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Supplementary Material

A. More Background on the CMB
A.1. Selected CMB Missions

In the main body of this work, we refer to some of the sur-
veys which have gathered CMB information. We provide
more detail on those here.

There have been at least four pioneering satellite surveys
designed with the purpose of observing the CMB signal
from space: RELIKT-1, COBE (the COsmic Background
Explorer), WMAP (the Wilkinson Microwave Anisotropy
Probe), and the Planck mission. RELIKT-1 was a Soviet
CMB satellite that observed at a single frequency for six
months in 1983 and 1984. It was difficult to conclude that
dipole and quadrupole measurements had a cosmological
origin from this experiment alone. The COBE satellite op-
erated from 1989 to 1993, confirming that CMB radiation
follows a nearly perfect black body spectrum and has faint
temperature anisotropies [33].

The WMAP satellite operated between 2001 and 2010,
gathering data which supported the ACDM (Lambda Cold
Dark Matter) cosmological model and provided narrow er-
ror bars for many of its governing parameters [19]. E-mode
polarization of the CMB had previously been observed by
ground-based experiments, but WMAP was the first to map
it across the full sky.

The Planck mission satellite was operational between
2009 and 2013. This mission created maps of the mi-
crowave sky at higher resolution and of both E- and “B-
modes” of polarization. It is important to note that these
B-modes are dominated by foregrounds and lensing effects.
Primordial B-modes in the CMB signal, which would indi-
cate gravitational waves in the very early stages of the uni-
verse, have yet to be detected. Data from the Planck mission
allowed further constraint of some cosmological parameters
[6], and enabled better study of foregrounds components
[10].

We emphasized satellite-based microwave detection.
There are also observations made with both ground-based
instruments as well as balloon-based instruments [17, 97].
These experiments are accompanied by additional chal-
lenges in data-processing, as those have different scan-
ning strategies, they observe only portions of the sky,
and they must handle noise which comes from the atmo-
sphere. These experiments outnumber satellite experiments
by roughly an order of magnitude. Because of the wide
variety of scientific missions and approaches, we leave dis-
cussion to other resources.

Future surveys include CMB-S4 and LiteBird. CMB-S4
is a terrestrial survey, while LiteBIRD is a satellite. Among
other goals, these missions will refine maps of B-mode po-
larization (with special attention to the primordial compo-
nent), constrain key cosmological parameters, and address
long-standing tensions that arise from other sources of cos-
mological observations. They may also provide tests for
theories of the very early universe. More information about
plans for these can be found in [1, 14].

A.2. Planck Instruments

The work of CMB-ML is centered around the Planck mis-
sion. Some of the settings for different frequency channels
may seem strange, so we provide some more background
on it. The Planck spacecraft has two instruments — the
Low Frequency Instrument (LFI) and High Frequency In-
strument (HFI). The instruments differ in the type of detec-
tor used. A total of nine frequency bands were observed.

The HFI had 52 detectors for the higher six frequency
bands: 100, 140, 217, 353, 545, 853 GHz. These detectors
use “bolometers,” which are highly sensitive thermometers.
These were able to measure weaker signals, but required
extremely low temperatures (0.1K). Of the six bands, only
the first four included polarization-sensitive detectors. The
52 detectors include pairs for measuring perpendicular po-
larization states, and redundant multiples to improve signal-
to-noise ratio (and in case of failure). The highest frequency
bands did not include detectors for polarization, as they
were for mapping foregrounds in order to aid signal clean-
ing.

The LFI used 22 detectors for the three lower frequency
bands: 30, 44 and 70 GHz [9]. These detectors use “high-
electron-mobility transistors” (HEMTs), solid-state devices
which can convert microwaves to electrical signals, operat-
ing at high frequency. Signals are stronger at these lower
frequencies, so these could operate at higher temperatures
(20K) with less concern for thermal noise. All of these de-
tectors are sensitive to a particular polarization direction, so
each detector was paired against another with perpendicu-
lar polarization. Because this instrument operated at higher
temperatures, it was able to operate after the supply of he-
lium (for cooling) ran out.

