Intra-modal and Cross-modal Synchronization for Audio-visual Deepfake
Detection and Temporal Localization

Supplementary Material

Visual
Confidence Map

L» ConviD —¢

Visual L L o[ ConviD > Mean \

Features
—> ConviD

Fusion
Norm onfidence
Audio Map
Features i

Audio
Confidence Map

Audio-Visual
Features

}— onfidence

X Map

r

Audio -Visual
Confidence Map

- Attention Weight Computation

Figure 1. Fusion module: The fusion module integrates visual,
audio, and audio-visual features using attention-weighted confi-
dence maps to generate a refined final confidence map. This pro-
cess ensures effective multimodal fusion by balancing contribu-
tions from individual and combined modalities.

1. Fusion Module for Localization

The localization module, including the boundary and fu-
sion modules, is adapted from BA-TFD [5]. In the orig-
inal design, the fusion module processes visual and audio
confidence maps and features to generate the final confi-
dence map using attention weight computation. We en-
hanced this by incorporating visual, audio, and audio-visual
confidence maps and features into the fusion process, while
maintaining a similar strategy. As illustrated in Fig. 1, the
fusion module computes a (D x T')-dimensional attention
weight for each modality using its features, confidence map,
and the other modality’s features. These attention weights
are normalized to produce modality-specific weights, which
are then multiplied by their respective confidence maps and
added to form the fusion confidence map. Subsequently, the
audio-visual features, confidence maps, and fusion confi-
dence map undergo another round of attention-weight com-
putation. The output is split into two branches: one is mul-
tiplied by the audio-visual confidence map, while the other
undergoes a complement operation (1 minus its value) be-
fore being multiplied by the fusion confidence map. Finally,
the results from both branches are combined to produce the
final output confidence map.

2. Implementation Details

The videos are extracted at a rate of 25fps and audio at
16kHz. The audio is converted to a mel spectrogram cre-
ated with 64 mel filterbanks, a window size of 321, and a
hop length of 160.

To keep the encoder models simple and light-weight,
we used AV-HuBERT’s [22] modified ResNet-18 visual en-
coder with 512 channels and ViT [9] with 192 hidden size,
768 MLP size, 12 layers, and 3 heads as audio encoder. The
outputs of each of the encoders are then projected to a 256-
dimensional feature, to match the feature dimension of vi-
sual and audio features (hence, f=256). Following Feng
et al. [10], we selected the maximum offset for a temporal
shift, 7 to be 15, thus generating 31 scores for each frame.
The segment size is chosen to equal 7, i.e., 15. The decoder
variant of the synchronization model involves 3 layers of
transformer decoder with 4 attention heads and 256 chan-
nels, while the sparse encoder variant includes 3 layers of
sparse self-attention with 512 channels. In the case of the
sparse encoder synchronization model, the 512-dimensional
inferences are first projected to 256-dimensional features
before passing to the classification or localization model.

The unimodal transformer encoders in the localization
module have a depth of 2, 4 attention heads, and 256 chan-
nels. The number of attention blocks, L, in the classification
module, is 3, while that in the localization module is 6. For
synchronization pretraining, we generate Gaussian targets
using a variance of 1.5. We experimented with variances of
1.0, 1.5, and 2.0, and found that a variance of 1.5 yielded
the best performance.

3. Dataset Details

LRS2 [1]: Lip Reading Sentences 2 (LRS2) is a large-scale
dataset from Oxford-BBc for audiovisual speech recogni-
tion. It consists of videos consisting of spoken sentences
along with their face tracks. Their pretraining split consists
of around 97k utterances. Following [10], we utilized one-
third portion for synchronization pretraining.

VoxCeleb2 [7]: VoxCeleb2 comprises real YouTube
videos featuring over 6k celebrities, including more than 1
million utterances in the development set and around 36k
in the test set. Each video contains celebrity interviews
along with their speech audio. The dataset is fairly gender-
balanced, with 61% male speakers, and represents diverse
ethnicities, accents, professions, and age groups. It includes
videos captured in various challenging visual and auditory



conditions. Following the LRS2 setup, we pretrain our syn-
chronization model on a 32k samples from this dataset.

