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1. Implementation details of MinCD-Net

More details of MinCD-Net are discussed here. Its inputs
include an RGB image with surface normals and an RGB
point cloud with surface normals. Image surface normals
are predicted using the pre-trained model DSINE [2]. The
extractors are ResNet [5] and KPConv [13], where the ex-
tractor networks are similar to those in MATR [8].

The threshold sy, in Eq. (14) is set to e~%4. Point trans-
former is the single layer of work [15]. Its key, query, and
value inputs are the 128 dimensional features which are
transformed from pixels and points features. To estimate
the camera pose, we use two-layer MLPs with dimensions
[256, 128] and [128, 6] to predict a 6 x 1 vector representing
the se(3) of T, and T is computed via the mapping from
se(3) to SE(3). We utilize Shi-Tomasi keypoint detection
provided by OpenCV APl Good Features to Track
to extract K that are uniformly distributed in the image. We
train MinCD-Net on a single NVIDIA RTX 3080 GPU for
40 epochs. To evaluate the proposed method in the prac-
tical applications, we prepare a self-collected dataset. It is
captured by an Intel RealSense depth camera. Examples of
scenes are provided in Fig. 1.

2. Additional comparisons

We evaluate the registration performance of current 12P
registration methods on the outdoor KITTI benchmark [4].
Deepl2P [7], CorrI2P [10], VP2P-Match [16], CoFil2P [6],
CMR-Agent [14], and OL-Reg [1] are used for compari-
son. We utilize the pretrained CorrI2P to preprocess the
LiDAR point clouds to gather the overlapped LiDAR point
clouds, as the inputs of MATR+MinCD-Net. Results are
shown in Table 1. The average relative translational error
(RTE) and average relative rotation error (RRE) are used
as metrics. These results indicate that MinCD-Net achieves
state-of-the-art performance on the KITTI benchmark.
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Table 1. Comparisons on the KITTI dataset. T indicates the us-
age of a pretrained model to segment the overlapped point cloud,
which falls into the field of view of the camera.

Methods Venue RTE/m RRE/deg
Deepl2P CVPR 2021 1.460 4.270
CorrI2P IEEE T-CSVT 2022 | 0.740 2.070
VP2P-match NeurIPS 2023 0.750 3.290
CoFil2P IEEE RAL 2024 0.290 1.140
CMR-Agent IROS 2024 0.195 0.589
MATR+MinCD-Net' 0.091 0.228

Table 2. Ablation study of the proposed method with different
choices of 2D keypoint detectors.

Schemes | Shi-Tomasi (used) FAST SIFT  SuperPoint Uniformly sampled
IR 0.567 0.552  0.572 0.560 0.542
RR 0.646 0.631 0.638 0.649 0.625

Table 3. Computational efficiency analysis of the current methods.
Diff. PnP, BPnPNet, and MinCD-Net are only used to supervise
the backbone networks (not used in the inference stage), so the
runtime and GPU memory in the training stage are recorded.

Methods Runtime/ms ~ Param/M  GPU memory/MB RR
Baseline 127 28.2 7532 51.0%

+Diff. PnP 152 (+25)  28.2 (+0.0) 7852 (+320) 49.1%
+BPnPNet 141 (+14)  30.8 (+2.6) 8242 (+710) 57.8%
+MinCD-Net | 148 (+21) 31.4(+3.2) 8353 (+821) 64.7%

Additional qualitative results are shown in Fig. 2. It is
found that the proposed MinCD-Net achieves both robust
and accurate performance compared to existing differen-
tiable PnP based methods in the cross-scene setting.

3. Additional ablation studies

We investigate the dependency of MinCD-Net on 2D key-
point detectors, like FAST [11], SIFT [9], Superpoint [12],
and even the uniformly sampled scheme. Results in Table 2
indicate that MinCD-Net achieves nearly the same results
as other standard detectors, even with uniform sampling.
This indicates that while MinCD-Net requires 2D key-



7-Scene dataset

ScanNet dataset

2 Sl S
A PR

il SN
igeicn || Stairs
E Self-52

So6an-57

RGBD-V2 dataset

< 1‘ A:» . /1""“7
Rgbd-52 | Rgbd-53 | Rgbd-54

Figure 1. Example scenes from the 7-Scenes, RGBD-V2, ScanNet, and self-collected datasets (referred to as Rgbd, Scan, and Self).
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Figure 2. Visualization of different methods. MinCD-Net achieves a higher correspondence accuracy than other methods.

points, it does not depend on a specific detection method.
Besides, the computational analysis of the current meth-
ods is provided in Table 3. It indicates that MinCD-Net
is a lightweight network with comparable runtime and GPU
memory. Overall, the above results show the effectiveness
of MinCD-Net.

4. Limitations and future work

In the challenging scenarios (e.g., the self-collected
dataset), the performance gain of MinCD-Net is limited (as
seen in Table 2 in the format conference manuscript). The
precision of learned 3D keypoints is not high (as seen in
Table 6 in the format conference manuscript). To address
these limitations, we plan to integrate a learnable corre-
spondences pruning module [3] to improve the efficiency
of solving MinCD-PnP.
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