vision
and language tasks presented in the main paper indicates that KRAdapter consistently attains higher effective ranks than
Krona given comparable trainable parameter budgets. While a comprehensive theoretical justification for this observation is
beyond the scope of this empirical study, we undertake a controlled numerical experiment to analyze the effective rank and
singular value distribution resulting from matrix approximation using both Kronecker and Khatri-Rao products. Specifically,
we generate random matrices of dimensions relevant to transformer architectures, ranging from ViT-L/14 attention heads
(768, 1024) to LLama 3.1 attention heads (4096, 4096). We configure KRAdapter-style factorization based on its inherent
shape-dependent parameter allocation. To ensure a fair comparison, we then tune Krona’s hyperparameters to precisely
match the number of trainable parameters used by the KRAdapter configuration. The parameters are then initialized using
a kaiminig uniform initialization strategy. Figure 4 presents the singular value decomposition and effective rank for both
factorization methods across these matrix dimensions. Our analysis reveals that the Khatri-Rao product yields a consistently
higher effective rank (10-50%) and a more gradual decay in the singular value spectrum compared to the Kronecker product.
This suggests a more uniform distribution of singular values, indicative of richer representational capacity. These empirical
findings substantiate the observed performance advantages of KRAdapter in vision and language tasks, highlighting the
superior effective rank achieved by Khatri-Rao product factorization for parameter-efficient adaptation.

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

Si
ng

ul
ar

 v
al

ue
 d

ist
rib

ut
io

n

Matrix size (768, 1024)
Khatri-Rao eff rank 672.0
Kronecker eff rank 533.2

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Matrix size (1024, 4096)
Khatri-Rao eff rank 986.6
Kronecker eff rank 791.5

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

Matrix size (4096, 4096)
Khatri-Rao eff rank 3310.7
Kronecker eff rank 2809.9

Figure 4. We compare the singular value distribution and effective rank resulting from a parameter-efficient construction of a matrix of set
size using either Khatri-Rao or Kronecker products. For an equivalent amount of randomly initialized parameters, the Khatri-Rao produces a
matrix with a smooth, more balanced svd sprectrum, resulting in a higher effective rank.

C. Details about the toy experiments

C.1. Training details

The matrices used in our experiments have a size of 1024× 768. We aim to match the number of parameters of our proposed
KRAdapter as closely as possible. Minor discrepancies in parameter counts for other methods arise due to the inherent
structural differences of each adaptation technique. Specifically, the number of parameters for each method is: LoRA and
SinLoRA: 50, 176, Krona: 50, 700, RandLoRA: 49, 168, and KRAdapter: 49, 152. We train models using the AdamW
optimizer 1 for 100 iterations with a fixed learning rate of 10−2. The AdamW optimizer is used with default parameters
(β1 = 0.9, β2 = 0.999, weight decay=0.01). Our training objective is to minimize the mean of the squared error between the
predicted and target matrices.

C.2. Matrix generation

We generate six different synthetic patterns, each designed to probe specific aspects of parameter-efficient fine-tuning
algorithms. Normally-distributed Random Matrix generated from a standard normal distribution. This serves as a baseline
representing a high-rank weight matrix, testing the algorithms’ general approximation capability. Sparse Random Matrix
(90% Sparsity), a normally distributed random matrix where 90% of elements are randomly set to zero. This baseline
simulates scenarios where pre-trained models contains crucial parameters that should not be modified during fine-tuning.
PCA-Whitened Random Matrix, a random matrix transformed using Principal Component Analysis (PCA) whitening. This
process de-correlates the random features, assessing how well algorithms can generate highly de-correlated representations.
Low-Rank Matrix constructed by taking a normally distributed random matrix and zeroing out all but the top one fourth of
singular values. Tests the ability of full-rank algorithms to model low-rank matrices. CLIP ImagNet fine-tune delta (Vision
or Language), obtained by the element-wise difference between the pre-trained CLIP-ViT-L/14 weights and the weights
obtained after standard fine-tuning on ImageNet (also known as task vector [63]). The weight difference is extracted from the
last attention layer of either the vision or language backbone. This pattern represents a realistic target weight for LoRA when
adapting pre-trained transformer weights, allowing to assess performance on real-world fine-tuning. High/Low frequency
features where rows are generated using up to 5 superposed sinusoidal functions, with frequencies linearly increasing along
the rows. The high frequencies are contained between [1000, 10000] Hz while the low frequencies are contained between
[1, 100] Hz. This structured pattern assesses the algorithms’ bias towards feature frequencies.

For the normally-distributed random and identity matrices, we respectively use the torch.randn 2 and torch.eye 3

1https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
2https://pytorch.org/docs/main/generated/torch.randn.html
3https://pytorch.org/docs/main/generated/torch.eye.html

functions to generate matrices of the desired size.

