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A. Implementation Details

In this section, we present a comprehensive overview of the implementation details of our proposed model to ensure repro-
ducibility and facilitate future research. We begin by outlining the specific hyperparameters used during training, the datasets
utilized in our experiments. We then detail the annealing procedures employed to adapt the threshold of the active-area
loss used for the mask estimators in the AIM architecture. Additionally, we explain the shifted-center cropping technique
implemented to assess the model’s susceptibility to center bias.

A.1. Hyperparameters

The primary hyperparameters used for our AIM models are the shown in Table 4:



Table 4. The Hyperparameters values used for training AIM models.

Hyperparameter Value

Validation dataset ratio 20% of training dataset

Batch Size 512

top-down pathway learning rate 0.01

Weight Decay 0.001

RandAugment (ops=3, magnitude=9)

Label Smoothing 0.05

Learning Rate Schedule cosine

Optimizer AdamW [25]

drop out rate 0.3

drop out path rate 0.3

We used different learning rates for each of the backbones, as listed in Table 5. Specifically, for the ConvNeXt-tiny+AIM
model a much smaller learning rate, compared to those used for the other models, is needed for the training to converge.

Table 5. General training setting used for training AIM.

Model backbone Learning rate

AIM+ConvNeXt 7e-6

ResNet50+AIM 0.001

ResNet101+AIM 0.001

A.2. Computational Overhead
Tab. 6 quantifies the computational overhead of our proposed AIM module. The integration results in a marginal increase in
both GFLOPs and model parameters, confirming the method’s efficiency.

Table 6. Comparison of GFLOPs and the Number of Parameters with Increment Over Baseline Models

Model Name GFLOPs Parameters (M)

ConvNeXt-tiny 4.5 28.0
ConvNeXt-tiny+AIM [1] 5.2 (+0.7) 30.7 (+2.7)
ConvNeXt-tiny+AIM [2] 4.6 (+0.1) 29.9 (+1.9)

ResNet50 4.1 23.9
ResNet50+AIM [2] 5.1 (+1.0) 27.6 (+3.7)
ResNet50+AIM [3] 4.4 (+0.3) 26.6 (+2.7)

A.3. Active-area loss threshold annealing
We employ a masking annealing technique to ensure a seamless adaptation of the network to the masking process. The main
idea of this technique is to increase the masking or decrease the number of active elements (elements with value 1 in the
binary mask) as the training evolves (see Figure 9). This is done by controlling the active-area loss threshold throughout the
training process, where we start with fully active masks (a threshold of 1.0), enabling the entire network to operate without
constraints, and as training advances, we decrease that threshold with each epoch until reaching the final wanted value (for
example 0.35 which means 35% of the mask is only active). The network then uses this final value for the rest of the training.
This annealing technique aids the network in adjusting more effectively to the masking constraints, resulting in improved
mask quality and a more stable learning process. The number of epochs or steps for which the annealing of the active-area
threshold is carried out is treated as a hyperparameter.
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Figure 9. The annealing process of the active-area loss threshold begins either at the start of training or at a specific epoch (e.g., epoch 10
in the figure) and continues for a set number of epochs (e.g., 100 epochs, which is half of the total 200 training epochs). After this period,
a final threshold of 0.3 is maintained for the remainder of the training.

A.4. Datasets

In the following sections, we provide details on the datasets used in our experiments: CUB, Waterbirds-100%, Waterbirds-
95%, and TravelingBird.

A.4.1. CUB-200
The Caltech-UCSD Birds-200-2011 [50], known as CUB-200-2011, is one of the most well-known datasets in the fine-
grained visual classification domain. The dataset consists of 11,788 images of 200 bird species, roughly divided in half for
training and half for evaluation. There are an average of 30 images per class in the training dataset and 29 images per class
in the test dataset. Throughout this work, we divided the primary training dataset into 80% and 20% training and validation
datasets to search over hyperparameters. In our experiments, we utilized an input image size of (224 × 224) pixels, and for
computing the EPG scores, we relied on the binary segmentation [7] masks.

A.4.2. WaterBirds
Waterbirds dataset is a synthetic dataset [33] designed to test classification models by introducing a controllable distribu-
tion shift, it is specifically engineered to assess how models respond to shifts in group distributions. The authors took the
different bird species from the CUB-200-2011 dataset and simplified the task to be a two-class classification: Waterbirds
and Landbirds. They manipulate the backgrounds using the binary segmentation masks [7], where they replaced the original
background with either water or land scenes taken from the Places dataset [54]. This creates four different groups: Landbirds
on land-background, Landbirds on water-background, Waterbirds on land-background, and Waterbirds on water-background.

The ability to control the construction of the dataset allows researchers to explore how models handle spurious correlations.
In the training dataset, the majority of images fall into main groups - Landbirds on land and Waterbirds on water. However,
in the validation and test datasets there is an equal distribution across the four groups, creating a deliberate distribution shift
between training and test datasets.

The two mainly used versions of this dataset are, the Waterbirds100% version [28], which presents the most extreme
challenge, with training dataset that have a perfect correlation between the type of the bird and the background-Water bird on
Water background and Land bird on Land background. The other version is the Waterbirds95% [33] where 5% of the training
images come from the out-of-distribution groups: Landbird on Water-background and Waterbird on land-background. In our
experiments, we utilized an input image size of (224 × 224) pixels. For computing the EPG scores, we also relied on the
binary segmentation masks [7] of the CUB-200 dataset.



A.4.3. TravelingBirds
TravelingBirds dataset [19] is a variant of the CUB dataset and it is constructed in a similar way to that of Waterbirds dataset.
While it preserves the original 200 classes of the CUB-200-2011 dataset, it changes the background of the birds to spuriously
correlate the target label y and the image background within the training set only. The Authors used the binary segmentation
masks to isolate the bird’s pixels from its original background and put them onto a different background scene taken from
the Places dataset [54]. Each bird species is laid out on a unique but randomly selected type of scene. During test time,
the association between bird label and their background scene type is randomized, Completely disrupting the training set’s
correlation between background and class labels, resulting in a challenging adversarial setting. Following [19], we utilized an
input image size of (299 × 299) pixels, and for computing the EPG scores, we also relied on the binary segmentation masks
[7] of the CUB-200 dataset.

