CODE-CL: Conceptor-Based Gradient Projection for Deep Continual Learning

Supplementary Material

A. Conceptor Implementation Details

We implement the conceptor operations following the equa-
tions presented in Section 2, with one exception: the AND
operation (4).

The operation defined in (4) is only valid when the con-
ceptor matrices are invertible. However, in practice, since
we use a limited number of samples to compute the con-
ceptors, the resulting matrices are often not full rank. To
address this, we adopt a more general version of the AND
operation, as proposed in [8]:

CAB=DD'(C'+B'-1)D)"'D", (1)

Here, CT and BT denote the pseudo-inverses of C and B,
respectively. The matrix D consists of columns that form
an arbitrary orthonormal basis for the intersection of the col-
umn spaces of C' and B.

The procedure for computing D is outlined in Algo-
rithm 2.

Algorithm 2 Computation of matrix D in (11)

Input: C, B, [ (threshold), N (dimension of C and B)
Output: D
Uc,Sc + SVD(C)
UB, SB + SVD(B)
kc < num_elements(S¢ > f)
kp < num_elements(Sg > 5)
U/C' — Uc[:, ke :]
U <+ Ugl;, kB 1]
U,S + SVD(ULUSL +UgUY)
k < num_elements(S > )
D+ U,k

> Singular value decomposition
> # of elements >

> Last N — k¢ columns

B. Additional Ablation Studies

In this section, we present additional ablation studies to
evaluate the impact of the number of free dimensions (K)
and aperture (o) on the 5-Datasets benchmark, as well as the
effect of the threshold parameter (¢) across all three bench-
marks.

Tables 5 and 6 summarize the results on the 5-Datasets
benchmark. We observe that increasing « leads to a reduc-
tion in BWT, consistent with the findings in Section 4. Sim-
ilarly, increasing K improves final accuracy, further validat-
ing trends observed in the other datasets.

Regarding the threshold parameter (e), results suggest
that lower values of e enhance performance by allowing
more directions in the intersection of input spaces across

Table 5. Ablation studies on the aperture («) hyperparameter on
the 5-Datasets benchmark. Results are reported as mean =+ stan-
dard deviation over five trials. Other hyperparameters are constant
as reported in Section 4.

o ACC (%) BWT (%)

4 193.32+£0.13 —-0.25+£0.02
8 193.51+013 -0.1140.01
16 | 93.46 £0.16  —0.04 +0.00

Table 6. Ablation studies on the number of free dimensions (K)
parameter on the 5-Datasets benchmark. Results are reported as
mean = standard deviation over five trials. Other hyperparameters
are constant as reported in Section 4.

K | ACC (%) BWT (%)

0 ]91.67+0.31 —1.364+0.07
20 | 92.70£0.07  —0.4340.01
40 | 93.08+£0.08  —0.33+0.09
60 | 93.22+0.16  —0.28 4+ 0.00
80 | 93.32+0.13 —0.25+0.00

Table 7. Ablation studies on the threshold (€) across the four
benchmarks. Results are reported as mean + standard deviation
over five trials. Other hyperparameters are constant as reported in
Section 4.

| € | ACC(%) BWT (%)
02 ] 7751+018 —0.84+0.24
S-CIFAR100 0.5 ] 77.21+032 —-1.10+£0.28
0.8 | 75.711+£0.40 —0.93+0.36
0.2 ] 68.61+094 —1.30+0.18
S-MinilmageNet | 0.5 | 68.83 £0.41 —1.10+£0.30
0.8 ] 66.57£0.24 —0.56 +=0.18
0.2 ] 93.42+0.11 -0.20+£0.06
5-Datasets 0.5 ] 93.32£0.13 —0.25£0.02
0.819228+0.24 —-0.714+0.18

tasks to be freed. However, this also increases memory
requirements. Therefore, selecting an appropriate € in-
volves a trade-off between performance and computational
resources.

C. Experimental Setup

This section provides details on the architecture of all mod-
els used in this work, the dataset statistics, the hyperparam-
eters for each experiment, and the compute resources em-
ployed.



