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Supplementary Material

Figure S.1. Feature matching examples. For each pair — Left: PCA
color-coded image features (Fz). Right: Corresponding mSDF
3D points (Fs), colored according to matched image pixels.

S.1. 2D-3D Pixel-Vertex Matching

The task of single-image 3D pose and shape estimation
presents significant challenges due to depth ambiguities,
and (self-)occlusions. To address these issues, we propose
a zero-shot pose initialization technique leveraging deep
foundational features [49, 76], inspired by image-to-image
(2D-2D) matching methods [74].

Starting from a shape initialization obtained via our pro-
cedure (see Sec. 3.3), the goal is to establish 2D-to-3D
correspondences by matching 2D pixels to 3D points of
the mSDF. Using a pre-trained ControlNet [76] and
DINOvV2 [49] model we extract feature descriptors for the
2D image, F7, and 3D shape, Fg, as detailed in Sec. 3.4.
These descriptors are matched via cosine similarity (Eq. (9))
to obtain a set of 2D-to-3D pixel-vertex correspondences.

By leveraging the semantic and geometric cues encoded
in the features of ControlNet and DINOv2 [4], our approach
implicitly identifies the visible 3D vertices from 2D pixels.
Examples of these matches are shown in Fig. S.1, where
these are color-coded via the PCA of F7.

S.2. Occlusion Sensitivity

As discussed in Sec. 4.3 in paragraph “Shape Recon-
struction under Occlusion,” we evaluate robustness un-
der occlusion by performing a sensitivity analysis against
ZeroShape [28]. Specifically, we augment Pix3D [61] test
images by randomly rendering rectangle occluders cover-
ing varying percentages (from 10% to 60%) of the object
bounding box; see examples in Fig. 7.

In the main paper we report the results in a plot (Fig. 8).
Here we report the numerical values that correspond to this
plot in terms of the Chamfer Distance metric — see Tab. S.1.

SDFit consistently outperforms ZeroShape for all occlu-
sion levels (both in terms of mean error and st. dev.), pre-
serving object coherence even with substantial occlusion.
Notably, ZeroShape struggles even with minor occlusions
(10%-20%), emphasizing SDFit’s practical advantage.

Occlusion Pix3D (mean CD@XX) |

(%) ZeroShape [28]  SDFit (Ours)
0% 3.44+1.45 3.53+0.82

10% 3.80+1.42 3.66+£1.03

20% 4.69+1.20 3.65+0.99

30% 5.53+1.17 3.82+1.00

40% 6.40+1.53 3.74+1.13

50% 6.76+1.83 3.74+1.23

60% 7.45+2.48 3.83+1.15

Table S.1. Sensitivity analysis on occlusion. We evaluate

reconstruction accuracy under varying occlusion levels on the
Pix3D [61] test set, reporting the mean and standard deviation of
Chamfer Distance (CD). We also show the case with 0% occlusion
(result from Tab. 3) as reference. Note that the occlusion percent-
age is computed on bounding boxes (that might be non-tight for
the depicted object), so 60% corresponds to excessively strong oc-
clusions; see examples in Fig. 7. SDFit consistently outperforms
ZeroShape (ZS), demonstrating greater stability and robustness as
occlusion increases, whereas ZeroShape heavily deteriorates.

S.3. Ablation of SDFit Modules

We replace our shape- and pose-estimation modules with
GT information, and report the 2D IoU (%) on the Pix3D
dataset similar to Tab. 4.

We compare three methods: (1) SDFit that refines
both shape and pose and achieves an IoU of 84.3%, (2)
SDFit-poseGT that refines only shape and achieves
85.6%, and (3) SDFit-shapeGT that refines only pose
and achieves 79.4%.

This shows that SDFit performs on par with priv-
ileged Dbaselines. All variants clearly outperform
ZeroShape+RnC that achieves 73.3%.

S.4. Discussion & Future Work

We leverage foundational features for pose initialization.
As common in existing work [75], sometimes there might
be potential left-right ambiguities that we tackle by evalu-
ating two vertically mirrored candidates. Future work will
explore more involved approaches, e.g., via learned regres-
sion or by directly lifting 2D features into 3D via metric
depth [5].

Moreover, sometimes fine details may be missed, as in
other neural-field-based methods [12, 28], due to the fixed
resolution grid used for mesh extraction. Future work will
look into dynamically adapting resolution, or enhancing the
mSDF expressiveness with a more “flexible” latent space.
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