A.4.4. ImageNet-100
ImageNet-100 [47] is a widely used [1, 15] subset of the full ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2012 dataset [32]. It is composed of 100 distinct object classes selected from the original 1000, containing approximately
128,000 training images and 5,000 validation images. The primary motivation for using this subset is to enable faster model
training, hyperparameter tuning, and experimentation compared to the resource-intensive full dataset, while still offering a
diverse and challenging multi-class classification benchmark. In our experiments, we follow standard practice and use an
input image size of (224× 224) pixels.

A.4.5. ImageWoof
ImageWoof [16] is a challenging 10-class subset of ImageNet [32] designed for rapid yet difficult experimentation. The
dataset is intentionally curated to be a hard, fine-grained classification problem, as it contains 10 breeds of dogs that are
visually very similar. By focusing on these hard-to-distinguish classes, ImageWoof provides a computationally inexpensive
benchmark that is more demanding than a random subset of ImageNet of a similar size. This makes it particularly useful for
quickly iterating on and evaluating new model architectures and training methodologies. In our experiments, we utilize an
input image size of (224× 224) pixels.

A.4.6. Hard-ImageNet
ImageNet-Hard [27] is a benchmark designed to evaluate if models classify images ”for the right reasons” rather than relying
on spurious correlations. It consists of 19k training images and 750 quintuply-validated test images across 15 classes: Dog
sled, Howler Monkey, Seat Belt, Ski, Sunglasses, Swimming Cap, Balance Beam, Horizontal bar, Patio, Hockey Puck,
Miniskirt, Space Bar, Volleyball, Baseball Player, and Snorkel.

The benchmark challenges models with images where the object of interest is captured under suboptimal conditions (e.g.,
not large or centered). Leveraging segmentation masks helps diagnose whether a model’s prediction is based on the object
itself or on misleading background cues, thus providing a deeper understanding of model behavior beyond simple accuracy
metrics. For evaluation, we use an input size of (224× 224) pixels.

A.5. Energy Pointing Game (EPG) Score
The Energy Pointing Game (EPG) score [51] is a metric designed to quantify the spatial localization capabilities of a model.
Specifically, it evaluates the extent to which the model’s attribution aligns with the ground-truth object regions.

The computation of the EPG score requires the following components:
• Attribution Map: An importance map generated by an attribution method such as Saliency Maps [40], GradCAM [36],

Guided GradCAM [37], or any comparable technique.
• Ground-Truth Binary Mask: A binary segmentation mask that delineates the region corresponding to the object of

interest.
The EPG score is calculated as the ratio between the total attribution energy within the active (foreground) region of the

binary mask and the total attribution energy across the entire attribution map. A higher EPG score indicates that the model
concentrates its decision-making evidence within the relevant object regions, thereby demonstrating better spatial grounding
of its predictions.

A.6. Testing the center bias of the masks
One of the concerns we had after seeing the masks that our method generated on the CUB-200 dataset was the susceptibility
of our models’ masks to center bias. Thus, rather than center-corp the images, we designed a cropping mechanism that, given



a specific deviation from the center, randomly chose one new center for cropping in a way that guarantees to violate the center
bias of the object in the newly cropped image. We denote this modified dataset as the shifted-center CUB-200. Figure 10
illustrates the shifted cropping technique used to assess the center bias of the generated masks. Each colored dot represents
the center of its corresponding square crop, which is outlined in the same color. For each image, one of the four centers is
randomly selected, and the image is cropped accordingly.

It is important to note that this cropping technique might also crop important parts from the object of interest, making the
classification much harder due to the lack of task-related features. For example, the body might be cropped out while only
the legs of the bird are kept.

Figure 10. The image illustrates the shifted cropping technique used to assess the center bias of the generated masks. Each colored dot
represents the center of its corresponding square crop, which is outlined in the same color. For each image, one of the four centers is
randomly selected, and the image is cropped accordingly.

B. Quantitative results

This section provides a comprehensive overview of the performance metrics obtained from our trained models under different
configurations.

B.1. Center bias

Table 7 presents the performance metrics for the baseline vanilla ConvNeXt-tiny model as well as the ConvNeXt-tiny+AIM
models on the Shifted-center CUB-200 dataset. Notably, both the vanilla ConvNeXt-tiny and all variants of the AIM archi-
tecture experienced a performance drop, with the ConvNeXt-tiny showing a decrease of approximately 10% and the AIM
variants showing a decline of around 9% compared to the center-cropped experiments (see Figure 1). Despite this reduction
in accuracy, our proposed model variants still outperform the baseline ConvNeXt-tiny model by nearly 2%. For qualitative
comparison of the GradCAM and the generated masks see Figure 12



Table 7. presents the performance metric scores for the baseline vanilla ConvNeXt-tiny model as well as the ConvNeXt-tiny+AIM models
on the Shifted-center CUB-200 dataset. Notably, both the vanilla ConvNeXt-tiny and all variants of the AIM architecture experienced a
performance drop, with the ConvNeXt-tiny showing a decrease of approximately 10% and the AIM variants showing a decline of around
9% compared to the center-cropped experiments (see Table 9). Despite this reduction in accuracy, our proposed model variants still
outperform the baseline ConvNeXt-tiny model by nearly 2%. For qualitative comparison of the GradCAM and the generated masks see
Figure 12.

Model Test Accuracy (± Std)

ConvNeXt-tiny 76.98 (±0.18)

AIM+ConvNeXt (1, 25%) 79.08 (±0.44)
AIM+ConvNeXt (1, 35%) 79.33 (±0.45)
AIM+ConvNeXt (1, No Annealing) 79.13 (±0.35)

AIM+ConvNeXt (2, 25%) 79.11 (±0.12)
AIM+ConvNeXt (2, 35%) 79.11 (±0.12)
AIM+ConvNeXt (2, No Annealing) 79.12 (±0.13)

Upon analyzing the generated masks on the cropped test images (see Figures 12), we can see that large bird regions are
missing, which can attribute the performance reduction to the loss of essential parts during the cropping process. The masks
clearly focus on the task-related regions or what’s left of them after cropping. This is particularly evident in the masks
generated by stage#2 in the second example, where the model focuses on the bird’s legs and belly.