PCA-Whitened Random Matrix: We generate a normally-distributed random matrix using torch.randn and then perform
PCA whitening. This involves multiplying the data by the eigenvectors of the covariance matrix, effectively decorrelating the
features. We then scale each row of the resulting matrix by the square root of the corresponding eigenvalue to normalize the
variance.

High/Low frequency features: Each row of the matrices is generated by sampling a sinusoid function f(f, t) = sin (2πft)
over one second. The frequency f increases linearly from 1 Hz for the first row to 1, 000 Hz for the last row (1, 000 to 10, 000
for the high frequencies). This creates a matrix where each row represents a sinusoid with a different frequency.

C.3. Visualization

We propose a visualization of the achieved reconstruction for each PEFT algorithm in Figure 5 for smaller 128× 128 matrices.
For the finetuned weights, we select the first 128 rows and columns.

D. Effective rank

To further investigate the intrinsic dimensionality of each method we report the average effective ranks averaged across attention
layers post fine-tuning in Table 4. Specifically, the effective rank [47] of a matrix M is calculated as exp(−

∑
i S

n
i logSn

i),
where Sn

i = Si∑
i Si

represents the sum-normalized singular values of M . An effective rank close to the mathematical rank
indicates that the weight matrix makes full use of the available spectrum to significantly modify the space in a wide range
of directions. We report that the effective rank of KRAdapter is consistently higher than that of other theoretically full-rank
algorithms.

LoR
A

SinL
oR

A

Ran
dL

oR
A

Kron
a

KRAda
pte

r

M
ax

ran
k

ViT-B-32 4.5 21.9 494.8 518.5 705.9 768
ViT-L-16 13.1 31.8 587.0 744.0 959.7 1024
LLama3.1 16.8 24.0 562.3 734.2 970.6 1024
Qwen2.5-7B 8.5 18.7 247.6 310.5 486.6 512

Table 4. Effective ranks of full-rank PEFT algorithms for vision or language architectures.

E. Training times and VRAM usage

We find that all algorithms use comparable amounts of VRAM during training except for RandLoRA which comes at the
cost of a slight increase in training time. We report training time results in Table 5 for various ViT architecture for 1 epoch
on ImageNet and LLama3-8b for the commonsense reasoning task for 4 epochs (160k samples in total). Note that PEFT
algorithms are trained on attention layers only. Although not reported in this table, DoRA’s training time is comparable to
RandLoRA.

F. CLIP classification

F.1. Dataset details

We fine-tune pre-trained vision-language architectures on 11 vision datasets. For few-shot learning experiments, we consistently
train models for 10 epochs. In contrast, for 50% and 100% fine-tuning scenarios, we follow [2, 63] and adjust the number of
training epochs for the full fine-tuning baseline based on convergence behavior, aiming for optimal performance. We do not
perform early stopping as we do not observe significant over-fitting. All algorithms use the same training samples and training

Algorithm ViT-B/32 ViT-L/14 ViT-H/14 LLama3-8B Qwen2.5-7B

LoRA 16.8 mins 134.1 mins 215.5 mins 243.3 mins 222.2 mins
SinLoRA 16.8 mins 136.9 mins 216.6 mins 246.2 mins 224.3 mins
RandLoRA 16.7 mins 138.4 mins 225.5 mins 265.3 mins 235.2 mins
Krona 16.6 mins 135.9 mins 217.2 mins 250.4 mins 227.5 mins
KRAdapter 16.5 mins 137.5 mins 220.1 mins 247.6 mins 226.3 mins
FT 21.1 mins 167.9 mins 270.5 mins Not trained Not trained

Table 5. Comparison of training time for one epoch on ImageNet on CLIP architectures and LLama3-8B, Qwen2.5-7B for one epoch on the
commonsense reasoning dataset

epochs. Detailed specifications of the 11 datasets, including number of training samples and the specific number of epochs
used, are reported in Table 6.

Datasets Classes Splits Epochs

train val test

(1) Cars 196 7,330 814 8,041 35
(2) DTD 47 3,384 376 1,880 76
(3) EuroSAT 10 21,600 2,700 2,700 12
(4) SUN397 397 17,865 1,985 19,850 14
(5) Food101 101 70,750 5,000 25,250 15
(6) Caltech101 101 6,941 694 1,736 10
(7) FGVCAircraft 100 3,334 3,333 3,333 60
(8) Flowers102 102 1,020 1,020 6,149 40
(9) OxfordIIITPet 37 3,312 368 3,669 5
(10) UCF101 101 7,639 1,898 3,783 20
(11) ImageNet 1,000 1,276,167 5,000 50,000 1

Table 6. Vision datasets used for the image classification experiments

F.2. Classic datasets

We report detailed average results for the classic datasets of Table 6 for ViT-B/32, ViT-L/14 and ViT-H/14 in Table 7.

ViT-B/32 ViT-L/14 ViT-H/14

Shots 1 4 16 50% 100% Avg. 1 4 16 50% 100% Avg. 1 4 16 50% 100% Avg.

