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In this supplementary material, we first provide the im-
plementation details of our VAOT and VASOT approaches
in Sec. S1. Next, our ablation analysis results on the Pour-
ing dataset are included in Sec. S2, while our sensitivity
analysis results of the entropy regularization weight ϵ are
presented in Sec. S3. Furthermore, our multi-action video
alignment results and our per-video action segmentation re-
sults are included in Secs. S4 and S5 respectively. Finally,
we present some qualitative results in Sec. S6 and complex-
ity comparison results in Sec. S7.

S1. Implementation Details

For fair comparisons with previous self-supervised video
alignment methods [1, 3, 4, 7], our VAOT and VASOT ap-
proaches for video alignment utilize a ResNet-50 encoder
network. Please refer to Dwibedi et al. [3] for additional
details on the encode network. We provide the hyperparam-
eter settings of our VAOT and VASOT approaches for video
alignment in Tab. S1. Note that our VASOT approach for
video alignment includes both VAOT and ASOT [11] mod-
ules, which share the same hyperparameter settings shown
in the VASOT column in Tab. S1.

In addition, following state-of-the-art self-supervised ac-
tion segmentation methods [5, 6, 11], our VASOT approach
for action segmentation employs a 2-layer MLP encoder
network for fair comparison purposes. Please see Kukleva
et al. [5] for more details on the encoder network. The hy-
perparameter settings of our VASOT approach for action
segmentation are included in Tab. S2. Note that both VAOT
and ASOT [11] components in our VASOT approach for
action segmentation have the same hyperparameter settings
presented in the VASOT column in Tab. S2.

S2. Ablation Analysis Results

In addition to the results on IKEA ASM in Sec. 4.1 of the
main paper, we present the ablation analysis results of our
VAOT approach on the Pouring dataset in Tab. S3.
Effect of Structural Prior. The structural prior imposes
temporal consistency on the transport map. Removing it
significantly degrades performance across all metrics, high-
lighting its critical role in our VAOT approach.
Effect of Temporal Prior. Excluding the temporal prior
results in performance drops across all metrics, confirming
its positive impact on video alignment.
Effect of Balanced Assignment. Using a full unbalanced
assignment formulation causes a substantial decrease in per-
formance. This demonstrates the importance of balanced
assignment in our VAOT approach.
Effect of Virtual Frame. Virtual frames are added for
tackling background/redundant frames and improving ro-
bustness. Removing virtual frames results in minor perfor-
mance drops across all metrics, which is expected given the
monotonic nature of the Pouring dataset.

S3. Sensitivity Analysis Results

Sec. 4.2 of the main paper performs sensitivity analyses
on different hyperparameters such as r, α, ρ, ζ, wseg , and
walign. We now plot the results of the entropy regulariza-
tion weight ϵ in Fig. S1. We use our VAOT approach and
the Pouring dataset for this experiment. From the results,
Acc@1.0 remains stable across the studied value range of ϵ.
Progress exhibits small fluctuations, whereas τ is the most
sensitive metric, steadily increasing from ϵ = 0.05, peaking
at ϵ = 0.07, and declining thereafter. Furthermore, we find
that ϵ = 0.07 also yields the best results for the remaining
datasets.
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Hyperparameter VAOT VASOT

Number of sampled frames 40 (P), 20 (PA, IA) 40 (P), 20 (PA, IA)
Learning rate 10−5 10−4 (P), 10−5 (PA, IA)
Weight decay 10−5 10−5

Batch size 2 videos 2 videos
Entropy regularization weight ϵ 0.07 0.07

Virtual frame threshold ζ 0.5 0.5
Gromov-Wasserstein weight α 0.3 0.3

Structural prior radius r 0.02 0.02
Temporal prior weight ρ 0.35 0.35

Table S1. Hyperparameter settings of our VAOT and VASOT approaches for state-of-the-art video alignment comparison. Note that P, PA,
and IA represent Pouring, Penn Action, and IKEA ASM respectively.

Hyperparameter VASOT

Number of sampled frames 256
Learning rate 10−3 (B, M, E, DA), 10−4 (YTI)
Weight decay 10−4 (B, M, E, DA), 10−5 (YTI)

Batch size 2 videos
Entropy regularization weight ϵ 0.07

Virtual frame threshold ζ 0.5
Gromov-Wasserstein weight α 0.3 (YTI, M, E, DA), 0.5 (B)

Structural prior radius r 0.02 (DA), 0.04 (B, YTI, M, E)
Temporal prior weight ρ 0.15 (M, E), 0.2 (B, YTI, DA)

Number of epochs 30 (YTI, E), 50 (B), 100 (M, DA)

Table S2. Hyperparameter settings of our VASOT approach for state-of-the-art action segmentation comparison. Note that B, YTI, M, E,
and DA denotes Breakfast, YouTube Instructions, 50 Salads (Mid), 50 Salads (Eval), and Desktop Assembly respectively.

Method Acc@0.1 Acc@0.5 Acc@1.0 Progress τ AP@5 AP@10 AP@15

Po
ur

in
g

w/o Structural Prior 62.13 88.28 93.68 90.28 72.49 84.45 84.45 84.41
w/o Temporal Prior 71.57 90.51 91.47 86.94 78.11 86.17 86.29 86.24

w/o Balanced Assignment 63.29 88.57 92.38 85.73 68.78 82.83 82.71 82.49
w/o Virtual Frame 86.32 87.22 93.24 88.11 82.65 86.99 86.74 86.56

All 91.80 92.88 94.63 91.63 88.28 91.34 90.56 90.29

Table S3. Ablation analysis results. Bold and underline denote the best and second best respectively.
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Figure S1. Sensitivity analysis results.