B.2. Attribution-Agnostic Localization Performance:
In addition to GradCAM, we evaluate other attribution methods to assess the generality of our localization improvements.
Table 8 reports EPG scores on the Waterbirds-95% dataset using Guided GradCAM and Guided Backprop, both of which
show consistent gains with AIM.

Table 8. Attribution-agnostic EPG improvements on Waterbirds-95%. AIM consistently boosts localization scores regardless of the
attribution method used.

Model EPG score ↑
Guided GradCAM Guided Backpropagation

Vanilla ConvNext-tiny 46.17(± 2.5) 31.26 (± 5.4)
ConvNext+AIM (2, 25%) 76.77 (± 2.7) 51.89 (± 0.3)

B.3. Extended Results of ConvNeXt+AIM:
In this section, we provide extended results for our AIM-enhanced ConvNeXt model, as detailed in Table 9. We supplement
our findings on the Waterbirds dataset by including the overall accuracy metric, which further highlights the benefits of our
approach. For instance, the best-performing AIM model achieves an overall accuracy of 89.1% ± 0.8% on the Waterbirds
(100%) benchmark, a significant increase from the baseline’s 71.2%±2.2%. Furthermore, we present results on the CUB-200
dataset, where AIM-based models also outperform the baseline model.

Table 9. Average Test Accuracies for different configurations of ConvNeXt+AIM. Comparison of the ConvNeXt-tiny baseline against our AIM-
enhanced models on three benchmarks. Our method achieves substantial gains, most notably improving the worst-group accuracy on the Waterbirds
dataset, which highlights its effectiveness in mitigating spurious correlations. All values are mean accuracy (%) ± standard deviation.

Model
CUB Waterbirds Travelingbirds

100% 95%
Acc EPG WG-Acc Overall Acc EPG WG-Acc Overall Acc EPG Acc EPG

ConvNeXt-t 87.9 (±0.02) 68.3 (±0.1) 39.6 (±5.4) 71.2 (±2.2) 57.19 (±6) 81.6 (±3.2) 94.8 (± 0.3) 68.3 (± 3.2) 59.5 (±0.8) 74.4 (±0.6)
ConvNeXt-t+AIM[1, 25%] 88.6 (±0.1) 76.804 (±3.3) 73.6 (±4.5) 86.2 (±2.6) 60.11 (±1.3) 91.2 (± 0.8) 95.7 (± 0.7) 77.1 (±5.15) 77.1 (±0.3) 79 (±0.7)
ConvNeXt-t+AIM[1, 35%] 88.18 (±0.1) 55 (±3.8) 77.1 (±4.4) 88.4 (±1.8) 57.2 (±1.3) 90.7 (±0.7) 96 (± 0.3) 63 (±1.2) 71.5 (±1.3) 72.6 (±1.5)
ConvNeXt-t+AIM[2, 25%] 87.78 (±0.2) 75.17(±1.2) 74 (±5) 84(±6) 58 (±1.3) 92.7 (±1.2) 96.6 (± 0.2) 75 (±6) 77.4 (±0.2) 85 (±2)
ConvNeXt-t+AIM[2, 35%] 88.5 (±0.2) 62.5 (±0.3) 78.1 (±2.3) 89.1 (±0.8) 68.5 (±3.6) 92.3 (±0.6) 96.31 (± 0.1) 71.7 (± 6.4) 71 (±0.4) 77.7 (±0.4)



B.4. Comparison To Other Methods:
This section compares AIM to other methods. Unlike our approach, which does not use any form of guidance, other methods
often rely on guidance mechanisms to direct the trained model. Examples of such guidance include using binary masks [30]
or leveraging the output of a CLIP-based model controlled by a text prompt GALS [28] or using specific loss to account for
imbalanced data [48]. Our proposed AIM solely relies on image labels used by traditional image classification methods.

Table 10. Average Test Accuracies for Various Models with and without AIM Modification. This table presents the average test accuracies (with
standard deviations) for different models on the CUB-200, Waterbirds, and Travelingbirds datasets. The models include ConvNeXt-tiny, ResNet50, and
ResNet101 with and without the AIM modification. The AIM-enhanced models are denoted as [backbone]+AIM (stage index, mask active-area loss), such
as ConvNeXt-tiny+AIM(1, 25%). The results are organized by dataset and further divided into categories: overall accuracy and worst-group accuracy for
both 100% and 95% subsets where applicable. Improvements or declines in performance due to the AIM modification are highlighted in green and red,
respectively. This comprehensive comparison provides insights into the effectiveness of the AIM approach in enhancing model performance across different
datasets and scenarios.

Model CUB-200 (%)
Waterbirds (%)

Travelingbirds (%)100% 95%
Worst-Group Overall Worst-Group Overall

ConvNeXt-tiny 87.9 (±0.02) 39.6 (±5.4) 71.2 (±2.2) 81.6 (±3.2) 94.8 (± 0.3) 59.5 (±0.8)
ConvNeXt-t+AIM[1, 25%] 88.6 (±0.1) 73.6 (±4.5) 86.2 (±2.6) 91.2 (± 0.8) 95.7 (± 0.7) 77.1 (±0.3)
ConvNeXt-t+AIM[1, 35%] 88.18 (±0.1) 77.1 (±4.4) 88.4 (±1.8) 90.7 (±0.7) 96 (± 0.3) 71.5 (±1.3)
ConvNeXt-t+AIM[2, 25%] 87.78 (±0.2) 74 (±5) 84(±6) 92.7 (±1.2) 96.6 (± 0.2) 77.4 (±0.2)
ConvNeXt-t+AIM[2, 35%] 88.5 (±0.2) 78.1 (±2.3) 89.1 (±0.8) 92.3 (±0.6) 96.31 (± 0.1) 71 (±0.4)