FakeAVCeleb [15]: The FakeAVCeleb dataset is de-
signed for deepfake detection and includes a total of 20,000
video clips. It features 500 real videos sourced from Vox-
Celeb2 [7] and 19,500 deepfake samples generated using
various manipulation techniques, such as Faceswap [16],
FaceswapGAN [19], Wav2Lip [21], and SV2TTS [13]. The
dataset is divided into four categories: Real Visuals - Real
Audio, Fake Visuals - Real Audio, Fake Visuals - Fake Au-
dio, and Real Visuals - Fake Audio.

KoDF [17]: KoDF is a large-scale video deepfake
dataset comprising of 403 Korean subjects. The dataset
consists of 62,000+ real videos and 175,000+ deepfakes
generated using 6 different synthesis methodologies, aimed
at a better generalization to real-world scenarios.

DFDC [8]: The DFDC dataset is a large multimodal
deepfake dataset containing over 100,000 samples from
more than 3,400 subjects. It includes videos generated us-
ing seven visual manipulation techniques and one audio
swap method. The dataset features videos recorded un-
der challenging lighting conditions, varied human poses,
and diverse camera angles. Following previous works
[11, 12, 20], we filtered the videos to include only those
with a single person, where facial landmarks were success-
fully detected, and sampled 3,215 videos for testing.

LavDF [3, 5]: The LAV-DF dataset features deepfakes
where only specific segments of a video are manipulated.
Similar to FakeAVCeleb, it comprises around 36,000 real
samples from VoxCeleb2, with manipulations applied to
either or both modalities, resulting in over 99,000 deep-
fake samples. The dataset includes 114,253 fake segments
ranging in duration from 0O to 1.6 seconds, with an aver-
age length of 0.65 seconds. Notably, 89.26% of fake seg-
ments are shorter than 1 second. Videos in the dataset have
a maximum length of 20 seconds, with 69.61% being under
10 seconds. Modality modifications are evenly distributed
among four types: visual-modified, audio-modified, both-
modified, and real.

AVDFIM [4]: The AV-Deepfake 1M (AVDFIM)
dataset, a successor to LAV-DF, contains deepfakes with
manipulations in small segments. It is significantly larger
than LAV-DF, comprising over 1 million samples from more
than 2,000 subjects. Compared to LAV-DF, AVDFIM in-
cludes a wider range of deepfake segment lengths, with
an average manipulated segment length of 0.326 seconds.
For training, we sampled 74,614 and 7,387 videos from the
dataset’s training set for our training and validation subsets,
respectively. Model evaluation was performed on the origi-
nal validation set, which contains 57,340 samples.

Dataset AP AUC

DFDC [8] 98.4 85.2
CREMA [24] 99.8 99.7

Table 1. Cross-dataset Performance: We report the classification
performance achieved by the ‘Ours (Decoder, VoxCeleb2)’ model
when tested on other deepfakes.

4. Cross-Dataset Generalization on other
Deepfakes

To assess the cross-dataset generalizability of our model
further, we test our ‘Ours (Decoder, VoxCeleb2)’ model,
trained on FakeAVCeleb [15] on the following datasets, and
report the result in Tab. 1:

* DFDC [8]: We use a subset of samples from the dataset
following the evaluation protocol of [11, 12, 20]. The
model achieved an AUC of 85.15% and an AP of 98.44%,
demonstrating strong performance even on videos cap-
tured under challenging lighting and camera conditions.

* CREMA [24]: Following recent use of diffusion mod-
els for talking head generation, we adopt the setup sim-
ilar to [14] and use the generation outputs from [24],
which include 820 test samples. We augment this with
820 real videos from VoxCeleb2[7], achieving an AP of
99.8 and an AUC of 99.7, indicating strong performance
on diffusion-generated talking head videos.

5. Additional Ablation Results

5.1. The special case of FVRA

While our model can perform efficiently under cross-
manipulation generalization for the categories mentioned
in Tab. 4, we evaluated the ‘Ours (Decoder, VoxCeleb2)’
model under 3 additional categories namely FVRA-
WL(real audio with fake video by Wav2Lip), FVRA-
FS(real audio with fake video by Faceswap) and FVRA-
GAN(real audio with fake video by FaceswapGAN), and
observed that the AUC values achieved by the model un-
der cross-manipulation generalization for these 3 categories
collapsed to near-chance values. This can be explained by
the model’s strong reliance on the audio modality, which
is discussed in detail in Sec. 5.2.2. However, for cross-
dataset generalization, the deepfake samples in KoDF [17]
are generated using audio-driven methods, ATFHP [25] and
Wav2Lip [21], which utilize real audio to create deepfake
videos. This setup aligns with the FVRA category but draws
from an unseen distribution. As shown in Tab. 5, our model
effectively identifies deepfakes within these test samples.