LoRA 60.93 66.11 69.47 74.53 77.48 69.70 74.82 78.65 81.64 85.59 88.17 81.77 79.82 80.91 83.00 86.39 88.51 83.73
SinLoRA 60.36 67.93 72.31 75.90 78.38 70.98 75.43 80.09 82.69 86.14 88.03 82.48 79.96 82.59 84.66 86.49 88.22 84.38
RandLoRA 59.40 68.98 73.91 78.57 81.99 72.57 76.26 81.60 84.28 87.92 89.93 84.00 81.40 84.19 86.52 89.48 90.83 86.48
Krona 58.64 68.94 73.86 78.05 81.12 72.12 75.75 81.52 84.47 88.11 89.85 83.94 79.74 84.03 86.68 89.62 90.81 86.18
KRAdapter 58.86 69.28 74.80 79.67 82.74 73.07 76.39 81.97 85.14 88.79 90.46 84.55 81.18 84.75 87.10 89.62 90.76 86.68

FT 58.90 70.03 75.52 80.31 83.42 73.64 77.39 80.96 84.97 87.91 90.03 84.25 77.39 80.96 84.97 87.91 90.03 83.65

Table 7. Parameter-efficient vision-language CLIP tuning for image classification.

F.3. VTAB1k

The Visual Task Adaptation Benchmark (VTAB) [62] is a collection of datasets used to evaluate the capacity of PEFT
algorithms to adapt large pretrained models to 3 categories of tasks.

F.3.1. Dataset presentation

Natural subset Caltech101 [34] focuses on classifying images of 102 object categories, including common objects and a
background class. CIFAR-100 [30] is a natural image classification dataset with 100 classes. The DTD dataset [10] involves

classifying textural patterns across 47 classes. Flowers102 [4] is dedicated to classifying 102 flower species found in the
UK. Pets [43] is a dataset for classifying cat and dog breeds, containing 37 classes. Sun397 [58] is a scenery classification
benchmark with 397 hierarchically structured classes.

Specialized subset SVHN [42] is a dataset for classifying street-view house numbers with 10 classes. EuroSAT [21] consists
of Sentinel-2 satellite imagery for land use classification into 10 classes. Resisc45 [8] is a remote sensing image scene
classification dataset with 45 classes. Patch Camelyon [53] is a large dataset of histopathologic scans for binary classification
of metastatic tissue presence. The Retinopathy dataset [15] focuses on predicting the severity of Diabetic Retinopathy on a 0-4
scale from high-resolution retina images.

Structured subset The CLEVR [27] datasets utilize images from a visual question answering task, with the ’count’ variant
predicting the number of objects and the ’distance’ variant predicting the depth of the closest object. The dSprites [38] dataset,
originally designed for disentanglement learning, is repurposed for location and orientation prediction tasks of simple 2D
shapes. Similarly, the SmallNORB [32] dataset, containing images of 3D toys, is used for predicting azimuth and elevation
angles of the objects. DMLab [3] provides 3D navigation environments where the task is to classify distances to reward objects,
and finally, KITTI [17] involves predicting the depth of vehicles in real-world driving scenes. These tasks require models
to reason about object counts, distances, orientations, and locations, spanning both 2D and 3D visual understanding which
presents significant challenges for CLIP architectures.

F.3.2. Prompt design

Although the prompts design for the natural and part fo the specialized subset is straight forward, these are not evident for the
structed subset especially when the classification is discrete. We settle on the class names described in Table 8 as we find they
perform better than random for the zero-shot models and allow to see an improved performance with stronger zero-shot models.
The final prompt we train CLIP with is ”An image of a {classname}.’ and we train with the SimCLR [6] augmentations.

F.3.3. Detailed results

Tables 9 report per dataset detailed results for PEFT algorithms using the ViT-{B/32,L/14,H/14} architectures respectively

F.4. OOD datasets

We evaluate the out-of-distribution (OOD) generalization of image classification models trained on ImageNet [31], using
datasets that probe model robustness under various distribution shifts with the standard ImageNet test set:

ImageNet-A (Naturally Adversarial) [23] comprises 7,500 real-world images from 200 ImageNet classes that are confidently
misclassified by standard models, yet easily recognizable by humans. ImageNet-A assesses robustness to naturally occurring,
subtle adversarial examples present in real-world data, highlighting vulnerabilities beyond synthetic adversarial attacks.

ImageNet-R (Renditions) [22] contains 30,000 images across 200 ImageNet classes, featuring artistic renditions like
paintings, sketches, and sculptures. It evaluates robustness to significant stylistic domain shifts, testing if models generalize
beyond photographic images and capture semantic content despite variations in visual style.