A.3. Mapmaking

Packets of raw data acquired by the detectors are sent each
day to the Mission Operations Center (MOC). These were
processed to extract all necessary signals and convert them



into time-ordered information (TOI). This TOI was used to
generate models of instrumentation parameters (as reduced
instrument models, “RIMO”). It was then cleaned to remove
glitches and some amount of noise, while flagging periods
of time that contain anomalies. Finally, the TOI was com-
pressed from time samples into sky maps for Stokes param-
eters I, Q and U (temperature and polarization) for each fre-
quency channel. Following [20], TOI for a detector, d, may
be related to a map of the true sky signal, s, through

d= Ps+n, 3)

where P encodes the scanning of the detector and orien-
tation of the telescope at each point in time, and n is an
average of the noise. Thus, the map-making problem can
be viewed as searching for a linear operator L to generate
map m:

m = Ld. “4)

This brief description simplifies the process greatly. So-
phisticated analysis is needed to combine multiple individ-
ual detectors for a given frequency, such that systematics
are minimized. For the Planck Collaboration, different pro-
cessing was used for LFI [9] and HFI instruments [8].

A.4. Components

There are many microwave-producing phenomena. In

Fig. 3, we showed detailed views of four of them, illustrat-

ing different classes of the components. In Fig. 8, full-sky

maps for these components are presented. In this section,
we briefly describe the particular component signals used
in CMB-ML.

All galactic components are diffuse and anisotropic.

They include:

* Thermal dust: Small particles of dust emit microwaves as
they cool.

» Synchrotron: Charged particles emit microwaves as they
move through magnetic fields.

* “AME”: Originally “Anomolous Microwave Emission,”
this is now commonly believed to be from very-rapidly
spinning, nano-scale sized dust which has some electro-
static charge [31]. It has distinct spectral properties and
spatial distribution from thermal dust.

* Free-free: When charged particles are deflected by nearby
ions (without being captured), they lose kinetic energy
and emit microwaves in the process.

¢ CO: Carbon-monoxide molecules transition between ro-
tational states, emitting microwaves at discrete wave-
lengths.

Extragalactic components are always isotropic, and may
be either diffuse or point sources. They include:
e Cosmic Infrared Background (CIB): When most stars
were formed they emitted light which has since cooled.

This radiation is diffuse because it has been obscured by
dust and comes from many galaxies in the same line-of-
sight.

* Thermal Sunyaev-Zel’dovich effect (tSZ): As CMB pho-
tons pass through hot ionized gas in galaxy clusters, they
gain energy, resulting in a lower signal at low EM fre-
quencies and higher signal at high frequencies. At the
resolution of CMB-ML, these are point sources.

* Kinematic Sunyaev-Zel’dovich effect (kSZ): As CMB
photons are scattered by electrons in either galaxy clusters
or large-scale ionized gas, if whatever causes the scatter
has a bulk velocity relative to the CMB path, then this will
shift the CMB intensity.

* Radio Galaxies: Some galaxies have a core that emits
“relativistic jets” of charged particles and photons. These
galaxies are “radio” galaxies because the signal domi-
nates radio waves.

A.5. Power spectra

Of critical concern for CMB analysis is the scale at which
correlations are observed. For instance, at roughly 1° (=
¢ = 200), we see a large peak in the power spectrum as
well as “lumps” of this size in the maps, as described in
Fig. 3. The angular power spectrum is defined as

AT AT
where 2% (%) is the anisotropy in direction %, ¢ is an

amount of angular separation, and the ensemble average is
over all directions and observer positions [55]. This can also
be written, per [67], as a two-point correlation function:
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relating angle 6 to the “multipole moment” ¢ and power
spectrum coefficients Cy. Here, Cy = (|agm|?) and the
agm are spherical harmonic coefficients, defined as
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where Yy, are spherical harmonic basis functions.

Returning to the example of the first peak in the power
spectrum at £ ~ 200 and the “lumps” which are ~ 1°, we
have a maximum at C(1°) or Cyqp.

This is all to say, a spherical harmonic transformation
(SHT) can allow us to convert the CMB anisotropy from
real space to a harmonic domain, encoded as a series of
agm’s.  Averaging these spherical harmonic coefficients,
agm, over all m for a particular ¢, gives C, which describes
the variance at some angular scale (a function of /). By
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Figure 8. Detail view images, top, are the same as in the main body of the work. Full sky images, bottom, are provided as they may help
orient the reader to the scale. The region in the detail view is above and to the left of galactic center, for all images.
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Figure 9. The CMB-ML pipeline. “Many assets” refers to having maps or parameters for each observation frequency, while “single asset”

refers to those without frequency dependence.

considering a vector of Cy for all ¢, we are provided with a
useful summary statistic of spatial variations.