Feature Set AP AUC

Synchronization Score 989  68.6
Submodule Features, Shift=0 99.6 85.5
Ours (Submodule Features, Shift=-7) 99.7 88.0

Table 2. Synchornization Score vs Submodule Features: We
report the classification performance achieved by the model when
trained on different sets of features predicted by the pretraining
model.

5.2. Feature Set Analysis

5.2.1. Synchornization Score vs Submodule Features

We tried to evaluate the impact of different feature combi-
nations, inferred by our pretrained model, over the classi-
fication task performance. To test this, we first compared
three possible feature sets. Firstly we directly used the final
prediction of our pretraining model, which are 3 7" x 31 di-
mensional features that denote the frame-level cross-modal
(T'v—4) and intra-modal (I'yy,_y and I 4_ 4) synchroniza-
tion scores. Since the classification model processes 1" x f
dimensional input data, each 31 frame-level synchroniza-
tion score is projected into a f-dimensional space.

Secondly, instead of the final synchronization score, we
decided to investigate whether features predicted by sub-
modules inside the pertaining model could hold enough in-
formation about the cross-modal and intra-modal consis-
tency. Hence, for cross-modal, we picked up the features
by the attention module first, without any shift (Shift=0),
and second, with maximum shift (Shift=7) to the audio en-
coding. For the decoder variant, we selected the features
after passing through every decoder layer (before comput-
ing frame level similarity) and similarly, for the sparse en-
coder variant, we selected the features after passing through
the sparse attention block (before passing to the final feed-
forward block). For intra-modal consistency, we directly
picked up the features predicted by the individual encoders.
Although each of the features is 7" x f dimensional, to main-
tain architectural consistency for the classification task each
of the features is projected to a f-dimensional space.

Tab. 2 shows the performance of each of the three feature
sets, inferred by the ‘Ours (Decoder, VoxCeleb2)‘ model
and used to train our classification model. The results show
that the submodule features have a positive impact on the
classification task. This shows that the individual submod-
ules of the pertaining model can capture information rele-
vant to cross-modal and intra-modal synchronization. Ad-
ditionally, we feel that the relatively poor performance pro-
duced by using the final synchronization score can be at-
tributed to the low dimensionality of the feature, which may
not be able to capture all the information required to train
the classification model of similar size. In other words, di-

rect synchronization scores are not enough and are not as
impactful as the high-dimensional features holding the syn-
chronization information for deepfake classification. Ad-
ditionally, submodule features with no shift and maximum
shift performed similarly, but due to a marginal difference,
we selected the maximum shift features as our final feature.

5.2.2. Contribution of Submodule Features

To understand the impact of each feature used by the clas-
sification head, we trained the model using only one fea-
ture at a time instead of all three. Since this setup involves
a single feature, alternating cross-attention is unnecessary.
Therefore, we replaced the transformer decoder layers in
the classification module with an equal number of trans-
former encoder layers. Tab. 3 reports the results for the
three individual feature sets: ‘Only A-V Submodule Fea-
tures,” ‘Only Video Embeddings,” and ‘Only Audio Embed-
dings.” A significant drop in performance is observed com-
pared to our proposed model, which utilizes all three fea-
tures. This suggests that neither cross-modal nor uni-modal
features alone are sufficient. Notably, the minimal perfor-
mance drop when using only audio embeddings indicates
the model’s strong reliance on the audio modality. This re-
liance could explain the poor performance in the Fake Vi-
suals—Real Audio (FVRA) category in Fake AV Celeb.

To evaluate the impact of using uni-modal embeddings
instead of intra-modal synchronization model outputs, we
conducted two experiments. First, we trained the classifi-
cation module with ‘Only A-A Submodule Features’ and
‘Only V-V Submodule Features.” The results show a slight
performance drop compared to their respective uni-modal
embeddings. Next, we replaced the uni-modal embeddings
in our original classification module with the correspond-
ing synchronization submodule features. We observed that
uni-modal embeddings slightly outperformed the submod-
ule features, with a 0.1% increase in AP and a 3.8% gain in
AUC. We conjecture that since the video and audio encoders
were shared across all cross-modal and intra-modal syn-
chronization losses, the unimodal embeddings effectively
capture the necessary and sufficient information for intra-
modal temporal synchronization to be used in the second
stage. Additionally, replacing video and audio embeddings
with A-A and V-V submodule features increases computa-
tional complexity. The inference time of the pretrained syn-
chronization model rises from 20.60 ms to 28.37 ms, and
the FLOPs count increases from 324.58 to 392.32 GFLOPs.