ImageNet-Sketch [56] presents a more extreme domain shift with 50,000 black and white sketches across all 1,000
ImageNet classes. ImageNet-Sketch serves as a stress test, evaluating a model’s ability to generalize to drastically different
image modalities and rely on high-level semantic understanding rather than low-level image features.

ImageNet-v2 [46] is not an OOD dataset in the same sense but an updated test set collected using the original ImageNet
methodology. It aims to provide a more reliable evaluation by mitigating potential test set contamination and overfitting to the
original ImageNet validation set. We study three subsets including ”Freq” (Matched Frequency) which replicates the original

D
at

as
et

C
la

ss
na

m
es

C
A

M
E

LY
O

N
’
w
i
t
h

n
o

m
e
t
a
s
t
a
t
i
c

t
i
s
s
u
e
’
,

’
c
o
n
t
a
i
n
i
n
g

m
e
t
a
s
t
a
t
i
c

t
i
s
s
u
e
’

R
E

T
IN

O
PA

T
H

Y
’
w
i
t
h

n
o

d
i
a
b
e
t
i
c

r
e
t
i
n
o
p
a
t
h
y
’
,

’
w
i
t
h

m
i
l
d

d
i
a
b
e
t
i
c

r
e
t
i
n
o
p
a
t
h
y
’
,

’
w
i
t
h

m
o
d
e
r
a
t
e

d
i
a
b
e
t
i
c

r
e
t
i
n
o
p
a
t
h
y
’
,

’
w
i
t
h

s
e
v
e
r
e

d
i
a
b
e
t
i
c

r
e
t
i
n
o
p
a
t
h
y
’
,

’
w
i
t
h

e
x
t
r
e
m
e

d
i
a
b
e
t
i
c

r
e
t
i
n
o
p
a
t
h
y
’

C
L

E
V

R
C

O
U

N
T

’
3

i
t
e
m
s
’
,

’
4

i
t
e
m
s
’
,

’
5

i
t
e
m
s
’
,

’
6

i
t
e
m
s
’
,

’
7

i
t
e
m
s
’
,

’
8

i
t
e
m
s
’
,

’
9

i
t
e
m
s
’
,

’
1
0

i
t
e
m
s
’

C
L

E
V

R
D

IS
T

’
c
o
n
g
e
s
t
e
d
’
,

’
l
a
r
g
e
r
’
,

’
l
a
r
g
e
’
,

’
n
o
r
m
a
l
’
,

’
s
m
a
l
l
’
,

’
t
i
n
y
’

D
SP

R
IT

E
S

L
O

C
’
0
-
6

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
6
-
1
2

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
1
2
-
1
8

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
1
8
-
2
5

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
2
5
-
3
1

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
3
1
-
3
7

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
3
7
-
4
3

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
4
3
-
5
0

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
5
0
-
5
6

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
5
6
-
6
2

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
6
2
-
6
8

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
6
8
-
7
5

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
7
5
-
8
1

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
8
1
-
8
7

p
e
r
c
e
n
t

x
a
x
i
s
’
,

’
8
7
-
9
3

p
e
r
c
e
n
t

x
a
x
i
s
’
,
’
9
3
-
1
0
0

p
e
r
c
e
n
t

x
a
x
i
s
’

D
SP

R
IT

E
S

O
R

IE
N

T
’
s
h
a
p
e

r
o
t
a
t
e
d

0
-
2
2
.
5

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

2
2
.
5
-
4
5
.
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

4
5
.
0
-
6
7
.
5

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

6
7
.
5
-
9
0
.
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

9
0
.
0
-
1
1
2
.
5

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

1
1
2
.
5
-
1
3
5
.
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

1
3
5
.
0
-
1
5
7
.
5

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

1
5
7
.
5
-
1
8
0
.
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

1
8
0
.
0
-
2
0
2
.
5

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

2
0
2
.
5
-
2
2
5
.
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

2
2
5
.
0
-
2
4
7
.
5

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

2
4
7
.
5
-
2
7
0
.
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

2
7
0
.
0
-
2
9
2
.
5

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

2
9
2
.
5
-
3
1
5
.
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

3
1
5
.
0
-
3
3
7
.
5

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

3
3
7
.
5
-
3
6
0
.
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’

SM
A

L
L

N
O

R
B

A
Z

IM
U

T
’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

0
-
2
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

2
0
-
4
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

4
0
-
6
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

6
0
-
8
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

8
0
-
1
0
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

1
0
0
-
1
2
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

1
2
0
-
1
4
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

1
4
0
-
1
6
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

1
6
0
-
1
8
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

1
8
0
-
2
0
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

2
0
0
-
2
2
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

2
2
0
-
2
4
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

2
4
0
-
2
6
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

2
6
0
-
2
8
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

2
8
0
-
3
0
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

3
0
0
-
3
2
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

3
2
0
-
3
4
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’
,

’
s
h
a
p
e

r
o
t
a
t
e
d

b
y

3
4
0
-
3
6
0

d
e
g
r
e
e
s

c
l
o
c
k
w
i
s
e
’