DRO [48] + ResNet50 - - - 91.4 (±1.1) - -
GALS [28] + ResNet50 - 56.71 (-) - 76.54 (-) - -
BCos-ResNet50 [30] - 56.1 (±4) - - - -
ResNet50 81.32 41.29 (± 1.99) 69.48 (± 2) 71.09 (± 5.98) 91.21 (± 0.27) 50.21 (± 0.5)
ResNet50+AIM (2, 25%) 83.90 52.19 (± 9.11) 73.84 (± 1.14) 75.97 (± 2.344) 92.1 (± 0.31) 65.2 (± 0.24)
ResNet50+AIM (3, 25%) 83.16 40.12 (± 2.1) 71.36 (± 1.7) 77.2875 (± 0.404) 92.38 (± 0.2) 64 (± 0.51)

ECBM [52] + ResNet101 - - - - - 58.4 (-)
ResNet101 76.41 (± 0.619) 36.48 (± 4.22) 71.69 (± 2.2) 77.565 (± 3.2) 92.82 (± 0.31) 19.54 (± 0.34)
ResNet101+AIM (2, 25%) 82.55 (± 0.22) 38.11 (± 1.4) 71.46 (± 0.53) 82.39 (± 0.88) 93.12 (± 0.74) 44.03 (± 0.96)
ResNet101+AIM (3, 25%) 82.635 (± 0.28) 38.81 (± 1.4) 71.8 (± 0.69) 82.39 (± 1.328) 93.34 (± 0.7) 45.13 (± 0.7)

C. Qualitative results
In this section, we explore the qualitative aspects of our study by showcasing masks and Grad-CAM attributions across
different settings. These visualizations provide insights into the models’ decision-making processes, highlighting areas of
focus and variation in response to different configurations.

C.1. Additional qualitative results:
In the figure 11, we illustrate additional examples from CUB, waterbirds-100%, Travelingbirds and Hard-ImageNet datasets,
where it is clear from the GradCAM attributes that AIM-based models focus on the object and ignore the spurious features.

C.2. Center bias
Figure 12 presents a qualitative comparison of different architectural configurations of AIM on the Shifted-center CUB-200
setting. The figure illustrates the masks generated at each stage for two primary architectural variants: ConvNeXt-tiny+AIM
(1), shown in the top group of images, and ConvNeXt-tiny+AIM (2), shown in the bottom group. Each variant employs
different mask active-area thresholds, with each row representing a distinct threshold setting. The masks produced by AIM
(columns denoted stage#1 masks, stage#2 masks, stage#3 masks) explicitly delineate the regions utilized by the model at
each stage, thereby demonstrating that AIM effectively mitigates susceptibility to center bias. The “Merged Masks” column
demonstrates where the final feature maps will be zero, highlighting the discarded regions.

C.3. Qualitative Comparison of Masks and Attribution Maps: AIM vs. Vanilla Backbone Models
In this section, we present qualitative results to illustrate the effectiveness of our proposed approach. We selected five different
input images from each of the following datasets: CUB-200, Waterbirds-95%, Waterbirds-100%, and Traveling Birds. For
these images, we compare the GradCAM attribution maps generated by the AIM+[backbone] models with different mask



active-area thresholds to those produced by the vanilla [backbone] models. Additionally, we display the generated merged
masks from the AIM+[backbone] models.

• For the CUB-200 dataset we show the ConvNeXt-tiny+AIM (T=1) and (T=2) outputs in Figure 13 and Figure 14 respec-
tively, while we illustrate the output of ResNet50+AIM (T=2) and (T=3) Figure 15 and Figure 16 respectively.

• For the Waterbirds-95% dataset, we present the ConvNeXt-tiny+AIM outputs with mask active-area thresholds (T=1)
and (T=2) in Figure 17 and Figure 18, respectively. Additionally, we illustrate the outputs of ResNet50+AIM with (T=2)
and (T=3) in Figure 19 and Figure 20, respectively.

• For the Waterbirds-100% dataset, we show the outputs of ConvNeXt-tiny+AIM and ResNet50+AIM in Figure 23 and
Figure 24, respectively.

• For the TravelingBirds dataset, we present the outputs of ResNet50+AIM and ResNet101+AIM in Figure 22 and Fig-
ure 21, respectively.

D. Ablation results

In this appendix section, we conduct an ablation study to explore the roles of individual components and parameters within
our proposed method. By systematically adjusting or removing certain elements, we aim to gain a better understanding of
their contributions to the model’s performance.

D.1. Active-Area Loss Annealing:

This section analyzes the performance variations in ConvNeXt-tiny+AIM models, focusing on two architectural variants:
ConvNeXt-tiny+AIM (T=1) and ConvNeXt-tiny+AIM (T=2). The analysis examines changes in accuracy and energy point-
ing game (EPG) scores relative to the vanilla ConvNeXt-tiny model when the mask active-area threshold τ is adjusted on the
Waterbrids-95% dataset.

The results in Table 11 reveal that reducing the active-area threshold leads to improvements in both the worst group and
overall accuracies; this can also be seen in Figure 25. This finding suggests that by constraining the spatial areas upon which
the models depend, they are compelled to identify and concentrate on regions pertinent to the task. This focus is evidenced
by the higher EPG scores achieved, indicating effective task-related region identification.



Table 11. This table presents the performance changes, in terms of accuracy and energy pointing game (EPG) scores on the Waterbrids-95%
dataset, for ConvNeXt-tiny+AIM models with two architectural variants: ConvNeXt-tiny+AIM (T=1) and ConvNeXt-tiny+AIM (T=2).
These are compared against the vanilla ConvNeXt-tiny model when altering the mask active-area threshold τ . The results indicate that a
smaller active-area threshold leads to increases in both the worst group and overall accuracies. This suggests that limiting the spatial areas
the models rely on encourages them to identify and focus on task-related regions, as reflected by high EPG scores. Another notable trend
is that the ConvNeXt-tiny+AIM (T=1) variants achieve better EPG scores, implying that the masks in this variant, applied across all three
stages of the top-down pathway, effectively concentrate on the regions of interest (ROI). This is also seen more clearly in Figure 25.