The SHT is a key tool in the map-processing toolbox.
It is also a tool to use carefully. While the transformation
is exact for continuous functions, in practice a maximum
multipole moment, ., must be chosen. This results in
a bandwidth limit, analogous to more general sampling in
Fourier analysis. If the true signal has information at higher
multipoles than can be presented in the sampled signal (e.g.,
£ > fmax), that information cannot be properly captured and
the result may have artifacts (such as aliasing or ringing).

B. Architecture

As discussed previously, the pipeline consists of simulation,
inference, and analysis stages. Each of these is further sub-
divided into tasks, where a task takes some input and pro-
duces some single output. This simplified further separation
into a tiered architecture, where separate layers exist for the
application flow, the physics logic, and the parameters.

The architecture was developed to avoid conflicts be-
tween stages while enabling flexibility. This helps to man-
age parameters, such as the Ngq., which are used across the

stages. Storing file names separately and consistently en-
sures results are reproducible. The architecture also helps
to make segments of the pipeline, such as the model used,
interchangeable. Furthermore, the creation of data splits
is performed in a way that single splits can have distinct
characteristics. This would facilitate testing on multiple test
splits, each with different classes of noise, for instance.

The system as a whole may be viewed as a directed
acyclic graph. This is illustrated in Fig. 9. More information
about particular stages will be given in other sections. The
structure described in that flowchart is reflected in the code.
Each process is implemented as an Executor object. Top-
level Python scripts create a Pipeline object, then load each
Executor into it. When the Pipeline is started, all Execu-
tors are initialized to ensure that configurations are avail-
able. Early stages of the pipeline are set aside to check
for conflicting configurations. This pipeline setup has its
advantages, including that an executor producing some as-
set (such as a trained model) can be easily disabled if only
downstream segments of the pipeline are needed in subse-
quent runs.



The system is coordinated using Hydra’ [105] to manage
yaml configuration files. Configurations are modular; some
are stored at the top level, but most are at the level of one
of the following: local_system, file_system,
pipeline, scenario, splits, model/sims,
model/pyilc, model/cmbnncs. Further, the top-
level configuration also contains interpolation parameters
which are loaded by lower-level configurations for con-
venience. It is the hierarchy that allows consistent sets of
parameters to be used.

File paths are generally set up automatically. The
local_system configuration must be set for the locations
of assets and the dataset. All file locations are defined rela-
tive to those directories.

Executors manage individual processes in the pipeline.
The pipeline configuration yamls parameterize how they are
run. This allows logic and parameters to remain separate.
Each Executor will need to operate on some set of input
assets and will generally produce some output asset. To
avoid repetition (and accompanying errors), file locations
are defined just for the output of an Executor; the input
file locations are found from the Executor that produced the
file. A special Executor exists to define source assets (e.g.,
Planck’s raw files). Each asset has a file type. Handlers are
defined to manage file I/O for the different formats of maps,
power spectra, parameter files, and output figures. Stages
in the pipeline yaml also track other parameters for that Ex-
ecutor, if there is no other suitable location.

To correlate code with output, every run of the
code results logs being written to output directories (the
make_stage_log can disable this behavior). Because
there are many parameters with interplay between pipeline
stages, this allows issues to be tracked to particular changes
in the code. The stage logs include 1ogging output from
all stages run in the current session. The simulation stages
with random seeds include the seeds for repeatability. The
logs also include a mirror copy of the Hydra configurations
and all imported code from within the CMB-ML codebase.
This should ensure repeatability as long as the logs are pre-
served.

In subsequent sections, bold-faced text refers back to
the pipeline diagram of Fig. 9.

C. Simulation details

C.1. Components

Maps are produced at a resolution of Ngq. = 512, corre-
sponding to roughly 3 mega-pixels. This is chosen in keep-
ing with previous work [80, 101] as well as because of com-
putational resource limits. Either of the networks described
in those works will run on modern GPUs with 40GB of

https:/hydra.cc/docs/intro

VRAM, but a resolution Ngge = 1024 map would require
several GPUs.