S4. Multi-Action Video Alignment Results

In Sec. 4.3 of the main paper, we train a separate encoder for
each action of the Penn Action dataset and report the aver-
age results across all 13 actions of the Penn Action dataset,
which is not efficient both in terms of time and memory
consumption. In this section, we train only a single encoder
for all actions of Penn Action and report the multi-action
video alignment results in Tab. S4. This is a challenging
experiment setting since the shared encoder needs to jointly
extract useful features for all actions. We use our VAOT
approach for this experiment. It is evident from Tab. S4
that our VAOT approach achieves the best results across all
metrics, outperforming all competing methods in this exper-
iment setting. Especially, on Progress, VAOT outperforms
previous works by significant margins.



Method Acc@1.0 Progress τ

Pe
nn

A
ct

io
n

SAL [8] 68.15 39.03 47.44
TCN [10] 68.09 38.34 54.17
TCC [3] 74.39 59.14 64.08
LAV [4] 78.68 62.52 68.35

VAVA [7] 80.25 64.82 76.20
GTCC [1] 73.90 69.70 60.70

VAOT (Ours) 83.49 79.23 77.68

Table S4. Multi-action video alignment results. Bold and underline denote the best and second best respectively.

Method Breakfast YouTube Instructions 50 Salads (Mid) 50 Salads (Eval) Desktop Assembly

MoF / F1 / mIoU MoF / F1 / mIoU MoF / F1 / mIoU MoF / F1 / mIoU MoF / F1 / mIoU

Pe
r-

V
id

eo TWF [9] 62.7 / 49.8 / 42.3 56.7 / 48.2 / - 66.8 / 56.4 / 48.7 71.7 / - / - 73.3 / 67.7 / 57.7
ABD [2] 64.0 / 52.3 / - 67.2 / 49.2 / - 71.8 / - / - 71.22/ - / - - / - / -

ASOT [11] 63.3 / 53.5 / 35.9 71.2 / 63.3 / 47.8 64.3 / 51.1 / 33.4 64.5 / 58.9 / 33.0 73.0 / 68.4 / 47.6
VASOT (Ours) 64.5 / 54.3 / 35.8 70.1 / 67.5 / 53.0 64.7 / 64.2 / 45.1 55.1 / 59.5 / 37.7 72.1 / 77.2 / 53.2

Table S5. Per-video action segmentation results. Bold and underline denote the best and second best respectively.
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Figure S2. Fine-grained frame retrieval results on Penn Action.
The query image is on the left, while on the right are the top
5 matching images retrieved by VAOT (blue box) and LAV (red
box).

S5. Per-Video Action Segmentation Results
We perform Hungarian matching over the entire dataset to
obtain the full-dataset action segmentation results in Tab. 3
of the main paper. In the following, we benchmark our
VASOT approach against previous unsupervised action seg-
mentation methods [2, 9] which conduct Hungarian match-
ing and evaluate per video. Per-video matching and evalua-
tion do not require clusters across all videos and hence tend
to yield better results. Tab. S5 presents the results in the
per-video matching and evaluation setting. It can be seen
from the results that our VASOT approach achieves the best
overall performance in this experiment setting. Especially,
on F1 score, our VASOT approach consistently performs
the best across all datasets.

S6. Qualitative Results
We provide some qualitative results in this section. Firstly,
Fig. S2 presents the frame retrieval results of our VAOT ap-
proach and LAV [4] on Penn Action. From Fig. S2, our

(a) LAV (b) VAOT (Ours)

Figure S3. t-SNE visualizations of learned frame embeddings of
two Pouring videos (green and red). The color opacity represents
the temporal frame index from the first frame to the last frame.

Figure S4. Action segmentation results on Desktop Assembly
(top) and YouTube Instructions (bottom).

VAOT approach retrieves all 5 correct frames with the same
action (Bat swung back fully) as the query image, whereas
LAV [4] retrieves all incorrect frames (Bat hits ball), high-



lighted by red ovals.
Secondly, Fig. S3 illustrates the t-SNE visualizations of

the learned frame embeddings of two Pouring videos by
our VAOT approach and LAV [4]. In Fig. S3(a), the em-
beddings by LAV [4] form locally continuous but globally
fragmented trajectories, with visible gaps in earlier and later
frames. In contrast, for our VAOT approach in Fig. S3(b),
the embeddings of corresponding frames from both videos
are spatially closer and follow smoother trajectories. This
suggests that our VAOT approach can effectively capture
both local and global temporal information, resulting in
more temporally consistent embeddings.

Lastly, Fig. S4 shows the action segmentation results by
our VASOT approach and ASOT [11] on a Desktop Assem-
bly video and a YouTube Instructions video. The Desk-
top Assembly dataset is relatively balanced, with actions of
more uniform durations, whereas the YouTube Instructions
dataset is more unbalanced, with some actions being signif-
icantly longer or shorter than others. From Fig. S4, our VA-
SOT approach can effectively handle both cases, yielding
segmentations which align more closely with ground truth
than ASOT [11].

S7. Complexity Comparison Results

We compare the complexity (in terms of model size and
training time) of our multi-task VASOT approach and the
separate single-task models (VAOT+ASOT) on an Nvidia
3090Ti GPU. Using a ResNet-50 encoder on Pouring, VA-
SOT needs (108 MB, 116 mins) vs. (216 MB, 162 mins)
of VAOT+ASOT. Using an MLP encoder on Desktop As-
sembly, VASOT needs (287 KB, 15 mins) vs. (571 KB,
21 mins) of VAOT+ASOT. The results validate that our
multi-task VASOT approach saves both memory and train-
ing time as compared to the separate single-task models
(VAOT+ASOT).
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