Model Annealing final threshold τ
Waterbirds-95%

Worst-group Overall EPG

Vanilla ConvNeXt-tiny – 79.63 (±) 93.755 (±1.340) 63.52

AIM+ConvNeXt (1) 10% 92.16 (±) 95.62 (±) 84.3
AIM+ConvNeXt (2) 94 (±) 96.63 (±) 81

AIM+ConvNeXt (1) 15% 92.24 (±) 95.93 (±) 81.7
AIM+ConvNeXt (2) 93.33 (±) 96.53 (±) 62.3

AIM+ConvNeXt (1) 20% 91.46 (±) 95.69 (±) 73
AIM+ConvNeXt (2) 93.53 (±) 96.51 (±) 57.4

AIM+ConvNeXt (1) 25% 91.74 (±) 96.31 (±) 74.22
AIM+ConvNeXt (2) 93.24 (±) 95.62 (±) 72.1

AIM+ConvNeXt (1) 30% 91.35 (±) 96.36 (±) 59
AIM+ConvNeXt (2) 92.87 (±) 96.65 (±) 49

AIM+ConvNeXt (1) 35% 91.11 (±) 96.38 (±) 56.13
AIM+ConvNeXt (2) 92.59 (±) 96.39 (±) 45.83

AIM+ConvNeXt (1) 40% 90.68 (±) 96.24 (±) 41.7
AIM+ConvNeXt (2) 91.89 (±) 96.29 (±) 53.8

D.2. Without The Auxiliary Losses:

As discussed in Section 3, the AIM architecture incorporates a classification loss as an auxiliary loss at each stage in the
top-down pathway, following the approach from [21]. These losses help align the learned features at each stage with the
final task. However, this raises an important question: How would the AIM network perform if these auxiliary losses were
removed? What impact would this have on the network’s overall performance?

Table 12 examines the impact of removing auxiliary losses on the performance of ConvNeXt-tiny+AIM and
ResNet50+AIM models across the CUB-200 and Waterbirds-95% datasets. The results, measured in terms of accuracy
and energy pointing game (EPG) scores, reveal notable performance fluctuations when auxiliary losses are omitted. On the
Waterbirds-95% dataset, some settings show performance gains, while others experience declines. Conversely, on the CUB-
200 dataset, performance consistently deteriorates without the auxiliary losses. These observations highlight the critical role
of auxiliary losses in maintaining stable and reliable performance across different models and datasets.



Table 12. AIM networks performance worsens without auxiliary losses. This table presents the performance variations of ConvNeXt-
tiny+AIM and ResNet50+AIM on the CUB-200 and Waterbirds-95% datasets, measured in terms of accuracy (averaged over 4 different
runs) and energy pointing game (EPG) scores. Red arrows indicate a decrease in the score compared to the corresponding architecture with
the auxiliary losses, while green arrows represent an increase in scores. The results indicate that removing the auxiliary losses leads to
fluctuations in performance across the datasets and models’ variations. Specifically, on the Waterbirds-95% dataset, performance increases
for some settings while decreasing for others. On the CUB-200 dataset, performance consistently worsens compared to when auxiliary
losses are used. These findings underscore the importance of auxiliary losses in achieving consistent performance across models and
datasets.

Model τ Auxiliary losses CUB-200 Waterbirds-95%
Acc EPG Worst-group Acc Overall EPG

ConvNeXt-tiny+AIM (1, τ )

25% no 88.29↓ (±0.16) 59.4↑ 92.24↑ (±0.73) 96.84↑ (±0.086) 73.82↓
25% yes 88.63 (±0.13) 58.54 91.31 (±1.1) 96.77 (±0.1) 74.22
35% no 88.51↓ (±0.075) 50.12↓ 91.7↑ (±0.76) 96.70 ↑ (±0.35) 69.57↑
35% yes 88.82 (±0.21) 57.49 90.1 (±1.44) 96.63 ±0.13) 56.13

no annealing no 88.6↓ (±0.15) 44.69↓ 92.23↑ (±2.88) 94.89↓ (±2.13) 48.17↑
no annealing yes 88.77 (±0.1) 53.56 89.3 (±2.48) 96.07 (±0.16) 42.57

ConvNeXt-tiny+AIM (2, τ )

25% no 88.31↓ (±0.19) 59.2↓ 93.18↑ (±1.1) 97.27↑ (±0.32) 78.4↑
25% yes 88.55 (±0.3) 60.27 90.1 (±1.46) 96.43 (±0.2) 72.12
35% no 88.47↓ (±0.17) 54.19↓ 92.01↑ (±0.51) 96.85 ↑ (±0.1) 63.98↑
35% yes 88.67 (±0.25) 56.82 91.41 (±0.22) 96.40 (±0.23) 45.83

no annealing no 88.68↑ (±0.15) 41.49↓ 91.78↑ (±0.74) 95.94 ↓ (±0.26) 58.48↓
no annealing yes 88.62 (±0.21) 55.54 88.7 (±1.4) 96.39 (±0.104) 65.84

ResNet50+AIM (2, τ )

25% no 79.74↓ (±0.14) 55.86↓ 77.68↓ (±0.673) 92.41 ↓ (±0.184) 61.89↓
25% yes 80.9 (±0.345) 57.56 91.31 (±1.1) 96.77 (±0.1) 74.22
35% no 79.85↓ (±0.07) 54.54↓ 77.41↓ (0) 92.35↑ (±0.1) 51.66↓
35% yes 80.9 (±0.12) 57 90.1 (±1.44) 92.34 (±0.25) 56.13

no annealing no 79.27↓ (±0.23) 47.49↓ 75.50↓ (±0.545) 91.7 ↓(±0.26) 43.04↑
no annealing yes 80.84 (±0.28) 53.81 89.3 (±2.48) 91.9 (±0.11) 42.57

ResNet50+AIM (3, τ )

25% no 79.69↓ (±0.35) 57.66↑ 77.83↓ (±0.61) 92.64 ↓(±0.38) 71.87↑
25% yes 80.9 (±0.345) 56.76 91.31 (±1.1) 96.77 (±0.1) 61.89
35% no 79.77↓ (±0.41) 55.04↑ 78.38↓ (±1.48) 91.92↓ (±0.35) 46.35↓
35% yes 80.9 (±0.12) 54.80 90.1 (±1.44) 92.42 (±0.46) 52.14

no annealing no 79.55↓ (±0.21) 48.73↓ 74.87↓ (±2.0) 92.32 ↓(±0.32) 36.79↓
no annealing yes 80.84 (±0.28) 52.71 89.3 (±2.48) 87.39 (±8.56) 41.78

D.3. Do we need multiple mask estimators, one at each level?

