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Figure 6. Robustness of Watermark Detection Against Image
Transformations. Comparison of correct watermark detection
accuracy of SEAL under various image transformations.

7. Additional Related Works

Post-Processing Methods. Post-processing techniques
embed watermarks after the image generation stage, provid-
ing model-agnostic flexibility at the cost of potential quality
degradation. Frequency-domain methods, such as methods
using the Discrete Wavelet Transform (DWT) and Discrete
Cosine Transform (DCT) [1, 23], embed watermarks in the
transformed domains and offer robustness against opera-
tions like resizing and translation. Complementing these,
deep encoder-decoder frameworks such as HiDDeN [37]
and StegaStamp [30] utilize end-to-end neural training for
watermark embedding and extraction. Despite these ad-
vancements, however, these methods are vulnerable to re-
generation attacks [36]. Alternative strategies operating in
latent spaces have also been proposed [1 1], though they also
remain susceptible to sophisticated removal attacks.

8. Proof of Lemma 3.2

Proof of Lemma 3.2. The angle between the original seman-
tic vector v used to generate the watermark and extracted
semantic vector v of the suspect image is
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Since each SimHash instance is independent, the number
of matches m is distributed like a Binomial with n trials
and success probability p(#). During watermark detection,
we count the number of patches that match, declaring an
image watermarked if the number of matches exceeds the
threshold m™*h. Setting m™*h = |np(4™id)| yields the
lemma statement. O

9. Implementation Details

9.1. Key Parameters

Unless otherwise stated, the results are reported with the
following parameters: number of patch matching threshold
Nmatch = 12; patch-wise matching threshold 7 = 2.3; num-
ber of projection per noise patch: b = 7; number of noise
patches k = 1024. All parameters were chosen to optimize
the overall performance.

9.2. Spatial Test

To better analyze potential image tampering, we examine
the structural organization of high-intensity regions in the
patch correspondence heatmaps (see Section 3, Tampering
Detection). Specifically, we threshold the heatmap data at
the 80th percentile and identify connected components. The
extracted parameter, the number of distinct clusters detected
at this threshold, provides insight into the fragmentation of
high-intensity regions. A higher number of clusters indicates
a more dispersed distribution, while a lower number sug-
gests more contiguous structures, which may be indicative
of image tampering.

9.3. Transformations for the Removal Attack

We use a standard suit of transformations, including a 75°
rotation, 25% JPEG compression, 75% random cropping and
scaling (C & S), Gaussian blur using an 8 x 8 filter, Gaussian
noise with o = 0.1, and color jitter with a brightness factor
uniformly sampled between 0 and 6.

9.4. Embedding Model Fine Tuning Process

Source Prompts and Caption Pairing. Prompts were
sampled from MS-COCO and the Stable Diffusion Prompt

zTechnically, there is an additional chance of a random collision but,
given the size of modern cryptographic hash functions like SHA2, we
assume this probability is negligible.



Table 3. Robustness of Steganalysis-Based Removal. Comparison of performance metrics (ROC-AUC) under various levels of averaging.

Method 5 10 20 50 100 200 500 1000 2000 5000
Tree-Ring (AUC) 0.293 0.267 0.314 0.275 0.214 0.228 0.211 0.224 0.224 0.241
WIND (AUC) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SEAL (AUC) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 7. Ablation Study of the Number of Patches (n) and Bits
(b) on Watermark Detection Performance.

Dataset
(Gustavosta/Stable-Diffusion—-Prompts).
Images were generated using Stable Diffusion v2.1
(stabilityai/stable-diffusion-2-1-base),
then captioned with BLIP-2
(Salesforce/blip2-flan-t5-x1). A regeneration
loop used each caption as a prompt to generate a second
image, which was again captioned, yielding semantically
aligned (caption, , caption,,) pairs. Unrelated pairs were
constructed by randomly mismatching captions. This
procedure yielded 10,000 caption pairs.