Table 8. 5-Datasets statistics.

Dataset ‘ CIFAR10 MNIST SVHN Fashion MNIST notMNIST
Number of classes 10 10 10 10 10
Training samples 47500 57000 69595 57000 16011
Validation samples 2500 3000 3662 3000 842
Test samples 10000 10000 26032 10000 1873
Table 9. List of hyperparameters used in our experiments.
Dataset ‘ Split CIFAR100  Split minilmageNet 5-Datasets
Learning rate (1) 0.01 0.1 0.1
Batch size (b) 64 64
Batch size for conceptor comp. (bs) 125 125 125
Min. learning rate (1);,) 1075 107° 1073
Learning rate decay factor 1/2 1/2 1/3
Patience 6 5)
Number of epochs (F) 200 100 100
Aperture () 8 4
Threshold (¢) 0.5 0.5 0.5

Table 10. Split CIFAR100 and Split minilmageNet datasets statis-
tics.

Dataset ‘ Split CIFAR100  Split minilmageNet
Number of tasks (1) 10 20

Sample dimensions 3x32x32 3 x84 x84
Number of classes per task 10 5

Training samples per task 4750 2375
Validation samples per task 250 125

Test samples per task 1000 500

C.1. Model Architecture

In this work, we utilize two models: an AlexNet-like archi-
tecture, as described in [26], and a Reduced ResNet18 [17].

The AlexNet-like model incorporates batch normaliza-
tion (BN) in every layer except the classifier layer. The BN
layers are trained during the first task and remain frozen
for subsequent tasks. The model consists of three convolu-
tional layers with 64, 128, and 256 filters, using kernel sizes
of 4 x 4,3 x 3, and 2 x 2, respectively. These are followed
by two fully connected layers, each containing 2048 neu-
rons. ReLU activation functions are used throughout, along
with 2 x 2 max-pooling layers after each convolutional layer.
Dropout is applied with rates of 0.2 for the first two layers
and 0.5 for the remaining layers.

The Reduced ResNet18 follows the architecture detailed
in [24]. For the Split minilmageNet experiments, the first
layer uses a stride of 2, while for the 5-Datasets benchmark,
it uses a stride of 1.

For all models and experiments, cross-entropy loss is
employed as the loss function.

C.2. Dataset Statistics

The statistics for the four benchmarks used in this work for
continual image classification are summarized in Table 10
and Table 8. For all benchmarks, we follow the same data
partitions as those used in [15, 23, 24].

For the 5-Datasets benchmark, grayscale images are
replicated across all RGB channels to ensure compatibility
with the architecture. Additionally, all images are resized to
32 x 32 pixels, resulting in an input size of 3 x 32 x 32 for
this benchmark.

C.3. Hyperparameters

The hyperparameters used in our experiments are detailed
in Table 9.

C.4. Compute resources

All experiments were conducted on a shared internal Linux
server equipped with an AMD EPYC 7502 32-Core Pro-
cessor, 504 GB of RAM, and four NVIDIA A40 GPUs,
each with 48 GB of GDDR6 memory. Additionally, code
was implemented using Python 3.9 and PyTorch 2.2.1 with
CUDA 11.8.

D. ViT and task-agnostic evaluation

While our main results use CNNs, CODE-CL is
architecture-agnostic. For instance, when fine-tuning ViTs



with LoRA (i.e., WreV = Woldfied 1 B A) CODE-CL
can be applied to VoL as VAL 1= V4L — VALCH!
to mitigate forgetting. Using the setup from [14], we ex-
tended CODE-CL to ViTs. Initial results (Table 11) show
that CODE-CL outperforms [14] in a task-agnostic class-
incremental setting. These findings highlight the potential
of CODE-CL to extend to ViTs and task-agnostic CL.

Table 11. Class-Incremental Learning with ViT on Split CI-
FAR100.
Methods  InfLoRA[14] CODE-CL (Ours)

Accuracy  87.06 £ 0.25 88.23 £ 0.20
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