One of the building blocks of our proposed method is the use of mask estimators in the top-down pathway, where we employ
a mask estimator module at each stage, which we denote here as the Full AIM model. Given that in convolutional neural
networks the feature maps from the last level determine the final semantic features used in the classification layer, a question
arises: can we rely solely on the mask generated at the first stage of the top-down pathway (this stage corresponds to the final
convolutional layer in the backbone network used)?

This question is motivated by the semantic richness of the feature maps at this level; thus, selecting areas by masking in
these feature maps is supposed to truly represent the task-related semantics.

To investigate this question, we adjusted our network to use only the masks generated at the first stage of the top-down
pathway. This is done by passing the first stage’s masks to the subsequent stage after up-scaling them by a factor of 2, as the
subsequent stage has higher spatial resolutions.



Table 13. Test accuracies of different AIM models on the CUB-200 dataset with masks only adapted from the first stage of the top-down
pathway (highlighted with ✓mark) versus the standard AIM network, which employs a mask estimator at each stage of the top-down
pathway.

Model One Mask Estimator CUB-200 (%)

AIM+ConvNeXt (1, 25%) × 88.635 (±0.13)
AIM+ConvNeXt (1, 35%) × 88.82 (±0.213)
AIM+ConvNeXt (1, No Annealing) × 88.775 (±0.044)

AIM+ConvNeXt (2, 25%) × 88.557 (±0.296)
AIM+ConvNeXt (2, 35%) × 88.677 (±0.25)
AIM+ConvNeXt (2, No Annealing) × 88.622 (±0.211)

AIM+ConvNeXt (1, 25%) ✓ 88.14 (± 0.44)
AIM+ConvNeXt (1, 35%) ✓ 88.22 (± 0.26)
AIM+ConvNeXt (1, No Annealing) ✓ 88.25 (± 0.33)

AIM+ConvNeXt (2, 25%) ✓ 88.52 (± 0.22)
AIM+ConvNeXt (2, 35%) ✓ 88.41 (± 0.20)
AIM+ConvNeXt (2, No Annealing) ✓ 88.26 (± 0.28)

Table 13 presents the test accuracies of different configurations of our AIM models on the CUB-200 dataset. In these
experiments, we compare the standard AIM network, which employs a mask estimator at each stage of the top-down pathway,
with a modified version that uses masks only from the first stage of the top-down pathway. The modified approach passes the
first-stage masks to subsequent stages to be applied on the corresponding feature maps. These models are indicated with a ✓
in the ‘One Mask Estimator’ column in the Table 13.

Analyzing the results, we observe that the models’ results are very close to each other, with models using masks solely
from the first stage generally achieving slightly lower test accuracies than those employing mask estimators at each stage.

In convolutional neural networks, as input data moves through the network layers, the feature maps become richer in
semantic information but lose spatial localization. We hypothesize that applying masks generated at the first stage of the
top-down pathway, which is coarser and less localized (See Figure 26) compared to those from later stages, to subsequent
lower stages could inadvertently include non-task-related regions, potentially diminishing performance, especially on out-of-
distribution datasets.

D.4. The bottom-up bottlenecking approach:

One of the most relevant works to ours is [49], which uses a bottom-up masking approach to focus on essential regions in the
generated feature maps. This approach relies on employing mask units between the main blocks of a convolutional network
to produce binary masks highlighting task-relevant regions for the network. These mask units utilize the Gumbel-softmax
trick to generate binary masks, which are then used to spatially bottleneck feature maps produced after each main block.

However, as discussed in the related work Section 2, this bottom-up approach needs skip-connections to work (See Fig-
ure 27) as the network needs more information to be flown from the shallow layer to the deepest layers to form an under-
standing of the scene, this compromised the inherent interpretability that comes naturally with the sparse feature maps, which
with the skip-connections fall back to dense features maps.

We closely follow the method described in [49], but with one key difference: we utilized fully sparse feature maps without
skip connections. This decision aligns with our objective of creating an interpretable model by focusing on generating fully
sparse feature maps, which makes the decision-making process transparent (See Figure 28). For this purpose, we adhered to
the same training setup we used for our approach, 200 epochs with active mask annealing applied for half the training period.
We denote this architecture as bottom-up AIM Network.

We tested three architectural variants that differed in the number of masked convolutional blocks and experimented with
two annealing threshold settings.



Table 14. This table presents the performance of Bi-gatedNet with ConvNeXt-tiny on the CUB-200 dataset when different blocks are
masked and various mask active-area thresholds (τ ) are applied. Masking all three blocks resulted in the lowest accuracy with high
variability, indicating unstable training. Masking only the last two blocks improved accuracy but yielded poorly localized masks. Masking
only the last block achieved the highest accuracy, surpassing the unmasked ConvNeXt-tiny model, and produced highly focused and
localized masks.

Model Name Bottom-Up Blocks Masked CUB-200 (%)

ConvNext-tiny - 86.827 (±0.761)

standard ConvNeXt-tiny+AIM (T=1, τ=25%) - 88.82 (±0.213)
standard ConvNeXt-tiny+AIM (T=2, τ=25%) - 88.677 (±0.25)

Bottom-up ConvNeXt-tiny+AIM (τ=25%) 1, 2, 3 72.79 (±8.51)
Bottom-up ConvNeXt-tiny+AIM (τ=25%) 2, 3 82.53 (±1.39)
Bottom-up ConvNeXt-tiny+AIM (τ=25%) 3 86.202 (±0.44)

Bottom-up ConvNeXt-tiny+AIM (τ=35%) 1, 2, 3 67.45 (±8.52)
Bottom-up ConvNeXt-tiny+AIM (τ=35%) 2, 3 84.00 (±1.38)
Bottom-up ConvNeXt-tiny+AIM (τ=35%) 3 86.975 (±0.34)

Our main observation was that applying masks to all three blocks resulted in the lowest accuracy with high variability
across trials (see Table 14), indicating unstable training and the model’s inability to learn effective representations. Addition-
ally, the masks generated in this configuration (see Figure 29) showed almost no masking despite the application of the mask
active-area loss with annealing.