Fine-Tuning. A SentenceTransformer model
(paraphrase-Mpnet-base-v2) was fine-tuned using
MultipleNegativesRankingLoss. Training was
performed for 140 epochs with a batch size of 64 and 10%
warmup steps, using the AdamW optimizer with default
settings.

We provide the full implementation details of the
fine-tuning process to support reproducibility and enable
further research.’.

30ur fine-tuned caption embedding model is publicly available
at https://huggingface . co/kasraarabi / finetuned-
caption-embedding

10. Ablation of Number of Patches and Bits

To investigate the impact of the number of patches (n) and
the number of bits (b) used to generate the initial noise, we
conducted an exhaustive ablation study across various
parameter combinations. The results are presented in
Figure 7.

11. Resilience to Latent Forgery Attacks

We evaluate SEAL under the Latent Forgery Attack [17].
This attack aims to adversarially perturb non-watermarked
images such that they appear watermarked by mimicking
the latent representation of an originally watermarked
image. This type of attacks assumes access to at least one
watermarked image and attempts to shift unrelated images
into the watermarked image latent region [22].

Our experiments, conducted on 100 images, demonstrated
complete robustness against such attacks. Due to its
semantic binding, our watermark is closely entangled with
the high-level content of the original image (used by the
attacker). Therefore, it is unlikely that the watermark can be
transferred to images featuring unrelated content. Beyond
this, the task of forging the latent patches is itself highly
nontrivial. Yet, aiming to forge noise patches that better
align semantically with the original watermarked image
(used during the attack) might yield greater success. We
leave this direction for future research.

12. Additional Limitations and Discussion

Distortion-Free Property for Sets of Images Our
watermarking scheme securely generates the noise for each
patch from a normal distribution, ensuring that each
individual noise is distributed from a normal distribution.
However, multiple watermarked images corresponding to
related prompts may leak information about the noise i.e.,
the noise in some patches will match while the noise in
other patches does not. This leakage arises from our design
choice to make similar prompts produce similar watermarks,
a feature that enhances consistency but comes at the cost of
some information exposure.

In contrast, some prior works do not exhibit this property
and instead maintain a stronger sense of distribution-free
randomness. Ignoring cases where the exact same noise is
reused, such as when multiple images are generated by the
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same user in [34], these methods ensure that each image is
independently sampled from a normal distribution. This
fundamental difference highlights a trade-off between
ensuring independent randomness and enabling structured
watermark consistency across related prompts. A user
concerned about the distortion-free property for sets may
vary the secret salt for different generations. This will allow
the user to enjoy the best of both worlds, At the cost of
searching through possible salts that may have been used
during detection time.

Further Possible Improvement. We made an initial
attempt to find a semantic vector that is both known before
generation and recoverable from the generated image. Yet,
we believe this is a promising direction for future research.
Improved semantic embedding methods, as well as
approaches that jointly optimize image generation and
semantic descriptor generation, could enhance the
correspondence between the embedded watermark and the
image’s semantics. Such advancements may enable much
stricter bounds on detecting when a watermarked image has
been tampered with and how.

Watermarking Without a Proxy Image. To watermark
an image directly with SimHash, we may embed the noise
via post hoc diffusion inpainting (see Section 4.3 of [4]), at
the expense of a modest quality decrease; SSIM = 0.768.
Alternatively, one may optimize an embedding of the
prompt to correlate well between a givan prompt and the
caption of the resulting image (similarly to Figure 5).

Reliance on DDIM inversion. While diffusion models
are not accurately mapped back to the initial noise used to
generate them, our method is based on an empirical
observation: patches with small enough /5 differences are
almost always generated from the same seed, suggesting
consistent behavior under approximate inversion. The ¢
distance, as a metric used to determine whether a
reconstructed noise patch matches the original, yields over
99.9% ROC-AUC.