The simulation pipeline first creates the target CMB
map. For each simulation, cosmological parameters are
drawn from the WMAP9 Monte Carlo Gibbs sampling
chains, particularly the “ACDM + MNU” extended model [48].
It contains 603,936 correlated samples for each parame-
ter. To preserve correlations, a single index is randomly
chosen and all parameter values at that index are used to-
gether (one index per simulation instance). Parameters used
are Ho, Qyh?,Q.h%,7,n,, and > m,,. The default CAMB
value for A, was used in all simulations. Because the
Planck mission narrowed the distribution, the more broad
WMAP9 chains are used as a “reasonable broad” distribu-
tion to prevent overfitting. Using those parameters, a theory
power spectrum is determined using the CAMB library®
[49, 62]. The PySM3 CMBLensed object is used to create
a CMB realization, including lensing effects by means of
the TayLens [72] code.

Other foreground components are also generated by the
PySM3 library, using the string presets. For foreground
parameters, we use all the low-complexity galactic fore-
grounds (d9,s4,fl,al,col) [40] and all extragalac-
tic foregrounds (cibl, tszl, kszl, rgl) [39]. All
components are generated at an Ngge = 2048 and the sig-
nal level is estimated for each center frequency of the nine
nominal detector frequencies of the Planck mission, all con-
verted to the common Kcyp equivalent temperature. The
signals are summed, then each observation is downgraded
to Ngige = 512.

We then consider instrumentation effects. The Planck
mission detectors had varying beam FWHM because of
physical practicalities. They chose map resolutions such
that there were at least 2.5 pixels per beam FWHM . Deci-
sions for CMB-ML were made from the opposite point of
view. For computational reasons, the resolution of Ngjge =
512 was found to be large but practical. At this resolu-
tion, each pixel is approximately 6.87" per side. To use
the Planck beam sizes mean that the maps are significantly
undersampled, leading to issues with spherical harmonic
transforms.

Many comparable datasets reportedly use common
beams (the same size for all frequencies). While perfectly
appropriate in astrophyical applications, it hides the inabil-
ity of an algorithm to handle varied detector sizes. In-
stead, CMB-ML uses different beam sizes, without un-
dersampling. Beginning with the conservative approxima-
tion of three pixels per beam FWHM [92], a minimum
beam FWHM of 20.6’ is appropriate for the narrowest (857
GHz) detector. Because the Planck Collaboration used
FWHM = 4.64' for 857 GHz, we scale all other beams
by the ratio 20.6/4.64. This gives very wide beams, to

8https://camb.info



Table 2. Comparison of Planck and CMB-ML Beam FWHMs

Beam FWHM
Channel Planck CMB-ML
(GHz) (arcmin)  (arcmin)
30 33.1 75.0
44 27.9 65.0
70 13.1 55.0
100 9.68 43.0
143 7.30 324
217 5.02 22.3
353 4.94 22.0
545 4.83 21.5
857 4.64 20.6

the point of having questionable utility, for the 30, 44, and
70 GHz detectors. For these we set arbitrary values. Val-
ues are listed in Tab. 2. Using varied FWHM produces a
dataset that will adequately illustrate trade-offs that mod-
els must make when working with the high-precision real-
world datasets.

Scaling and application of beam effects occurs at
the same time in SHT space using a PySM3 utility,
apply_smoothing_and_coord._transform().

Other works have preserved the Planck beams [101] or
smoothed to a common beam [4, 80]. The first approach
disregards beam effects entirely, as the simulations used in
[101] are at too low a resolution. The second approach re-
moves a confounding effect which may bias results toward
one method or another. A simple ablation study of this
may be interesting; the framework is in place to make this
straightforward (but a distraction from the present context).

C.2. Noise

Critical attention to systematics (noise) was considered es-
sential in order to get realistic power spectra results. The
Planck collaboration produced simulated noise contribu-
tions beginning with TOI and proceeding through the full
processing pipeline. Unfortunately, the software for this
procedure could not be found and only 300 realizations
were released. The importance of realistic noise is empha-
sized in related work on the SRo11 algorithm [7, 30], and
in other astrophysics work, e.g., [43] where shot noise is
modeled in galaxy simulations.