It is also worth noticing that while the impact in AP
is not much, AUC is significantly impacted in the exper-
iments. This could be explained by the imbalance in the
FakeAVCeleb [15] with only 500 real videos but 19,500
deepfakes in the entire dataset.



Feature Set Type  Feature set AP AUC
Submodule Features A-V + A-A + V-V 99.6 84.2
Only A-V 984 538

Only V-V 974 377

Only A-A 99.1 70.2

Embeddings Only Video 97.5 39.6

Only Audio 99.5 819

Ours (A-V Submodule features + Video Embeddings + Audio Embeddings) 99.7 88.0

Table 3. Contribution of Submodule Features on Performance: We report the classification performance achieved by the model when
trained on individual embeddings and synchronization submodule features. The best results are highlighted in bold

Method RVFA FVFA-FS FVFA-GAN FVFA-WL AVG-FV
AP AUC AP AUC AP AUC AP AUC AP AUC
Ours (Decoder, VoxCeleb2) 98.6 979 996 98.1 99.7 974 99.6 96.7 996 974
Ours (Decoder, LRS2) 96.7 94.6 993 963 995 96.1 995 953 994 959
Ours (Sparse Encoder, LRS2) 94.0 954 993 966 993 952 990 909 992 942
Ours (Sparse Encoder, VoxCeleb2) 96.5 958 983 912 992 939 994 941 989 93.1

Table 4. Cross-Manipulation Detection on FakeAVCeleb: We report the Average Precision(AP) and AUC scores over one manipulation
category while training on the rest of the data. For this, we consider four categories: (i) RVFA: Real Visual - Fake Audio (SV2TTS [13]),(ii)
FVFA-FS: Fake Visual - Fake Audio (FaceSwap [16] + Wav2Lip [21] + SV2TTS [13]), (iii) FVFA-GAN: Fake Visual - Fake Audio
(FaceSwapGAN [19] + Wav2Lip [21] + SV2TTS [13]), and (iv) FVFA-WL: Fake Visual - Fake Audio (Wav2Lip [21] + SV2TTS [13]).
The column AVG-FYV refers to the mean of the performance achieved on the four Fake Visual categories. Bold highlights the best perfor-

mance for every metric under each category.

Method  KoDF [17]
AP AUC

Ours (Decoder, VoxCeleb2) 98.9 99.0
Ours (Decoder, LRS2) 56.7 70.1

Ours (Sparse Encoder, LRS2) 98.6  99.2
Ours (Sparse Encoder, 94.4  96.9

VoxCeleb2)

Table 5. Cross-Dataset performance on KoDF: AP and AUC
score(%) achieved on KoDF dataset by the models trained on
FakeAVCeleb. The best results are highlighted in bold.

5.3. Different Pretraining dataset

To understand whether the choice of the dataset has any
impact on the model’s performance, we pretrained our two
variants on two datasets, VoxCeleb2 and LRS2. And used
the features inferred by them to evaluate the classifica-
tion task. Tab. 4, and Tab. 5 report the performance of
the two experiments under cross-manipulation and cross-
dataset generalization respectively. It can be seen that the
variants pretrained on VoxCeleb2 outperform the decoder
variant pretrained on LRS2 under the majority of categories.

This can be attributed to the fact that the FakeAVCeleb
dataset consists of real videos sampled from the VoxCeleb2
dataset, causing both stages to witness data from the same
distribution. Nevertheless, the performance achieved by the
variants pretrained on LRS2 is on par with the one pre-
trained on VoxCeleb2 in each of the two settings. While
the performance of the decoder variant pretrained on LRS2
and evaluated under the cross-dataset generalization is in-
teresting and may need further study, the overall result by
the sparse encoder shows that the model is not overfitting to
specific data distribution and the synchronization features
learned during the pretraining are stable across datasets.