Prompt Inversion Attack. An attacker may choose to use
prompt inversion methods such as [21]. When an attacker
approximates the prompt, our semantic safeguard may be
less effective. Yet, forgery attacks often aim to harm the
owner’s reputation. Our method ensures that even if a
forged image is produced, its semantics remain somewhat
close to the original watermarked image.

Attacking the Confusion Band. As shown in Figure 5, at
certain levels of semantic similarity, our method may
confuse images that are related or unrelated to the

embedded caption. However, a forger’s ability to exploit
this ambiguity is inherently constrained by the semantics of
the original watermarked images — They can only forge
images that are sufficiently similar to those whose
watermark they supposedly managed to replicate. This
limitation could potentially be mitigated in the future
through improved embedding models.

Watermarking Capacity. The ability to encode a very
large number of distinct watermarks, or to identify one user
out of many millions possible watermark owners, may raise
concerns. As previous work has shown, noise-based
watermarking methods can support millions of different
users by using different hash salts, while still ensuring that
the key patterns remain distinguishable [4, 14].

Figure 8. Impact of Repetitive Patches in the Initial Noise on
Image Generation.

13. Additional Experiments
13.1. CatAttack Performance vs. Object Scale

We varied the size of the pasted object in the CatAttack
from 10% to 40% of the image area and evaluated detection
performance at each scale. Table 4 reports the ROC-AUC
(%) for each object scale, showing a gradual improvement
from 95.4% at a 10% scale to 98.0% at a 40% scale.

Table 4. CatAttack Detection Performance vs. Object Scale. ROC-
AUC (%) for different object sizes, as detected by SEAL + Spatial
Test.

Scale (% of image) 10 20 30 40
ROC-AUC (%) 954 96.2 97.7 98.0




Figure 9. Comparison between the proxy image xp. (left two) and
the final generated image x (right two). Zoom in for clarity.

13.2. Effect of Insertions on Semantic Embeddings
and LSH Binning

We evaluate how localized insertions (e.g., “cat”, “house”,
“human”) impact the semantic embedding vector and its
SimHash bin assignments. Table 5 reports the average
angular shift Af between the original and edited
embeddings, along with the proportion of hash bins that flip
due to each insertion. The results show that even modest
insertions can produce substantial rotations in semantic
space (up to 71.2°) and high bin-flip ratios (exceeding
90%), underscoring the sensitivity of LSH-based watermark
detection to semantic changes. The experimental details are
similar to those of Cat Attack in Section 4.

Table 5. Insertion Type Analysis. The angle between the original
and edited semantic embeddings, and the ratio of changed bins.

Insert Type Cat House Human

Angle (°) 71.2+13.8 60.3+£19.7 68.8+£17.3
Flip Ratio 96% + 4% 90% + 8% 94% + 5%

13.3. Robustness under Regeneration Attack

We benchmark SEAL against a range of detection
approaches, including both generation-time and post-hoc
methods such as HiDDeN [37], Stable Signature [12],
TrustMark [6], and WOUAF [18]. As shown in Table 6,
SEAL maintains a 98% detection accuracy under a
regeneration attack [36], outperforming prior methods.

Table 6. Robustness of watermarking methods under regeneration-
based removal attacks [36]. We report the watermark detection
accuracy on regenerated (attacked) images (%).

Method HiDDeN  StableSig  TrustMark ~ WOUAF  SEAL
Acc. (%) 47 41 5 51 98

13.4. Proxy vs. Generated Image Comparison

In Figure 9, we present a visual comparison between the
proxy image xpr, which guides the watermark placement,
and the final generated image =z, illustrating SEAL’s ability
to preserve semantic intent during watermarked generation.



Table 7. CLIP Score Evaluation. Comparison of CLIP scores before and after watermarking for images generated using prompts from the
Stable-Diffusion-Prompts [27] and COCO [20] dataset.

Stable-Diffusion-Prompts COCO
CLIP (before) CLIP (after) CLIP (before) CLIP (after)
32.378 32.401 31.365 31.499

Figure 10. Watermarked images generated using SEAL.
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