The noise used in CMB-ML is correlated anisotropic
noise, produced in two stages. We apply the same pro-
cess for each detector. The first stage produces spatial
anisotropy, and is fairly straightforward. First, a simple
map is produced wherein every pixel is drawn from a Gaus-
sian distribution with a mean of zero and variance one
(~ N(0,1)). This is then scaled to match the variance re-
ported in Planck’s observation maps for that detector, (e.g.

as shown in Fig. 4) by multiplying by its square-root. The
result is spatially anisotropic. However, no correlations ex-
ist in the map.

To produce correlations, we follow a slightly more com-
plicated process. We first need a description of how noise is
correlated. To produce this, we look to [8] for the FFP10
bank of simulations produced by the Planck Collabora-
tion. This contains a fixed number of simulation maps for
each detection channel, produced using a full end-to-end
pipeline.

Because we want to produce unique noise for each
CMB-ML simulation, we capture the statistics of these
maps in the following way. We first calculate the average
of 100 of these maps, so that we can isolate stationary sig-
nals which show up for some frequency channels. We then,
for each of the 100 maps, subtract the average, apply a nar-
row galactic plane mask (masking 10° around the galac-
tic equator) and determine the power spectrum, Ny, of this.
The maps are at high resolution (either N4 = 1024 or
2048), so we can get N, for thousands of £. A complete co-
variance matrix would be overspecified, so we instead use
scikit-learn’s PCA (Principal Component Analysis) module
for a summary of the covariance, with the added benefit of
fast run-time. The average map, average power spectrum,
target principle components, and associated target variances
give us sufficient information to capture the distribution of
these maps.

When it is time to create new white noise maps an
anisotropic white noise map is created, then filtered to apply
the correlation. We first create an anisotropic white noise
map following the method at the start of this section. We
then convert that to the ay,,, domain and get the power spec-
trum, N, [(w). Next, assuming our summary of the target dis-
tribution has k& components, we draw A/(0, 1)* values and
scale them to the target variances. We multiply these by
the principle components and add the average power spec-
trum. This gives a synthetic [V, Z(t) from our approximation of
Planck’s noise power spectra. We follow a method inspired
by [35] to create the filter,

Je= ®)

We apply this filter to the anisotropic white noise ayy,, and
perform an inverse spherical harmonic transformation, pro-
ducing a map in pixel space. We subtract the monopole
(average pixel value) of this map. Last, we add the average
map for this channel of the Planck simulations, restoring the
anisotropic portions of the noise.

This noise is added on top of the scaled and beam-
smoothed maps to produce the final observations maps.



C.3. Masking

Masking is needed to handle the sharp discontinuities and
high variance at the galactic plane and point sources. Two
prepped masks are produced for CMB map analysis. Both
are derived from the CNILC cleaning in the Planck 2015
data release (the TMASK field from the “COM_CMB _IQU-
nilc_2048_R3.00_full fits” file). The mask is downgraded
from Ngge = 2048 to 512, with a threshold at 0.9 for pixels
at the border of the mask [3]. All values in this first mask
are 0 or 1. This causes artifacts when computing SHTs, so
a second apodized mask is also produced. We use the pack-
age NaMaster” [15] to perform ‘C1’ apodization at 20.6’.
The smoothed mask is used when calculating power spectra.
The boolean mask is used when calculating pixel-domain
statistics. The boolean mask is also provided to the CNILC
method, which then performs its own apodization.

C.4. Simulation implementation

Because configurations are modular, multiple top-level
configurations can pull the same parameters from lower-
level configurations. We include several different top-level
scripts that do precisely this. The first of these scripts cre-
ates simulations only (as these are often needed to run only
once).

After the initial configuration checks, a series of execu-
tors prepare to create the noise maps. It is possible to cre-
ate simulations with anisotropic white noise, in which case
only executor B.make_noise_cache.py is needed. In
the next three, Planck’s original noise simulations are ac-
quired, then average maps are created, then the noise mod-
els themselves are created. These run at a fairly high cost, as
900 simulations are needed (assuming 100 simulations per
detector channel) which are downloaded from the Planck
Legacy Archive. For this reason, noise models and average
maps are included in the repository.

The remaining executors are straightforward. One cre-
ates observations and CMB maps, another creates noise
(based on the noise type set in the simulation configura-
tion), and a third creates the final observation maps. The
final executor creates the masks needed for later stages.