SM
A

L
L

N
O

R
B

E
L

E
VA

T
IO

N
’
o
b
j
e
c
t

p
h
o
t
o
g
r
a
p
h
e
d

w
i
t
h

a
3
0

d
e
g
r
e
e
s

e
l
e
v
a
t
i
o
n
’
,

’
o
b
j
e
c
t

p
h
o
t
o
g
r
a
p
h
e
d

w
i
t
h

a
3
5

d
e
g
r
e
e
s

e
l
e
v
a
t
i
o
n
’
,

’
o
b
j
e
c
t

p
h
o
t
o
g
r
a
p
h
e
d

w
i
t
h

a
4
0

d
e
g
r
e
e
s

e
l
e
v
a
t
i
o
n
’
,

’
o
b
j
e
c
t

p
h
o
t
o
g
r
a
p
h
e
d

w
i
t
h

a
4
5

d
e
g
r
e
e
s

e
l
e
v
a
t
i
o
n
’
,

’
o
b
j
e
c
t

p
h
o
t
o
g
r
a
p
h
e
d

w
i
t
h

a
5
0

d
e
g
r
e
e
s

e
l
e
v
a
t
i
o
n
’
,

’
o
b
j
e
c
t

p
h
o
t
o
g
r
a
p
h
e
d

w
i
t
h

a
5
5

d
e
g
r
e
e
s

e
l
e
v
a
t
i
o
n
’
,

’
o
b
j
e
c
t

p
h
o
t
o
g
r
a
p
h
e
d

w
i
t
h

a
6
0

d
e
g
r
e
e
s

e
l
e
v
a
t
i
o
n
’
,

’
o
b
j
e
c
t

p
h
o
t
o
g
r
a
p
h
e
d

w
i
t
h

a
6
5

d
e
g
r
e
e
s

e
l
e
v
a
t
i
o
n
’
,

’
o
b
j
e
c
t

p
h
o
t
o
g
r
a
p
h
e
d

w
i
t
h

a
7
0

d
e
g
r
e
e
s

e
l
e
v
a
t
i
o
n
’

D
M

L
A

B
’
o
b
s
t
r
u
c
t
e
d
’
,

’
l
a
r
g
e
’
,

’
b
i
g
g
e
r
’
,

’
n
o
r
m
a
l
’
,

’
s
m
a
l
l
e
s
t
’
,

’
e
m
p
t
y
’

K
IT

T
I

’
c
o
n
g
e
s
t
e
d
’
,

’
c
l
o
s
e
’
,

’
d
i
s
t
a
n
t
’
,

’
e
m
p
t
y
’

Ta
bl

e
8.

C
L

IP
Pr

om
pt

s
fo

rt
he

St
ru

ct
ed

su
bs

et
of

V
TA

B
-1

k
an

d
+

C
am

el
yo

n
an

d
R

et
in

op
at

hy
.W

e
tr

ai
n

th
e

V
L

C
L

IP
m

od
el

s
w

ith
th

e
pr

om
pt

”A
n

im
ag

e
of

a
{c

la
ss

na
m

e}
.”

Natural Specialized Structured

C
IF

A
R

-1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
N

H

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

D
M

L
ab

K
IT

T
I-

D
is

t

M
ea

n
N

at
.

M
ea

n
Sp

e

M
ea

n
St

ru
c

G
ro

up
M

ea
n

A
ll

M
ea

n

ViT-B/32

Zero-shot 41.5 78.8 41.7 66.7 87.7 25.8 59.5 60.7 31.4 53.8 55.7 25.1 17.4 6.7 8.1 6.2 11.6 20.2 39.8 57.4 50.4 16.9 41.6 38.9
LoRA 48.6 84.0 60.4 76.8 84.0 89.1 51.3 83.8 95.0 83.1 68.5 67.4 45.1 36.8 46.1 22.4 39.9 50.5 53.3 70.6 82.6 45.2 66.1 62.4
SinLoRA 49.0 84.7 60.6 84.2 84.4 90.3 50.6 84.5 95.0 83.9 69.0 69.3 53.1 78.5 51.5 22.4 41.2 51.9 56.8 72.0 83.1 53.1 69.4 66.4
RandLoRA 48.6 87.4 68.7 88.0 85.9 91.7 49.0 84.8 93.0 87.3 64.6 63.8 58.1 82.0 54.3 23.1 32.8 54.3 56.5 74.2 82.4 53.1 69.9 67.1
Krona 48.5 86.7 66.5 86.3 86.0 91.6 50.1 84.5 93.4 86.5 69.3 70.5 57.4 82.2 53.7 23.4 29.4 54.8 54.6 73.7 83.4 53.3 70.1 67.1
KRAdapter 52.3 88.4 70.3 88.9 87.0 91.7 53.5 84.9 93.1 88.4 69.4 69.4 58.3 79.9 54.0 25.3 32.1 54.1 53.0 76.0 84.0 53.3 71.1 68.1