When we adjusted the architecture to mask only the last two blocks, the accuracy improved sharply, by 10% for the
annealing threshold of 0.25 and 13% for 0.35, reaching above 80% accuracy (see Table 14). However, the quality of the
masks remained poor: the masks at the lower levels were still almost fully active, and only the mask from the last block
focused on the bird.

This is evident in Figure 29, which shows that even when we limit the active area region to 25% and 35% using mask
active-area loss annealing, the masks remain fully activated except for the one from the last block.

Furthermore, table 15 compares between our top-down and bottom-up approach in terms of sparsity and localization
(EPG); the top-down method outperforms the bottom-up baseline on both metrics even without any sparsity loss (No anneal-
ing) on Waterbirds-95% dataset.

Table 15. Comparison of our top-down approach (ConvNext+AIM) against a bottom-up baseline on the Waterbirds-95% dataset. Our
method demonstrates superior performance across all metrics, highlighting its ability to improve localization (EPG) and sparsity even
without an explicit sparsity objective (No annealing).

Model Worst group ACC (± std) ↑ EPG (± std) ↑ Sparsity score (± std) ↓
Bottom-up ([1, 2, 3], 25%) 85.63 (± 4.2) 29.28 (± 21.4) 100 (± 0)
ConvNext+AIM (1, 25%) 92.21 (± 1.2) 77.1 (± 0.06) 17.7 (± 0.6)

Bottom-up ([1, 2, 3], No annealing) 87.41 (± 4.2) 24.66 (± 9.4) 100 (± 0)
ConvNext+AIM (1, No annealing) 89.5 (± 4.13)) 43.43 (± 5.13) 71.48 (± 0)

In summary, training with the bottom-up approach indicates that masking fewer blocks leads to better performance and
more robust masks.

D.5. Emphasizing peripheral regions in mask estimator initialization
During training, the layers of the mask estimators are typically initialized randomly. To investigate the effect of the initializa-
tion scheme on the performance of the mask estimators, we propose an alternative initialization method that emphasizes the
peripheral regions over the central regions. This is achieved by weighting the convolutional filter weights according to their
spatial distance from the center of the filter kernel. Specifically, we assign larger initial values to the weights corresponding
to the edges of the filters than to those closer to the center, effectively biasing the filters to be more responsive to features in
the outer areas of the input (see Figure 30 for an illustration).



However, our experiments on the CUB-200 dataset reveal that this specialized initialization does not have a significant
impact on performance. As shown in Table 16, the model’s accuracy remains essentially unchanged compared to when using
standard random initialization. This suggests that the mask estimators are robust to the initial weight distribution and that the
network is capable of learning effective representations regardless of this specific initialization strategy.

Table 16. Emphasizing Peripheral Regions in Mask Initialization Does Not Impact AIM Network Performance. This figure compares
the AIM network’s performance on the CUB-200 dataset using two different initialization strategies for the mask estimators: standard
random initialization and an initialization that emphasizes peripheral regions by assigning larger weights to filter edges. The results
indicate that the model’s accuracy remains essentially unchanged between the two approaches. This suggests that the mask estimators
are robust to the initial weight distribution, and the network can effectively learn meaningful representations regardless of this specific
initialization strategy.

Model CUB-200 (%)
Edge-emphasized initialization ConvNeXt-tiny+AIM (2, 25%) 88.76 (±0.171)
Standard random initialization ConvNeXt-tiny+AIM (2, 25%) 88.678 (±0.251)

D.6. User Perception Study Details
To quantitatively assess if our model’s improved focus is perceptually meaningful, we conducted an online user study. Par-
ticipants accessing the study were first directed to a welcome page that outlined the research goals, the task procedure, and
our data privacy policy (Fig. 31). The introduction defined attribution maps as heatmaps used to visualize an AI’s focus and
assured participants that all responses would be anonymous and confidential.

The study was designed to be completed in approximately 10 minutes. To achieve this while still covering a broad set
of 100 images from the Waterbirds-100% dataset, the images were randomly partitioned into four disjoint subsets of 25.
Each of the 107 participants was randomly assigned to evaluate exactly one of these four subsets. Following this assignment,
participants proceeded to the main evaluation task, which consisted of 25 forced-choice comparison trials.

In each trial, participants were shown an image from their assigned subset, displayed alongside two GradCAM attribution
maps: one from the baseline vanilla ConvNeXt and one from our AIM-equipped model. For each pair, they were asked
to select the map that, in their opinion, “more accurately and clearly focuses on the main object in the image, and less on
irrelevant parts”. An example of this trial layout is shown in Fig. 32. To mitigate positional bias, the on-screen placement of
the two maps was randomized for every trial.

A total of 107 participants completed the study, yielding 107 × 25 = 2675 individual evaluations. The results show
a strong and significant user preference for our model. AIM’s attribution maps were chosen in 70.7% of the evaluations.
A two-sided binomial test confirms that this outcome is highly significant (p < 0.00001), providing strong evidence that
the explanations generated by AIM are more aligned with human intuition regarding object-centric focus compared to the
baseline.