D. Baseline Parameters

D.1. Baseline implementation

Again, multiple top-level scripts run the baseline models.
One script will run cmbNNCS and analysis on all results
from cmbNNCS alone. Because PyILC configures global
Matplotlib settings with unlisted packages, one script im-
ports and uses PyILC and a second does not import it for all
analysis. A final script runs joint analysis on results from
both, producing Fig. 7 and Tab. 1.

%https://github.com/LSSTDESC/NaMaster

When implementing a new method, the example given
with cmbNNCS should be followed in general. This set
of executors illustrates preprocessing and postprocessing
data in bulk (the map files are large; preprocessing in a Py-
Torch dataloader would slow training considerably). Serial
executors illustrate simple methods to do this, while par-
allel executors (using the mulitprocessing python li-
brary) are able to do this much more quickly. Executors for
both training and inference largely follow common PyTorch
patterns, with a few exceptions to match the original work
[101]. A PyTorch Dataset subclass is provided and used
by cmbNNCS. This subclass is written to be agnostic to the
particular format needed for any method used.

Methods which are based on common patterns in the
astrophysics community may instead refer to PyILC. This
method has a single executor. It first creates a configuration
file for the method, then runs the method in a working di-
rectory. The output prediction is copied to an appropriate
location, along with the configuration that would produce
such a result. The working directory is then cleared delib-
erately.

It is our sincere hope that these two examples are suffi-
cient to get the intrepid researcher able to use CMB-ML to
produce CMB Cleaned Maps. More detail on analysis is
in the following section. We first look at details for each
method.

D.2. cmbNNCS

c¢cmbNNCS was run with the following settings:

* Features unscaled

* Target (CMB) scaled down by a factor of 5

« Initial learning rate 10~!, with exponential decay to 10~°
» Repeats each batch three times

* 120 epochs

* Batch size of 12

* UNet8

* Using 100, 143, 217, 353 GHz detectors only

We made every attempt to duplicate the work of the
original authors, with the exception of their fully stochas-
tic sampling method. The number of epochs is deter-
mined from the number of iterations (10,000) listed in that
work. We did include the atypical repetition of batches
(this is clearly marked in the Executor). We use PyTorch’s
LambdaLR to manage the exponentially decaying learning
rate in the same way that it would have functioned with fully
stochastic sampling.

Note that cmbNNCS scales the target signal by a blanket
factor of 5. This occurs in place of more common standard-
ization or min-max scaling, which could require some scan
stage to produce preprocessing parameters.

D.3. CNILC Parameters
CNILC was run with the following settings:



o ELLMAX ({mayx): 1024

e perform_ILC_at _beam: 20.6

* beam FWHM_arcmin: From simulation
e ILCbias_tol: 0.001

* taper_width: 0

* ellpeaks: [200,715,1025]

* Mask: Non-apodized mask

» Frequencies: All except 30 GHz

Ellpeaks and ELLMAX were found by a coarse grid
search. Values for ELLMAX were explored from 900 up to
the band limit at 1460 (equivalent to the bandwidth limit
at 20.6’. The final value of 1024 minimizes error (and is
2 Nide, indicating a connection to bandwidth limit guide-
lines). Values for the lowest £y were explored between
100 and 300. Below 200, inaccuracy at the edges of the
masks causes error. Above 200, it appears that variance
at higher multipole moments dominates ¢ < 4 signal, re-
sulting in large residuals that raise the error. The central
Lpcak = 715 minimized the error, with almost negligible
variation on the order of 10~3 when changing {peq in in-
crements of 200. Adding further needlet windows ({peai’s)
also increased error at a similar scale and increased the run
time by 50%.

Other parameters were set based on domain knowledge.
The ILC bias_tol was found to allow a remaining dipole
when used at greater values of 0.001. Parameters for the
beam window FWHMs come from the simulation param-
eters. The mask without apodization is used, as PyILC
apodizes the mask separately for each needlet window.

E. Analysis

E.1. Analysis implementation

To facilitate fair comparison between methods, maps must
be analyzed in the same way. This occurs in a series of ex-
ecutors. Most of these are included in the top-level baseline
scripts. A final top-level script exists to report across differ-
ent baseline models.

To this end, we produce a Common CMB Cleaned map
by applying the smoothed mask, handling beam effects, and
removing the dipole.