FT 51.2 87.2 68.1 89.0 85.7 92.0 56.4 84.6 93.1 87.2 69.2 68.5 58.2 80.3 54.7 24.2 32.1 54.1 53.0 75.7 83.5 53.1 70.8 67.8

ViT-L/14

Zero-shot 55.9 80.9 52.5 78.9 93.3 56.4 64.2 54.7 42.6 66.2 23.9 19.0 22.5 6.6 6.8 5.5 9.3 21.1 17.6 68.9 46.9 13.6 43.1 40.9
LoRA 64.9 87.9 75.2 96.8 92.6 94.7 63.9 86.0 95.4 91.8 74.7 85.5 43.4 74.0 54.5 22.0 39.8 58.1 60.1 82.3 87.0 54.7 74.6 71.6
SinLoRA 65.9 88.2 75.7 97.0 92.5 94.7 63.7 86.8 95.6 92.0 72.8 86.5 45.5 84.7 60.9 22.1 38.0 60.4 56.4 82.5 86.8 56.8 75.4 72.6
RandLoRA 63.4 89.1 76.7 97.3 93.8 94.7 64.5 86.7 94.8 92.2 74.2 81.0 60.2 84.5 60.9 25.8 35.7 60.4 58.1 82.8 87.0 58.3 76.0 73.4
Krona 64.5 89.8 77.1 97.5 92.9 95.4 66.9 86.9 95.4 92.7 74.5 79.1 56.4 83.9 61.5 26.5 35.7 58.9 58.1 83.4 87.4 57.5 76.1 73.3
KRAdapter 70.0 89.8 78.5 98.0 93.7 95.2 68.5 86.5 95.1 93.0 73.0 81.7 55.3 79.1 62.0 25.3 34.5 59.5 60.1 84.8 86.9 57.2 76.3 73.6

FT 63.2 89.9 76.0 97.8 92.8 94.2 68.1 86.6 95.4 92.3 75.1 81.8 49.9 84.7 64.6 27.2 37.2 60.4 60.3 83.2 87.4 58.3 76.3 73.6

ViT-H/14

Zero-shot 65.9 83.4 63.5 79.6 94.6 45.5 74.7 54.5 52.9 70.9 23.4 34.9 22.6 6.1 8.9 5.9 11.2 15.2 37.8 72.4 50.4 17.8 46.9 44.8
LoRA 68.9 89.5 78.6 97.4 92.2 94.6 67.6 86.9 95.7 91.9 72.4 79.7 40.8 86.6 62.6 26.6 39.2 58.3 60.3 84.1 86.7 56.8 75.9 73.1
SinLoRA 69.0 89.8 78.0 97.4 92.3 94.7 68.5 87.3 95.5 92.0 72.7 87.1 41.8 87.4 62.9 28.3 39.2 60.0 58.6 84.2 86.9 58.2 76.4 73.8
RandLoRA 66.4 90.8 79.0 97.2 92.2 94.0 67.6 86.8 95.6 92.0 74.5 84.0 59.1 85.4 60.5 28.9 38.4 60.5 58.8 83.9 87.3 59.5 76.9 74.3
Krona 68.1 92.2 79.6 97.7 92.6 94.7 69.7 87.5 95.0 92.5 72.0 80.6 54.4 86.3 61.2 28.4 36.8 59.0 57.7 84.9 86.7 58.0 76.6 74.0
KRAdapter 71.2 92.5 80.0 98.1 93.0 94.4 71.6 86.1 95.6 93.1 73.3 84.5 53.3 84.0 60.3 27.2 36.4 59.5 59.6 85.8 87.0 58.1 77.0 74.4

FT 66.5 90.4 77.8 97.5 92.5 94.3 78.9 84.5 95.4 88.9 70.3 76.0 35.0 44.3 49.4 14.8 26.2 47.2 56.4 85.4 84.8 43.7 71.3 67.7

Table 9. Accuracies training on VTAB1k benchmark. We report per dataset accuracies as well as category-wise averages. Base networks are
ViT CLIP models in version - B/32, L/14 and H/14 where both vision and language backbones are trained.

validation set’s label distribution, ”Top” (Top-5 Accuracy Matched) which matches the top-5 accuracy of a reference model,
and ”Thresh” (Thresholded) which uses a higher worker agreement threshold for potentially cleaner labels.

F.4.1. Detailed OOD results

Table 10 reports detailed per-dataset accuracies for the OOD experiments on ImageNet.