Figure 11. Models amended with AIM consistently exhibit enhanced localization of genuine features, effectively suppressing spurious cues in both
in-domain and out-of-domain scenarios. A qualitative visualization of Grad-CAM heatmaps comparing baseline ConvNeXt-tiny models and ConvNeXt-
tiny+AIM models across CUB-200, TravelingBirds, WaterBirds-100%, and Hard-ImageNet. The EPG scores are indicated on each heatmap.
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Figure 12. Qualitative Comparison between the different architectural configurations of AIM on the Shifted-center CUB-200
setting. This figure illustrates the masks generated at each stage for two primary architectural variants: ConvNeXt+AIM (T=1) (The
group of images at the top) and ConvNeXt+AIM (T=2) (the group of images at the bottom), each utilizing different mask active-area
thresholds (each row represent different active-area loss setting). The masks produced by AIM (columns denoted stage#1 masks, stage#2
masks, stage#3 masks) explicitly delineate the regions utilized by the model at each stage, thereby demonstrating that AIM effectively
mitigates susceptibility to center bias. The ”Merged Masks” column demonstrates where the final feature maps will be zero, highlighting
the discarded regions.
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Figure 13. Qualitative results on the CUB-200 dataset. Comparison of GradCAM attribution maps between ConvNeXt-tiny+AIM mod-
els with different mask active-area thresholds and the vanilla ConvNeXt-tiny, along with the generated merged masks from the ConvNeXt-
tiny+AIM model.
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Figure 14. Qualitative results on the CUB-200 dataset. Comparison of GradCAM attribution maps between ConvNeXt-tiny+AIM mod-
els with different mask active-area thresholds and the vanilla ConvNeXt-tiny, along with the generated merged masks from the ConvNeXt-
tiny+AIM model.
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Figure 15. Qualitative results on the CUB-200 dataset. Comparison of GradCAM attribution maps between ResNet50+AIM models
with different mask active-area thresholds and the vanilla ResNet50, along with the generated merged masks from the ResNet50+AIM
model.
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Figure 16. Qualitative results on the CUB-200 dataset. Comparison of GradCAM attribution maps between ResNet50+AIM models
with different mask active-area thresholds and the vanilla ResNet50, along with the generated merged masks from the ResNet50+AIM
model.
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Figure 17. Qualitative results on the Waterbirds-95% dataset [33]. Comparison of GradCAM attribution maps between ConvNeXt-
tiny+AIM models with different mask active-area thresholds and the vanilla ConvNeXt-tiny, along with the generated merged masks from
the ConvNeXt-tiny+AIM model.
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Figure 18. Qualitative results on the Waterbirds-95% dataset [33]. Comparison of GradCAM attribution maps between ConvNeXt-
tiny+AIM models with different mask active-area thresholds and the vanilla ConvNeXt-tiny, along with the generated merged masks from
the ConvNeXt-tiny+AIM model.
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Figure 19. Qualitative results on the Waterbirds-95% dataset [33]. Comparison of GradCAM attribution maps between ResNet50+AIM
models with different mask active-area thresholds and the vanilla ResNet50, along with the generated merged masks from the
ResNet50+AIM model.
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Figure 20. Qualitative results on the Waterbirds-95% dataset [33]. Comparison of GradCAM attribution maps between ResNet50+AIM
models with different mask active-area thresholds and the vanilla ResNet50, along with the generated merged masks from the
ResNet50+AIM model.
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Figure 21. Qualitative results on the Travelingbirds dataset [19]. Comparison of GradCAM attribution maps between ResNet101+AIM
models with different mask active-area thresholds and the vanilla ResNet101, along with the generated merged masks from the
ResNet101+AIM model.

ResNet50
+

AIM
(3, 25%)

AIM
Merged Mask

ResNet50
+

AIM
(3, 35%)

AIM
Merged Mask

ResNet50
+

AIM
(3, No Annealing)

AIM
Merged Mask

Figure 22. Qualitative results on the Travelingbirds dataset [19]. Comparison of GradCAM attribution maps between ResNet50+AIM
models with different mask active-area thresholds and the vanilla ResNet50, along with the generated merged masks from the
ResNet50+AIM model.
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Figure 23. Qualitative results on the Waterbirds-100% dataset [28]. Comparison of GradCAM attribution maps between ConvNeXt-
tiny+AIM models with different mask active-area thresholds and the vanilla ConvNeXt-tiny, along with the generated merged masks from
the ConvNeXt-tiny+AIM model.
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Figure 24. Qualitative results on the Waterbirds-100% dataset [28]. Comparison of GradCAM attribution maps between
ResNet50+AIM models with different mask active-area thresholds and the vanilla ResNet50, along with the generated merged masks
from the ResNet50+AIM model.



Figure 25. The first figure (on the right) illustrates how the worst-group accuracy of ConvNeXt-tiny+AIM (T=1) and ConvNeXt-tiny+AIM
(T=2) changes with varying active-area thresholds. It shows that as the threshold increases, the worst-group accuracy decreases, while the
change in overall accuracy is less pronounced. However, the EPG score also decreases with higher active-area thresholds. Despite this
decline, the worst-group accuracy does not experience a significant drop, decreasing by approximately 3%.
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Figure 26. Qualitative Comparison between the different architectural configurations of AIM when using masks from the last
layer.This figure illustrates the application of masks generated at the last stage (stage #3) and used in the subsequent stages after
upsampling.
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Figure 27. The illustration depicts the architecture of the bottom-up bottlenecking model, adapted from [49], highlighting the flow of
data through the model, including skip connections and mask estimators. Each main convolutional block in the network consists of
three branches: the first is a mask estimator that employs the Gumbel-softmax trick to predict a binary mask, the second is the original
convolutional block, and the third is a skip connection. The generated masks are applied to the output of the convolutional block, resulting
in spatially sparse feature maps. Subsequently, the skip connection performs an element-wise summation between these sparse feature
maps and the block’s input, transforming the sparse maps back into dense ones.
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Figure 28. Bottom-up AIM Network An illustration showing the same bottom-up bottlenecking model’s architecture from Figrue 27 but
without the skip-connection to maintain the sparsity of the feature maps.
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Figure 29. Bottom-up AIM Network Fails to Generate Focused Masks This figure illustrates the masks generated at different stages of
the ConvNeXt-tiny backbone within the Bottom-up AIM network. Even when we limit the active area region of the masks to 25% and
35% using mask active-area loss annealing, the masks from the earlier blocks remain fully activated, covering the entire image. Only the
mask from the last block effectively focuses on the relevant region. This demonstrates that the Bottom-up AIM network does not produce
localized, task-related masks in its earlier stages.

Figure 30. An illustration showing the weight matrix of a convolutional layer with one (7 × 7) filter, initialized using the proposed idea
of weighting the convolutional filter weights according to their spatial distance from the center of the filter kernel. Specifically, we assign
larger initial values to the weights corresponding to the edges of the filters than to those closer to the center, effectively biasing the filters
to be more responsive to features in the outer areas of the input.



Figure 31. The user study welcome page, which provided participants with initial instructions.



Figure 32. An example trial from our user perception study. Participants were shown the original image (left) and two GradCAM attribution
maps from the baseline ConvNeXt (right) and our AIM-equipped model (center). In this case, the baseline model is distracted by the
spurious forest background, while our method correctly localizes the waterbird. This clear distinction in focus led users to significantly
prefer our model’s explanations.