Many methods convert between pixel and harmonic do-
mains. As mentioned at the end of Sec. A.5, bandwidth
limits exist when considering SHTs. To prevent artifacts,
maps are often convolved with a beam (similar to gaussian
smoothing). Of the baseline methods included, the CNILC
follows this paradigm. Thus, the output of that method is
convolved and needs to be deconvolved. The cmbNNCS
method does not use beam convolution.

As noted in Sec. 4.3, beam convolution can be helpful for
analysis. These convolutions are performed using simple
Gaussian beams from the healpy library.

Furthermore, it is convention to disregard the lowest two

multipole moments, £ = 0,1. Proper estimation of these
values is difficult for a multitude of reasons, from instru-
mental to fundamental. The monopole (¢ = 0), which is the
mean temperature of the CMB, is better measured with out-
side data. The dipole (¢ = 1) is often used for calibration,
but observations are influenced by external effects unrelated
to the true CMB signal. Thus, both of these are typically re-
moved for cosmological work.

These stages proceed as follows. Beam effects are han-
dled first. The filter Btarget/ Bsource 1s made, where each
B is a Gaussian beam with the appropriate full-width half-
max value. The map is converted to ay, space, the beam
is applied with healpy’s almxf1 function, and the ag,,’s
are converted back to a map. Next, the mask is applied.
Last removal of the monopole and dipole is performed with
healpy’s remove_dipole (). This completes production
of analysis-ready common CMB cleaned maps.

The process of preparing a map for further analysis is
simplified for the CMB realization. These maps were pro-
duced at high N4 = 2048, so they are downgraded and
beam convolved (“Scale/Beam”) in the same way the ob-
servation maps were. The same mask is then applied.

With these preparations, it is possible to compare maps
at the pixel level. For each simulation, we find the dif-
ference between the processed prediction and ground-truth
maps and use that difference with all the error metrics
listed. Similarly to preprocessing and postprocessing the
maps in the baseline stages, calculations are parallelized us-
ingmultiprocessing.

Another set of stages perform analysis at the power spec-
trum level. Like in the pixel domain, we compare ground
truth and prediction. Here, we also compare to a reference
distribution of theory power spectra. Ideally, the distribu-
tion of spectra would reflect the full distribution of cosmo-
logical parameters. As a surrogate, we use the theory power
spectra of the training data set as a representative sample.
These bands are displayed in output figures and only used
for reference.

We then calculate power spectra for each prediction. Ex-
ecutors were developed to compute similar statistics as for
error in pixel space, but they were found to be mislead-
ing. While predictions from both methods deviate from
ideal C, values around similar multipoles, one method
increases without a bound (CNILC), while the other ap-
proaches zero (cmbNNCS). Metrics obscure this when the
error is bounded in just one case.

Finally, some stages produce presentation figures and ta-
bles. Many of these are placed within the top-level scripts
for individual baselines. There are also a few which gather
the reports output by individual baseline methods and pro-
duce single output. Any executor which produces an output
which can not be used for subsequent stages is prepended
with a digit instead of a letter to indicate this distinction.



E.2. More results

More results are presented on the following pages. To show
model response to different simulations at the map level,
refer to Fig. 10. Similarly, Fig. 11 shows the power spectra
for these predictions. In both cases, those are from the first
four test split instances. Note that while there are minor dif-
ferences, each model produces consistent results. Last, see
Fig. 12 for difference maps at various beam convolutions.

F. Figures

All figures were produced by the authors. We describe the
provenance of the data and manner of production briefly.
Notebooks, where referenced, are at github.com/CMB-
ML/paper_figures-ICCV2025.
Figure 1. Data files from the Planck Collaboration. It
is easiest to give the filenames: LFI_SkyMap XXX
-BPassCorrected_-1024_R3.00_full.fits for
either 030, 044, or 070 frequencies; HFI_SkyMap_
XXX_2048_ R3.01_full.fits for 100, 143, 217,
353-psb, 545, or 857 frequencies. The CMB
map is from COM_CMB_.IQU-nilc_2048_ R3.00-
full.fits. All are the I_STOKES field.
Notebook: f1_obs_and_target.ipynb.
Figure 2. Images reproduce the canonical HEALPix de-
scription from [38], building off of the tutorial at [113].
Notebook: f2_HEALPix.ipynb.

Figure 3. Component maps are from PySM3. Prove-
nance details available at pysm3.readthedocs.io/en/
latest/models.html.