G. Commonsense reasoning

G.1. Dataset details

We test on 8 commonsense reasoning datasets. These benchmarks encompass a range of cognitive skills, including answering
yes/no questions BoolQ [11]), addressing common-sense physics inquiries (PIQA [5]), understanding social dynamics
(SIQA [49]), completing multi-choice scenarios (HellaSwag [61]), binary solutions to finish sentences (WinoGrande [48]),

Im
ag

eN
et

(I
D

)

Im
ag

eN
et

A

Im
ag

eN
et

Sk
et

ch

Im
ag

eN
et

R

Im
ag

eN
et

V
2T

hr
es

h

Im
ag

eN
et

V
2T

op

Im
ag

eN
et

V
2F

re
q

C
IF

A
R

10
0

O
O

D

Im
pr

ov
e

ID

Im
pr

ov
e

O
O

D

R
at

io

E
ff

ra
nk

Sp
ec

tr
al

Fr
o

ViT-B/32

ZS 62.64 32.28 40.78 66.56 62.93 68.23 55.28 62.26 55.47 n/a n/a n/a n/a n/a n/a
LoRA 72.16 28.6 42.82 66.10 70.80 76.32 62.52 63.79 58.71 9.52 3.2 0.34 20.4 19.6 4.1
SinLoRA 72.84 28.43 42.39 64.48 71.34 76.97 62.44 64.24 58.61 10.20 3.1 0.31 276.8 223.5 14.7
RandLoRA 72.01 27.55 42.05 64.31 71.00 76.72 61.8 65.64 58.44 9.37 3.0 0.31 464.6 46.2 5.7
Krona 71.88 28.51 42.38 66.06 71.04 76.48 62.16 65.95 58.94 9.24 3.5 0.38 584.0 44.1 4.9
KRAdapter 72.52 30.32 43.67 67.84 71.39 77.23 62.59 66.32 59.91 9.88 4.4 0.45 696.0 7.3 2.3

FT 75.54 25.71 42.35 64.31 73.41 78.7 64.85 62.68 58.86 12.9 3.4 0.26 590.4 0.7 0.8

ViT-L/14

ZS 75.44 70.77 59.6 87.73 75.86 79.05 69.75 76.15 74.13 n/a n/a n/a n/a n/a n/a
LoRA 83.34 70.73 61.36 86.81 82.22 84.98 76.06 78.08 77.18 7.90 3.05 0.39 22.6 46.2 6.6
SinLoRA 82.8 69.45 59.99 85.01 81.45 84.61 75.22 78.67 76.34 7.36 2.21 0.30 734.6 61.6 7.1
RandLoRA 82.78 68.96 59.66 85.02 81.84 84.93 75.32 77.95 76.24 7.34 2.11 0.28 605.5 159.9 11.8
Krona 84.08 72.09 61.40 87.17 82.87 85.55 76.48 78.88 77.78 8.64 3.65 0.42 755.2 42.7 5.02
KRAdapter 83.64 73.03 61.95 87.85 82.79 85.72 76.5 79.32 78.17 8.20 4.04 0.49 920.9 9.8 2.8

FT 85.05 68.13 60.30 86.00 83.41 86.14 77.28 75.74 76.71 9.61 2.58 0.27 758.8 1.0 1.0

ViT-H/14

ZS 77.94 59.36 66.53 89.29 77.59 81.30 70.93 84.74 75.74 n/a n/a n/a n/a n/a n/a
LoRA 83.65 56.76 64.38 85.62 82.54 85.91 76.21 79.89 75.90 5.71 0.22 0.04 27.7 70.0 7.4
SinLoRA 83.55 58.72 65.93 87.90 82.85 86.02 76.4 81.69 77.07 5.61 1.40 0.29 968 90.6 8.1
RandLoRA 82.94 57.04 63.4 84.90 81.84 85.17 75.13 80.58 75.43 5.00 -0.24 -0.05 752.3 508.3 21.21
Krona 85.02 64.33 65.78 87.52 83.62 86.55 77.15 82.43 78.20 7.08 2.52 0.36 882.4 123.3 9.2
KRAdapter 84.57 65.67 67.15 89.01 83.38 86.51 76.96 83.23 78.84 6.63 3.17 0.48 1140.2 32.8 5.5

FT 84.88 64.23 67.26 89.68 81.96 85.07 75.44 84.88 78.36 6.94 2.68 0.39 935.4 4.3 1.9

Table 10. Detailed results on OOD generalization with efficient rank

tackling both simpler and more complex elementary science questions (ARC-e and ARC-c [12]), and engaging in multi-stage
reasoning (OBQA [40]). This collection of datasets presents different challenges, ranging from understanding the nuances
of language and employing everyday knowledge to making inferences about the physical and social world. For a deeper
exploration of these datasets, we redirect readers to the work of Hu et al. [25].

G.2. Training details

The models are trained using the Transformers library from Hugging Face4. We followed implementation specifics detailed by
Albert et al. [2], whose code is publicly available5. The training lasts for four epochs, utilizing a learning rate of 1× 10−4 and
a base scaling coefficient of 2 for α weights. To combat overfitting we use dropout with a probability of 0.05 for each adapter
layer. Unless otherwise specified, hyper-parameters were kept consistent across different architectures and algorithms. We
train on the multi-choice tasks SIQA, ARC-C, ARC-E and OBQA and test on all tasks.