5.4. Computational Analysis

To analyze the computational complexity of our model, we
measured the inference time and FLOPs separately for in-
ference, classification, and localization, as shown in Tab. 6.
Each experiment was conducted with a batch size of 1 on
an NVIDIA H100 80GB HBM3 GPU. The results indicate
that the GFLOPs for the decoder and sparse encoder vari-
ants during inference are quite similar, though the sparse
encoder has a slightly faster inference time. Nevertheless,
training the sparse encoder variant is significantly faster
than the decoder variant. Additionally, the classification



Stage GFLOPs Time (ms) Method AP@0.5 AP@0.75 AP®@0.95
Decoder variant inference  324.58 20.60 MDS [6] 12.78 1.62 0.00
Sparse Encoder variant inference ~ 324.60 17.24 BMN [18] 24.01 7.61 0.07
Classification 3.11 4.26 AVFusion [2] 65.38 23.89 0.11
Localization  296.42 72.20 BA-TFD [3] 76.90 38.50 0.25
ActionFormer [26] 85.23 59.05 00.93
Table 6. Computational analysis: We report the inference time TriDet [23] 86.33 70.23 03.05
and computational complexity in terms of GFLOPs for individual BA-TFD+ [5] 96.30 84.96 04.44
stages of the proposed model. UMMAFormer [27] 98.83 95.54 37.61
(Decoder-Frozen, 87.40 66.80 05.72
task runs efficiently, with minimal execution time. Finally, VoxCeleb2)
it is important to note that the reported inference time for (Decoder-Finetune, 97.79 86.34 08.94
the localization task includes non-maximum suppression. VoxCeleb2)

5.5. Audio Modality Missing

To evaluate the classification model’s performance with-
out audio input, we replaced the audio with a zero tensor
and passed it through the synchronization and classification
models. During testing, videos with only deepfaked audio
were treated as real, while those with manipulated visuals
were considered fake. The model achieved an Average Pre-
cision of 98.1% and an AUC score of 71.6%. Although the
Average Precision dropped by only 1.6% compared to the
original score with both modalities, the AUC score saw a
significant decline of 16.4%. Nevertheless, considering the
model was trained without handling missing modalities, its
performance remains strong and well above chance.

5.6. Effect of Fine Tuning Synchronization Model
on Localization

To assess the impact of a larger model on localization per-
formance, we fine-tuned the synchronization model along
with the localization head. Tab. 7 reports the average pre-
cision at IoU thresholds of 0.5, 0.75, and 0.95. ‘(Decoder-
Frozen, VoxCeleb2)’ refers to our model with a frozen de-
coder, while ‘(Decoder-Finetune, VoxCeleb2)’ denotes the
fine-tuned version. Fine-tuning significantly improved per-
formance by 10.39% at 0.5 IoU, 19.54% at 0.75 IoU, and
3.22% at 0.95 IoU. Moreover, the model outperformed BA-
TFD+ [5] and achieved performance comparable to the
state-of-the-art UMMAFormer [27] at 0.5 IoU. However,
fine-tuning increased the number of trainable parameters
from 18.8M to 50.3M, and the FLOPs for localization rose
from 296.42 GFLOPs to 622.02 GFLOPs. Additionally, this
fine-tuning affected the model’s ability to generalize across
both classification and localization tasks.

6. Localization Performance on AVDF1IM

We further evaluated our model’s performance on the more
challenging AVDFIM dataset [4] for the task of temporal
deepfake localization. We tested with two model variations,
‘(Decoder-Frozen, VoxCeleb2)’ and ‘(Decoder-Finetune,

Table 7. Effect of fine-tuning Decoder variant on Temporal Lo-
calization on Lav-DF: We report Average Precision(%) achieved
at IoU thresholds of 0.5, 0.75, and 0.95 on the LAV-DF dataset.
The best scores are highlighted in bold.

Method AP@0.5 AP@0.75 AP®@0.95
(Decoder-Frozen, 23.43 3.48 0.00
VoxCeleb2)
(Decoder-Finetune, 95.13 66.98 0.32
VoxCeleb2)

Table 8. Temporal Localization on AVDF1M: We report Aver-
age Precision(%) achieved at IoU thresholds of 0.5, 0.75, and 0.95
on the AVDFIM dataset.

VoxCeleb2)’, following the setup described in Sec. 5.6,
with results presented in Tab. 8. The ‘(Decoder-Frozen,
VoxCeleb2)’ variant shows a notable performance drop, in-
dicating that AVDFIM is significantly more challenging
than LAV-DF. In contrast, the ‘(Decoder-Finetune, Vox-
Celeb2)’ variant achieves strong results at IoU thresholds
of 0.5 and 0.75, demonstrating the effectiveness of end-to-
end finetuning on this challenging dataset.
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