Notebook: £3_components.ipynb

Figure 4. Data is from the 100 GHz map listed for Figure 1,
using the TI_COV field.

Notebook: f4_ planck_variance.ipynb
Figure 5. Data is from the maps listed for Figure 1.
Notebook: £5_fwhm.ipynb

Figure 6. Data is output from CMB-ML. Individual figure
elements arranged in vector graphics software.

Notebook: f6_dataset_results.ipynb

Figure 7.  Figure is output from CMB-ML, at the
PostAnalysisPsCompareFigExecutor stage.

Figure 8. Same as Figure 3.

Figure 9. Manually created in vector graphics software.
Figure 10. Elements of figure are output from CMB-ML, at
the ShowSimsPostIndivExecutor stage. Manually
arranged in vector graphics software.

Figure 11. Same as figure 7.

Figure 12. Data is output from CMB-ML and rendered in
the notebook f6_dataset_results.ipynb.

G. Release Notes

G.1. License

Code for CMB-ML is released under the MIT license. The
derived dataset, CMB-ML-512-1450, is under CC-BY-4.0
license. We acknowledge the use of ESA Planck data ob-
tained from the Planck Legacy Archive. Data is used under
terms as described in that archive. The Planck Collabora-
tion and ESA bear no responsibility for CMB-ML data.

Datasets are stored as a series of tarballs for each in-
stance for convenient access. A single file contains all links
required, along with MDS5 hashes. Scripts are provided
which automatically download the files, verify hashes, and
extract contents.

G.2. Datasets

The only dataset suited for benchmark results is CMB-ML-
512-1450, which is at a resolution of Ngq. = 512 (as de-
scribed in the main text). When downloaded, the dataset is
approximately 360 GB. An additional 700 GB of data are
created when producing the dataset.

We recognize the need for fast debugging. Two small
datasets are available at resolutions of N4 = 32 and 128.
The miniscule resolution of 32 is suitable only for testing
code. The resolution 128 dataset on which cmbNNCS and
PyILC can run, though the results should not be used for
publication. At this lower resolution, cmbNNCS must use
the UNet5 network, as 128 = 27 and the maps cannot be
downscaled eight times. These smaller datasets may change
without notification and should not be used for publication.

G.3. Maintenance

Hosting (Code) The repository at github.com/CMB-
ML/cmb-ml is wunder active use and development.
For reproducibility, see github.com/CMB-ML/cmb-
ml/releases/tag/v0.1.1. The DOI 10.5281/zen-
0do.16510258 matches commit 5018b05, in the
archive—iccv2025 branch. During review, reviewers
were provided with access to the blinded repository (now)
at github.com/CMB-ML/cmb-ml.

Hosting (Dataset) The CMB-ML-512-1450 dataset is
hosted at utdallas.box.com/v/cmb-ml-512-1450. We rec-
ommend using the automated scripts in the repository.

Erratum Issues found in the dataset are noted at
github.com/CMB-ML/cmb-ml in the main README.

Maintenance Datasets are versioned; any mistakes found
will be corrected for future versions, but the original ver-
sion will remain for a period of five years. Please watch the
repository for updates or contact the first author for more
information.
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Figure 10. Results for the first four test simulations (0000-0003) using cmbNNCS (top rows) and CNILC (bottom rows). All realizations
and predictions are smoothed to 60’.
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Figure 11. Power spectra results for the first four test simulations (0000-0003) using cmbNNCS (top rows) and CNILC (bottom rows).
The realization spectrum refers to the spectrum of the underlying CMB signal, processed in a similar manner as the predictions. Recalling
that each simulation has a CMB signal with a unique theory power spectrum, it can be observed that methods have error modes independent
of the spectrum.
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Figure 12. Detailed view of differences between realizations and predictions, with different levels of smoothing. All are for the first
simulation in the Test split. Note that cmbNNCS and CNILC have different scale bars. Left: The cmbNNCS method clearly shows
discontinuities due to the top-level pixel rearrangement. It is also possible to see the effect of residuals at 20.6" smoothing. At 60’
smoothing, the only recognizable source of error is discontinuity. Right: The CNILC method shows greater sensitivity to residuals,
especially when fully deconvolved. When smoothed, errors due to mask boundaries, point sources, and diffuse foregrounds are visible.



