
Supplementary Material for
Neuromanifold-Regularized KANs for Shape-fair Feature Representations

A. Details of the cue conflict dataset
The cue-conflict dataset consists of 1536 images, is class-
balanced, and is composed of 8 different categories: spider,
orthopetra, garment, ladybug, barrel/chest, monkey, ele-
phant, and citrus. The primary concerns in choosing these
categories are (i) strong shape and texture information, (ii)
agreement with the categories of both the Tiny-ImageNet
and ImageNet. We used a separate set of content and style
images: while content images have clear shape properties
and are realistic, the style images are chosen to be rich in
texture (Figure. 1). For some style images, we also used
crop and pastes to remove as much of shape information as
possible (Figure. 1-(c)&(d)). For each category, there are 8
content images, and 3 style images.

Our implementation is based on [1], with the main differ-
ence that we finetuned the VGG networks on TinyImageNet
so that features in 64× 64 are captured better.
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Figure 1. Sample texture (style) sources, left to right: barrel, cit-
rus, garment, orthopetra.

B. Potential of KANs for shape fairness
Main difference of KANs from universal approximation
theorem-based neural networks is that they can learn non-
linearities directly. In order to do so, a finite parametrization
of the function space is required. Usually, this is achieved
by first choosing an infinite dimensional basis, followed up
by choosing a feasible finite subset in which the optimiza-
tion is to be done. Here, we consider polynomial basis for
the ease of analysis.

The concepts of shape and texture do not have a univer-
sally accepted mathematical definition. Hence in our analy-
ses, we focus on mathematically well-defined concepts that
are shown to be related to shape and texture.

Spectral analysis of learnable and fixed nonlinearities.
Although the relationship is not strict, shape information is
associated with low-frequency structures that capture global
form, while texture primarily resides in high-frequency
details [3]. With this relation in mind, we show that
fixed nonlinearities, especially parametric ReLU , cause
a more serious increase in the frequency bandwidth of
the inputs, indicating repeated introduction of texture-
like features.

Polynomial nonlinearities. Decomposing a sig-
nal x(t) into (WLOG) zero-phase waves as
x(t) =

∑
i ai cos(2πfit), we can see the effect of

polynomial nonlinearities on the spectral components
directly.
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the output signal has frequency components arising from
addition/subtraction of different components. This observa-
tion can be straightforwardly generalized to n-degree poly-
nomials, which have n-fold frequency components, provid-
ing support for our approach of controlling the degree of
the neuromanifold to emphasize shape-fairness. That is,
the frequency bandwidth increases, but as we show in the
following, the severity of this effect is limited when com-
pared with that of PReLU .
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Parametric ReLU . Our approach follows and general-
izes that of [2]. The Taylor series for PReLU(x(t)) ={
x, if x ≥ 0

αx, if x < 0
can be acquired by first identifying it as

y(t) = PReLU(x(t)) =
x(t) + β

√
x2(t)

1 + β
, β =

1− α

1 + α
,

(β = 1 corresponds to ReLU ) and identifying the input
x2(t) in terms of its frequency components as

x2(t) = A(1 + g(t))

as above. Different from polynomial activations, in addition
to the 2-fold frequency components, theoretically, infinite-
fold components are introduced:
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can be expanded around g(t) = 0 as
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Fig. 2 displays the first 1000 terms of the coefficients

Figure 2. First 1000 Taylor coefficients coming from the nonlinear
term in PReLU .

We report the effect of the ReLU and a degree 2 polyno-
mial in Fig. 3 and the repeated application of convolutional
signal processing for both with random weights in Fig. 4.

C. Optimization of style decorrelation loss
Style decorrelation loss aims to encourage stylistic diversity
between the two branches of the NMR-KAN. In Fig. 5 we
show a typical progress of Ldecorr. The loss remains mostly
unchanged in the early stages of learning, and near the half
of training, goes through a rapid optimization step.

Figure 3. Nonlinearities increase the frequency bandwidth.

Figure 4. Nonlinearity types strongly determines the spectral com-
ponents after repeated applications. After 5 layers of linear convo-
lutional filtering, each followed up by ReLU activation, the sig-
nal’s frequency bandwidth is considerably more increased com-
pared to the 5 layers of convolutional filtering with degree-2 poly-
nomials. For both, filter size is set to 3 and the weights are ran-
domly assigned.

Figure 5. Typical progress of the style decorrelation loss during
model training. The early stationary state is important for training
stability.
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