4https://huggingface.co
5https://github.com/PaulAlbert31/RandLoRA

https://github.com/PaulAlbert31/RandLoRA

H. GLUE

We further report results tuning RoBERTa [37] on the General Language Understanding Evaluation (GLUE) [54] dataset (see
appendix H). We train for the SST-2, MRPC, COLA, QNLI, RTE and STS-N tasks. We report Matthew’s correlation for
CoLA, Pearson correlation for STS-B, and accuracy for the remaining tasks. We train the key and value matrix in the attention
layers of a pretrained RoBERTa-large [37] network configuration with 355M parameters originally and perform 5 runs to
report average performance and one standard deviation. We train each run for 10 epochs with a learning rate of 10−4.Results
are reported in Table 11 where we find that KRAdapter slightly outperforms other algorithms on average although results are
very close. In this setting, the margin for improvement is small as the task is an easy binary classification. This translates to all
PEFT algorithms producing results within an error margin of each other. KRAdapter however performs competitively in this
setting as well.

LoRA 95.6 ± 0.2 88.7 ± 0.9 64.3 ± 1.2 94.6 ± 0.2 79.1 ± 4.0 91.8 ± 0.4 85.7 ± 0.9
SinLoRA 96.1 ± 0.1 88.9 ± 0.9 63.4 ± 0.9 93.6 ± 0.6 83.7 ± 0.4 91.8 ± 0.1 86.3 ± 0.2
RandLoRA 95.7 ± 0.3 88.7 ± 0.4 63.9 ± 1.3 93.9 ± 0.3 81.7 ± 2.3 91.8 ± 0.2 85.9 ± 0.3
Krona 95.8 ± 0.2 88.0 ± 0.8 59.6 ± 0.8 94.3 ± 0.2 78.7 ± 2.4 91.6 ± 0.3 84.7 ± 0.4
KRAdapter 95.9 ± 0.4 89.2 ± 0.6 64.6 ± 0.6 94.1 ± 0.3 82.5 ± 0.7 92.0 ± 0.3 86.4 ± 0.1

Table 11. Results on GLUE datasets with the RoBERTa-large model.

Random noise LoRA 7.8 SinLoRA 4.4 RandLoRA 6.1 Krona 5.8 KRAdapter 4.4

Sparse noise LoRA 23.9 SinLoRA 24.8 RandLoRA 19.3 Krona 17.7 KRAdapter 9.6

PCA whitened noise LoRA 10.1 SinLoRA 7.5 RandLoRA 6.4 Krona 7.2 KRAdapter 5.9

Low rank LoRA 2.6 SinLoRA 2.7 RandLoRA 2.7 Krona 3.4 KRAdapter 4.3

CLIP language LoRA 1.0 SinLoRA 0.9 RandLoRA 1.0 Krona 0.9 KRAdapter 0.6

CLIP vision LoRA 1.2 SinLoRA 1.0 RandLoRA 1.4 Krona 1.0 KRAdapter 0.9

High freq LoRA 10.0 SinLoRA 7.0 RandLoRA 7.8 Krona 7.4 KRAdapter 4.6

Low freq LoRA 9.7 SinLoRA 6.3 RandLoRA 6.0 Krona 7.2 KRAdapter 4.5

Figure 5. Toy experiment. We evaluate the capacity of PEFT methods to produce specific types of weight matrices. We report the generated
matrices according to the target (left) and the absolute element-wise nuclear error. Lower is better. All algorithms train at least the same
amount of parameters as KRAdapter

	Introduction
	Related Work
	Low-Rank Adaptation (LoRA)
	Enhancing the training efficiency
	Further reducing parameters
	Full-rank updates
	Motivations

	Khatri-Rao Adapters (KRAdapter)
	Preliminaries
	Method formulation
	Parameter efficiency
	Full-rank guarantee
	Differences with Kronecker Adapters

	Experiments
	Matrix approximation
	Vision-language tasks
	Common datasets
	Specialized datasets
	Out-of-Distribution Generalization

	Commonsense reasoning
	Ablation study

	Limitations
	Conclusion
	Mathematical supplement
	Minimizing the trainable parameters in KRAdapter
	Proving the Khatri-Rao of two random matrices is full rank

	Further empirical differences with Kronecker adapter
	Details about the toy experiments
	Training details
	Matrix generation
	Visualization

	Effective rank
	Training times and VRAM usage
	CLIP classification
	Dataset details
	Classic datasets
	VTAB1k
	Dataset presentation
	Prompt design
	Detailed results

	OOD datasets
	Detailed OOD results

	Commonsense reasoning
	Dataset details
	Training details

	GLUE

